
Part I

A Modeling Hierarchy for Simulations
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1

Introduction

1.1 What is this book about?

1.1.1 Simulation of real systems

Computer simulations of real systems require a model of that reality. A
model consists of both a representation of the system and a set of rules that
describe the behavior of the system. For dynamical descriptions one needs in
addition a specification of the initial state of the system, and if the response
to external influences is required, a specification ofthe external influences.

Both the model and the method of solution depend on the purpose of
the simulation: they should be accurate and efficient. The model should be
chosen accordingly. For example, an accurate quantum-mechanical descrip-
tion of the behavior of a many-particle system is not efficient for studying
the flow of air around a moving wing; on the other hand, the Navier–Stokes
equations – efficient for fluid motion – cannot give an accurate description of
the chemical reaction in an explosion motor. Accurate means that the sim-
ulation will reliably (within a required accuracy) predict the real behavior
of the real system, and efficient means “feasible with the available technical
means.” This combination of requirements rules out a number of questions;
whether a question is answerable by simulation depends on:

• the state of theoretical development (models and methods of solution);
• the computational capabilities;
• the possibilities to implement the methods of solution in algorithms;
• the possibilities to validate the model.

Validation means the assessment of the accuracy of the model (compared to
physical reality) by critical experimental tests. Validation is a crucial part
of modeling.

3
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4 Introduction

1.1.2 System limitation

We limit ourselves to models of the real world around us. This is the realm
of chemistry, biology and material sciences, and includes all industrial and
practical applications. We do not include the formation of stars and galax-
ies (stellar dynamics) or the physical processes in hot plasma on the sun’s
surface (astrophysics); neither do we include the properties and interactions
of elementary particles (quantum chromodynamics) or processes in atomic
nuclei or neutron stars. And, except for the purposes of validation and
demonstration, we shall not consider unrealistic models that are only meant
to test a theory. To summarize: we shall look at literally “down-to-earth”
systems consisting of atoms and molecules under non-extreme conditions of
pressure and temperature.

This limits our discussion in practice to systems that are made up of
interacting atomic nuclei, which are specified by their mass, charge and spin,
electrons, and photons that carry the electromagnetic interactions between
the nuclei and electrons. Occasionally we may wish to add gravitational
interactions to the electromagnetic ones. The internal structure of atomic
nuclei is of no consequence for the behavior of atoms and molecules (if we
disregard radioactive decay): nuclei are so small with respect to the spatial
spread of electrons that only their monopole properties as total charge and
total mass are important. Nuclear excited states are so high in energy
that they are not populated at reasonable temperatures. Only the spin
degeneracy of the nuclear ground state plays a role when nuclear magnetic
resonance is considered; in that case the nuclear magnetic dipole and electric
quadrupole moment are important as well.

In the normal range of temperatures this limitation implies a practical
division between electrons on the one hand and nuclei on the other: while
all particles obey the rules of quantum mechanics, the quantum character
of electrons is essential but the behavior of nuclei approaches the classical
limit. This distinction has far-reaching consequences, but it is rough and
inaccurate. For example, protons are light enough to violate the classical
rules. The validity of the classical limit will be discussed in detail in this
book.

1.1.3 Sophistication versus brute force

Our interest in real systems rather than simplified model systems is con-
sequential for the kind of methods that can be used. Most real systems
concern some kind of condensed phase: they (almost) never consist of iso-
lated molecules and can (almost) never be simplified because of inherent
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1.1 What is this book about? 5

symmetry. Interactions between particles can (almost) never be described
by mathematically simple forms and often require numerical or tabulated
descriptions. Realistic systems usually consist of a very large number of in-
teracting particles, embedded in some kind of environment. Their behavior
is (almost) always determined by statistical averages over ensembles con-
sisting of elements with random character, as the random distribution of
thermal kinetic energy over the available degrees of freedom. That is why
statistical mechanics plays a crucial role in this book.

The complexity of real systems prescribes the use of methods that are
easily extendable to large systems with many degrees of freedom. Physical
theories that apply to simple models only, will (almost) always be useless.
Good examples are the very sophisticated statistical-mechanical theories for
atomic and molecular fluids, relating fluid structural and dynamic behav-
ior to interatomic interactions. Such theories work for atomic fluids with
simplified interactions, but become inaccurate and intractable for fluids of
polyatomic molecules or for interactions that have a complex form. While
such theories thrived in the 1950s to 1970s, they have been superseded by ac-
curate simulation methods, which are faster and easier to understand, while
they predict liquid properties from interatomic interactions much more ac-
curately. Thus sophistication has been superseded by brute force, much to
the dismay of the sincere basic scientist.

Many mathematical tricks that employ the simplicity of a toy model sys-
tem cannot be used for large systems with realistic properties. In the exam-
ple below the brute-force approach is applied to a problem that has a simple
and elegant solution. To apply such a brute-force method to a simple prob-
lem seems outrageous and intellectually very dissatisfying. Nevertheless, the
elegant solution cannot be readily extended to many particles or complicated
interactions, while the brute-force method can. Thus not only sophistication
in physics, but also in mathematics, is often replaced by brute force methods.
There is an understandable resistance against this trend among well-trained
mathematicians and physicists, while scientists with a less elaborate train-
ing in mathematics and physics welcome the opportunity to study complex
systems in their field of application. The field of simulation has made theory
much more widely applicable and has become accessible to a much wider
range of scientists than before the “computer age.” Simulation has become
a “third way” of doing science, not instead of, but in addition to theory and
experimentation.

There is a danger, however, that applied scientists will use “standard”
simulation methods, or even worse use “black-box” software, without real-
izing on what assumptions the methods rest and what approximations are
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6 Introduction
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Figure 1.1 Morse curve with a = 2/b (solid curve). Dotted curve: parabola with
same curvature as Morse curve at r = b: V = Da2(r − b)2.

implied. This book is meant to provide the necessary scientific background
and to promote awareness for the limitations and inaccuracies of simulating
the “real world”.

Example: An oscillating bond
In this example we use brute-force simulation to attack a problem that could be
approached analytically, albeit with great difficulty. Consider the classical bond
length oscillation of a simple diatomic molecule, using the molecule hydrogen fluo-
ride (HF) as an example. In the simplest approximation the potential function is
a parabola:

V (r) = 1
2k(r − b)2, (1.1)

with r the H–F distance, k the force constant and b the equilibrium distance. A
better description of the potential function is the Morse function (see Fig. 1.1)

V (r) = D
(
1 − e−a(r−b)

)2

, (1.2)

where D is the dissociation energy and a is a constant related to the steepness of
the potential. The Morse curve is approximated near the minimum at r = b by a
parabola with force constant k = 2Da2.

The Morse curve (Morse, 1929) is only a convenient analytical expression that has
some essential features of a diatomic potential, including a fairly good agreement
with vibration spectra of diatomic molecules, but there is no theoretical justification
for this particular form. In many occasions we may not even have an analytical form
for the potential, but know the potential at a number of discrete points, e.g., from
quantum-chemical calculations. In that case the best way to proceed is to construct
the potential function from cubic spline interpolation of the computed points. Be-
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1.1 What is this book about? 7

Table 1.1 Data for hydrogen fluoride

mass H mH 1.0079 u
mass F mF 18.9984 u
dissocation constant D 569.87 kJ/mol
equilibrium bond length b 0.09169 nm
force constant k 5.82 × 105 kJ mol−1 nm−2

cause cubic splines (see Chapter 19) have continuous second derivatives, the forces
will behave smoothly as they will have continuous first derivatives everywhere.

A little elementary mechanics shows that we can split off the translational motion
of the molecule as a whole, and that – in the absence of rotational motion – the
bond will vibrate according to the equation of motion:

µr̈ = −dV

dr
, (1.3)

where µ = mHmF/(mH + mF) is the reduced mass of the two particles. When we
start at time t = 0 with a displacement ∆r and zero velocity, the solution for the
harmonic oscillator is

r(t) = b + ∆r cos ωt, (1.4)

with ω =
√

k/µ. So the analytical solution is simple, and we do not need any nu-
merical simulation to derive the frequency of the oscillator. For the Morse oscillator
the solution is not as straightforward, although we can predict that it should look
much like the harmonic oscillator with k = 2Da2 for small-amplitude vibrations.
But we may expect anharmonic behavior for larger amplitudes. Now numerical sim-
ulation is the easiest way to derive the dynamics of the oscillator. For a spline-fitted
potential we must resort to numerical solutions. The extension to more complex
problems, like the vibrations of a molecule consisting of several interconnected har-
monic oscillators, is quite straightforward in a simulation program, while analytical
solutions require sophisticated mathematical techniques.

The reader is invited to write a simple molecular dynamics program that uses
the following very general routine mdstep to perform one dynamics step with the
velocity-Verlet algorithm (see Chapter 6, (6.83) on page 191). Define a function
force(r) that provides an array of forces F , as well as the total potential energy
V , given the coordinates r, both for the harmonic and the Morse potential. You
may start with a one-dimensional version. Try out a few initial conditions and
time steps and look for energy conservation and stability in long runs. As a rule
of thumb: start with a time step such that the fastest oscillation period contains
50 steps (first compute what the oscillation period will be). You may generate
curves like those in Fig. 1.2. See what happens if you give the molecule a rotational
velocity! In this case you of course need a two- or three-dimensional version. Keep
to “molecular units”: mass: u, length: nm, time: ps, energy : kJ/mol. Use the data
for hydrogen fluoride from Table 1.1.

The following function performs one velocity-Verlet time step of MD on a system
of n particles, in m (one or more) dimensions. Given initial positions r, velocities v
and forces F (at position r), each as arrays of shape (n,m), it returns r, v, F and
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Figure 1.2 Oscillation of the HF bond length, simulated with the harmonic oscil-
lator (solid curve) and the Morse curve (long dash), both with initial deviation
from the equilibrium bond length of 0.01 nm, Dotted curve: Morse oscillator with
initial deviation of 0.03 nm, showing increased anharmonic behavior. Note that the
frequency of the Morse oscillator is lower than that of the harmonic oscillator. A
time step of 0.2 fs was used; the harmonic oscillator simulation is indistinguishable
from the analytical solution.

the potential energy V one time step later. For convenience in programming, the
inverse mass should be given as an array of the same shape (n,m) with repeats of
the same mass for all m dimensions. In Python this n×m array invmass is easily
generated from a one-dimensional array mass of arbitrary length n:
invmass=reshape(repeat(1./mass,m),(alen(mass),m)),
or equivalently
invmass=reshape((1./mass).repeat(m),(alen(mass),m))

An external function force(r) must be provided that returns [F, V ], given r. V is
not actually used in the time step; it may contain any property for further analysis,
even as a list.

python program 1.1 mdstep(invmass,r,v,F,force,delt)
General velocity-Verlet Molecular Dynamics time step

01 def mdstep(invmass,r,v,F,force,delt):
02 # invmass: inverse masses [array (n,m)] repeated over spatial dim. m
03 # r,v,F: initial coordinates, velocities, forces [array (n,m)]
04 # force(r): external routine returning [F,V]
05 # delt: timestep
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1.2 A modeling hierarchy 9

06 # returns [r,v,F,V] after step
07 v=v+0.5*delt*invmass*F
08 r=r+v*delt
09 FV=force(r)
10 v=v+0.5*delt*invmass*FV[0]
11 return [r,v,FV[0],FV[1]]

Comments
As mentioned in the Preface (page xiii), it is assumed that scipy has been imported. The initial
values of r, v, F, V are valid at the time before the step, and normally available from the output of
the previous step. To start the run, the routine force(r) must have been called once to initiate
F . The returned values are valid at the end of the step. The arguments are not modified in place.

1.2 A modeling hierarchy

The behavior of a system of particles is in principle described by the rules of
relativistic quantum mechanics. This is – within the limitation of our system
choices – the highest level of description. We shall call this level 1. All other
levels of description, such as considering atoms and molecules instead of
nuclei and electrons, classical dynamics instead of quantum dynamics, or
continuous media instead of systems of particles, represent approximations
to level 1. These approximations can be ordered in a hierarchical sense from
fine atomic detail to coarse macroscopic behavior. Every lower level loses
detail and loses applicability or accuracy for a certain class of systems and
questions, but gains applicability or efficiency for another class of systems
and questions. The following scheme lists several levels in this hierarchy.

LEVEL 1 relativistic quantum dynamics

System
Atomic nuclei (mass, charge, spin),
electrons (mass, charge, spin), pho-
tons (frequency)

Rules
Relativistic time-dependent quan-
tum mechanics; Dirac’s equation;
(quantum) electrodynamics

Approximation
Particle velocities small comp-
ared to velocity of light

�
��

�
��

No Go
Electrons close to heavy nuc-
lei; hot plasmas

�
�
�

�
�
�

LEVEL 2 quantum dynamics

System
Atomic nuclei, electrons, photons

Rules
Non-relativistic time-dependent
Schrödinger equation; time-
independent Schrödinger equation;
Maxwell equations
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10 Introduction

Approximation
Born–Oppenheimer approx.:
electrons move much faster
than nuclei

�
��

�
��

No Go
Electron dynamics (e.g., in
semiconductors); fast elec-
tron transfer processes; dy-
namic behavior of excited
states �

�
�

�
�
�

LEVEL 3 atomic quantum dynamics

System
Atoms, ions, molecules, (photons)

Rules
Atoms move in effective potential
due to electrons; atoms may be-
have according to time-dependent
Schrödinger equation

Approximation
Atomic motion is classical

�
��

�
��

No Go
Proton transfer; hydrogen
and helium at low tempera-
tures; fast reactions and high-
frequency motions

�
�
�

�
�
�

LEVEL 4 molecular dynamics

System
Condensed matter: (macro)molec-
ules, fluids, solutions, liquid crystals,
fast reactions

Rules
Classical mechanics (Newton’s equa-
tions); statistical mechanics; molec-
ular dynamics

Approximation
Reduce number of degrees of
freedom

�
��

�
��

No Go
Details of fast dynamics,
transport properties

�
�
�

�
�
�

LEVEL 5 generalized langevin dynamics on reduced system

System
Condensed matter: large molecu-
lar aggregates, polymers, defects in
solids, slow reactions

Rules
Superatoms, reaction coordinates;
averaging over local equilibrium,
constraint dynamics, free energies
and potentials of mean force.

Approximation
Neglect time correlation
and/or spatial correlation in
fluctuations

�
��

�
��

No Go
Correlations in motion, short-
time accuracy

�
�
�

�
�
�
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1.2 A modeling hierarchy 11

LEVEL 6 simple langevin dynamics

System
“Slow” dynamic (non-equilibrium)
processes and reactions

Rules
Accelerations given by systematic
force, friction, and noise; Fokker–
Planck equations

Approximation
Neglect inertial terms: coarse
graining in time

�
��

�
��

No Go
Dynamic details

�
�
�

�
�
�

LEVEL 7 brownian dynamics

System
Coarse-grained non-equilibrium pro-
cesses; colloidal systems; polymer
systems

Rules
Velocities given by force and friction,
plus noise; Brownian (diffusive) dy-
namics; Onsager flux/force relations

Approximation
Reduce description to contin-
uous densities of constituent
species

�
��

�
��

No Go
Details of particles

�
�
�

�
�
�

LEVEL 8 mesoscopic dynamics

System
As for level 7: self-organizing sys-
tems; reactive non-equilibrium sys-
tems

Rules
Density description: mass conser-
vation plus dynamic flux equation,
with noise.

Approximation
Average over “infinite” number
of particles

�
��

�
��

No Go
Spontaneous structure forma-
tion driven by fluctuations

�
�
�

�
�
�

LEVEL 9 reactive fluid dynamics

System
Non-equilibrium macroscopic mix-
ture of different species (as the at-
mosphere for weather forecasting

Rules
Energy, momentum and mass conser-
vation; reactive fluxes
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