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Introduction

1.1 The evidence for intermolecular forces

The idea that matter is made up of atoms and molecules was known to the Greeks, though the

evidence for it did not become persuasive until the eighteenth and nineteenth centuries, when

the ideal gas laws, the kinetic theory of gases, Faraday’s laws of electrolysis, the stoichiometry

of most chemical reactions, and a variety of other indications combined to decide the matter

beyond doubt. In the twentieth century, further techniques such as X-ray diffraction and, more

recently, high-resolution microscopy, have provided more evidence.

Given the idea that matter consists of molecules, however, the notion that there must be

forces between them rests on much simpler evidence. The very existence of condensed phases

of matter is conclusive evidence of attractive forces between molecules, for in the absence of

attractive forces, the molecules in a glass of water would have no reason to stay confined to the

glass. Furthermore, the fact that water has a definite density, and cannot easily be compressed

to a smaller volume, shows that at short range the forces between the molecules become

repulsive.

It follows that the energy of interaction U between two molecules, as a function of the

distance R between them, must take the form shown in Fig. 1.1. That is, it must have an

attractive region at long range, where the force −∂U/∂R is negative, and a steeply repulsive

region at close range to account for the low compressibility of condensed materials. There is

a separation Rm where the energy is a minimum, and a closer distance σ where the energy

of interaction goes through zero before climbing steeply. These are conventional notations,

as is the symbol ε for the depth of the attractive well. The precise form of the function U(R)
will depend on the particular molecules concerned, but these general features will be almost
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Fig. 1.1 A typical intermolecular potential energy function.
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universal. For some pairs of molecules, in some relative orientations, the interaction energy

may be repulsive at all distances, but unless the molecules are both ions with the same sign of

charge, there will always be orientations where the long-distance interaction is attractive.

Van der Waals was the first to take these ideas into account in describing the departure of

real gases from ideality. He suggested that the volume V occupied by a gas included a volume

b that was occupied by the incompressible molecules, so that only V − b remained for the free

movement of the molecules; and that the attractive forces between the molecules had the effect

of reducing the pressure exerted by a gas on its container, by an amount proportional to the

square of the density. Thus the ‘true’ pressure, in the sense of the gas laws, is not the measured

pressure P but P + a/V2. The gas law PV = RT then took the form (P + a/V2)(V − b) = RT ,

where P and V are now the measured pressure and volume rather than the ideal values.

This simple equation gave a remarkably good account of the condensation of gases into

liquids, and the values of the constants a and b correspond tolerably well with the properties

of molecules as we now understand them. Although this approach has been superseded, the

forces of attraction and repulsion between molecules are still often called ‘Van der Waals’

forces.

1.1.1 Magnitudes

The value of the Van der Waals parameter b has a clear interpretation in terms of molecular

size; but more direct methods, such as X-ray crystallography, provide accurate values for

the equilibrium separation in the solid. This is not quite the same as Rm, because there are

attractive forces between more distant molecules that compress the nearest-neighbour distance

slightly. The depth ε of the attractive well can be estimated via calorimetric data. One simple

order-of-magnitude method is based on Trouton’s rule, an empirical observation which states

that the enthalpy of vaporization is approximately related to the boiling point at atmospheric

pressure Tb by ΔHvap ≈ 10RTb. Although this is an empirical rule, it can be understood quite

easily in a general way: the change in Gibbs free energy G = H − TS between liquid and

vapour is zero at the boiling point, so ΔHvap = TbΔS vap. We approximate ΔS in terms of the

change of volume between liquid and gas, ΔS = R ln(Vg/Vl), as if the liquid were just a highly

compressed gas. Typically (Vg/Vl) ≈ 103, which gives ΔS ≈ 7R; the remaining 3R or so can

be accounted for by the fact that liquids are more structured than gases, and so have a lower

entropy than is assumed in this simple picture.

Now the energy required to separate a condensed liquid into its constituent molecules is

approximately ε for each pair of molecules that are close together. If each molecule has n
neighbours in the liquid, the total energy for N molecules is 1

2
Nnε (where the factor of 1

2

is needed to avoid counting each interaction twice). This is approximately the latent heat of

evaporation; we should really correct for the zero-point energy of vibration of the molecules

in the liquid, but if we assume that the intermolecular vibrations are classical the energy in

these vibrations will be the same as the translational energy in the gas. Thus we find that
1
2
NAnε ≈ 10RTb, or ε/kB ≈ 20Tb/n.
Table 1.1 shows the values that result for a few atoms and molecules. The value of the

coordination number n has been assumed here to be the same as in the solid; this is probably

a slight overestimate in most cases. The results show that the predictions are quite good, and

certainly adequate for estimating the order of magnitude of ε.
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Table 1.1 Pair potential well depths.

Tb/K n (20Tb/n)/K (εexp/kB)/K

He 4.2 12 7 11

Ar 87 12 145 142

Xe 166 12 277 281

CH4 111.5 12 186 180−300
H2O 373.2 4 1866 2400 approx.

We see, then, that the strength of intermolecular interactions between small molecules, as

measured by the well depth ε, is typically in the region 1–25 kJmol−1 or 100–2000K. This is

considerably weaker than a typical chemical bond, which has a dissociation energy upwards

of 200 kJmol−1, and this is why intermolecular interactions can be broken easily by simple

physical means such as moderate heat, while chemical bonds can only be broken by more

vigorous procedures.

1.1.2 Pairwise additivity

In this analysis, we have tacitly assumed that the energy of an assembly of molecules, as in a

liquid, can be treated as a sum of pairwise interactions; that is, that the total energy W of the

assembly can be expressed in the form

W =
∑

i

Wi +

N∑
i=2

i−1∑
j=1

Ui j

=
∑

i

Wi +
∑
i> j

Ui j

=
∑

i

Wi +
1
2

∑
j

∑
i� j

Ui j, (1.1.1)

where Wi is the energy of isolated molecule i and Ui j is the energy of interaction between i
and j. We have to be careful to count each pair of molecules only once, not twice, and the sum

over pairs can be written in several ways, as shown, the second form being a conventional

abbreviation of the first.

This assumption of pairwise additivity is only a first approximation. Eqn (1.1.1) is just the

leading term in a series which should include three-body terms, four-body terms, and so on:

U = W −
∑

i

W0
i

=
∑
i> j

Ui j +
∑

i> j>k

Ui jk +
∑

i> j>k>l

Ui jkl + · · ·

= W2body +W3body +W4body + · · · . (1.1.2)

For instance, if there are three molecules A, B and C, the pairwise approximation to the total

energy is UAB +UBC +UAC , where UAB is evaluated as if molecule C were not present, and so

on. However, the presence of molecule C will modify the interaction between the other two
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molecules, so there is a three-body correction: U = UAB +UBC +UAC +UABC . When there are

four molecules, we have to include a three-body correction for each set of three molecules,

and the error that remains is the four-body correction. We hope that the total contribution

W3body of the three-body corrections will be small, and the four-body term smaller still. In

most circumstances this is a reasonably good approximation, so most effort is concerned with

getting the pair interactions right. However, the many-body terms are not small enough to

neglect altogether, and we shall need to consider them later, in Chapter 10. In particular, the

three-body terms may be much too large to ignore.

Eqn (1.1.2) ignores a further contribution which may need to be taken into account. Usu-

ally the geometry of each interacting molecule is distorted in the environment of its neigh-

bours. The most common example is the hydrogen bond A–H···B, where the AH bond is

usually longer in the complex than in the isolated molecule. The distortion away from the

equilibrium geometry costs energy, but if the interaction with the neighbour is enhanced the

overall energy may be lowered. The difference between the energy of the molecule in its

distorted geometry and its energy W0
i at equilibrium is called the deformation energy. If the

molecules are rigid (high vibrational force constants) the cost of even a small distortion out-

weighs any improvement in binding energy and the deformation energy is negligible. If there

are soft vibrational modes, however, the deformation may be significant and the deformation

energy may need to be included. This is not easy to do, as the distortion of each molecule

depends on all its neighbours, so the deformation energy is a complicated many-body effect,

and in practice it is often neglected completely.

1.2 Classification of intermolecular forces

We can identify a number of physical phenomena that are responsible for attraction and re-

pulsion between molecules. Here we give an overview of the main contributions to forces

between molecules. All of the important ones arise ultimately from the electrostatic inter-

action between the particles comprising the two molecules. They can be separated into two

main types: ‘long-range’, where the energy of interaction behaves as some inverse power of

R, and ‘short-range’, where the energy decreases in magnitude exponentially with distance.

This apparently arbitrary distinction has a clear foundation in theory, as we shall see.

The long-range effects are of three kinds: electrostatic, induction and dispersion. The elec-
trostatic effects are the simplest to understand in general terms: they arise from the straight-

forward classical interaction between the static charge distributions of the two molecules.

They are strictly pairwise additive and may be either attractive or repulsive. Induction effects

arise from the distortion of a particular molecule in the electric field of all its neighbours,

and are always attractive. Because the fields of several neighbouring molecules may reinforce

each other or cancel out, induction is strongly non-additive. Dispersion is an effect that can-

not easily be understood in classical terms, but it arises because the charge distributions of

the molecules are constantly fluctuating as the electrons move. The motions of the electrons

in the two molecules become correlated, in such a way that lower-energy configurations are

favoured and higher-energy ones disfavoured. The average effect is a lowering of the energy,

and since the correlation effect becomes stronger as the molecules approach each other, the

result is an attraction.

We shall discuss all these effects in much more detail later. For the moment they are

summarized in Table 1.2. Two other effects that can arise at long range are included in the
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Table 1.2 Contributions to the energy of interaction between molecules.

Contribution Additive? Sign Comment

Long-range (U ∼ R−n)

Electrostatic Yes ± Strong orientation dependence

Induction No −
Dispersion approx. − Always present

Resonance No ± Degenerate states only

Magnetic Yes ± Very small

Short-range (U ∼ e−αR)

Exchange-repulsion approx. + Dominates at very short range

Exchange-induction approx. −
Exchange-dispersion approx. −
Charge transfer No − Donor-acceptor interaction

Table: these are resonance and magnetic effects. Resonance interactions occur either when

at least one of the molecules is in a degenerate state—usually an excited state—or when

the molecules are identical and one is in an excited state. Consequently they do not occur

between ordinary closed-shell molecules in their ground states. They will be discussed in

Chapter 11. Magnetic interactions involving the electrons can occur only when both molecules

have unpaired spins, but in any case are very small. Magnetic interactions involving nuclei can

occur whenever there are nuclei with non-zero spin, which is quite common, but the energies

are several orders of magnitude smaller still, and are never of any significance in the context

of intermolecular forces.

The ‘long-range’ electrostatic, induction and dispersion contributions are so called be-

cause they are the ones that survive at large separations. However, they are still present at

short distances, even when the molecules overlap strongly. The electrostatic interaction, for

example, being the electrostatic interaction between the unperturbed molecular charge distri-

butions, is well defined at any distance, and remains finite unless nuclei come into contact.

However, it is usual to describe all of these contributions as power series in 1/R, where R is

the molecular separation, and such series evidently diverge as R → 0, so they are only valid

for sufficiently large R. Even where the series converges, it may still be in error, because the

series treats each molecule as if it were concentrated at a point, rather than extended in space.

This error is called the ‘penetration error’. Furthermore, it is necessary in practice to truncate

the series at a finite number of terms, leading to a ‘truncation error’.

Further contributions to the energy arise at short range—that is, at distances where the

molecular wavefunctions overlap significantly and electron exchange between the molecules

becomes possible. The most important is described as exchange-repulsion or just exchange. It

can be thought of as comprising two effects: an attractive part, arising because the electrons

become free to move over both molecules rather than just one, increasing the uncertainty in

their positions and so allowing the momentum and energy to decrease; and a repulsive part,

arising because the wavefunction has to adapt to maintain the Pauli antisymmetry requirement

that electrons of the same spin may not be in the same place, and this costs energy. The latter

dominates, leading to a repulsive effect overall. It is usual to take these effects together. The

remaining effects listed in Table 1.2, namely exchange-induction, exchange-dispersion and
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charge transfer, also arise when the wavefunctions overlap; the charge-transfer interaction is

often viewed as a separate effect but is better thought of as a part of the induction energy.

These terms will be discussed in more detail in Chapter 8.

1.3 Potential energy surfaces

Only in the case of atoms is a single distance sufficient to describe the relative geometry.

In all other cases further coordinates are required, and instead of contemplating a potential

energy curve like Fig. 1.1, we need to think about the ‘potential energy surface’, which is a

function of all the coordinates describing the relative position of the molecules. In the case

of two non-linear molecules, there are six of these coordinates (we discuss them below) and

the potential energy surface becomes very difficult to visualize. For many purposes, however,

we can think in three dimensions: a vertical dimension for the energy, and two horizontal

dimensions which are representative of the six or more coordinates that we should really be

using. This simplified picture is then like a landscape, with hills and valleys. There are energy

minima on the potential energy surface that correspond to depressions in the landscape. In the

real landscape such depressions are usually filled with water, to give lakes or tarns; there may

be many of them, at different heights. In the quantum-mechanical landscape of the potential-

energy surface, there may also be many minima, but there is always one ‘global minimum’

that is lower than any of the others. (Sometimes there are several global minima of equal

energy, related to each other by symmetry.) The rest are ‘local minima’; the energy at a local

minimum is lower than the energy of any point in its immediate neighbourhood, but if we

move further away we can find other points that are lower still.

Just as the depressions in the landscape are filled with water, we might think of the minima

in the potential-energy surface as being filled with zero-point energy; and just as lakes may

merge into each other, so the zero-point energy may permit molecular systems to move freely

between adjacent minima if the barriers between them are not too high. The zero-point energy

in molecular complexes is often a substantial fraction of the well depth. In the HF dimer, for

example, the well depth ε (alternatively described as the dissociation energy from the equilib-

rium geometry, De) is 19.2 kJmol−1 (Peterson and Dunning 1995), while the dissociation en-

ergy D0 from the lowest vibrational level to monomers at their lowest vibrational level is only

1062 cm−1 = 12.70 kJmol−1 (Dayton et al. 1989). Given enough energy, the molecular system

can rearrange, passing from one energy minimum to another via a ‘saddle point’ or ‘transition

state’ which is the analogue of the mountain pass. The molecular system however can also

tunnel between minima, even if the energy of the system is not high enough to overcome the

barrier in the classical picture. A well-known example is the ammonia molecule, which can

invert via a planar transition structure from one pyramidal minimum to the other. The height of

the barrier in this case is 2020 cm−1 or about 24 kJmol−1. If tunnelling is ignored, the lowest-

energy stationary states for the inversion vibration have an energy of 886 cm−1, and there are

two of them, one confined to each minimum. When tunnelling is taken into account, these two

states can mix. If they combine in phase the resulting state has a slightly lower energy; if out

of phase, the energy is slightly higher. The difference in energy—the ‘tunnelling splitting’—is

0.79 cm−1 in this case, and can be measured very accurately by spectroscopic methods. Such

tunnelling splittings are a useful source of information about potential energy surfaces.

Along with the minima, then, the barriers constitute the other important features of the

surface, corresponding to the mountain passes of the real landscape. To understand the nature
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of the potential energy surface, we need to characterize the minima and the transition states.

In mathematical terms, these are both ‘stationary points’, where all the first derivatives of the

energy with respect to geometrical coordinates are zero. To distinguish between them, we

need to consider the second derivatives. If we describe the energy U in the neighbourhood of

a stationary point by a Taylor expansion in the geometrical coordinates qi, it takes the form

U = U(0) + 1
2

∑
i j

qiq j
∂2U
∂qi∂q j

∣∣∣∣∣
0
+ · · · ; (1.3.1)

the first derivatives are all zero at a stationary point, and we can ignore the higher derivatives

if the qi are small. The matrix of second derivatives is called the ‘Hessian’; its components are

Hi j =
∂2U
∂qi∂q j

. (1.3.2)

The eigenvalues of the Hessian are all positive at a minimum; in this case the Hessian is said to

be ‘positive definite’. Whatever direction we walk away from a minimum, we find ourselves

going uphill. Such a point is said to have ‘Hessian index zero’: that is, the Hessian has no neg-

ative eigenvalues there. At a saddle point or mountain pass, precisely one of the eigenvalues

is negative—the Hessian index is 1. If we walk along the eigenvector corresponding to that

eigenvalue, in either direction, we find ourselves going downhill, but the other eigenvectors

take us uphill. Just as in the real landscape, the saddle points provide the routes from one

valley or minimum to another. If two or more of the eigenvalues are negative, there are two

orthogonal directions that will take us downhill. In this case (in the real landscape) we are at

the top of a hill, and all directions lead downhill; in the many-dimensional system there may

be other directions that lead uphill. However, it is never necessary to go over the top of the

hill to get to the other side; there is always a lower route round the side of the hill (Murrell

and Laidler 1968). If we are interested in characterizing the potential-energy surface, then, the

most important stationary points are the minima, with Hessian index 0, and the saddle points,

with Hessian index 1. Stationary points with higher values of the Hessian index are much less

important.

Often there are several equivalent minima with the same energy, related to each other

by the symmetry of the system. In the HF dimer, for example, the equilibrium structure is

hydrogen-bonded, with only one of the two H atoms in the hydrogen bond. There are two

such structures, one with the H atom of molecule 1 forming the hydrogen bond, the other with

the H atom of molecule 2 in that role. For reasons of symmetry they have the same energy;

they are distinguishable only if we can label the atoms in some way. The two cases are said to

be different ‘versions’ of the same structure. In the same way there may be several versions of

a transition state, related to each other by symmetry (Bone et al. 1991).
For large systems, comprising many molecules, the number of stationary points increases

exponentially with the size of the system, and detailed characterization of the potential energy

surface becomes difficult or impossible. In such cases, a qualitative or statistical description of

the nature of the ‘energy landscape’ is more useful: are the typical barriers high or low com-

pared with the temperature, or with the energy differences between adjacent minima, and what

are the consequences for properties such as the rate of rearrangement to the global minimum?

Such questions will not be pursued here, but have been addressed in detail by Wales (2004),

Wolynes (1997) and others.
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Molecules in Electric Fields

2.1 Molecular properties: multipole moments

Of the contributions to the interaction energy listed in Table 1.2, the electrostatic interaction is

often the most important, as we shall see in later chapters. However, all of the contributions to

the interaction energy between molecules, except for the unimportant magnetic terms, derive

ultimately from the Coulombic interactions between their particles. In order to develop the

theory of all these effects, we need to be able to describe the way in which the charge is

distributed in a molecule. For most purposes, this is done most simply and compactly by

specifying its multipole moments, and while this description has its limitations it provides an

essential part of the language that we use to discuss intermolecular forces.

Multipole moments can be defined in two ways. One uses the mathematical language of

cartesian tensors, while the other, the spherical-tensor formulation, is based on the spherical

harmonics. The two descriptions are very closely related, and in many applications it is pos-

sible to use either. For more advanced work, the spherical-tensor approach is more flexible

and powerful, but we begin with the cartesian approach because it is somewhat easier to un-

derstand. Later we shall use the spherical-tensor and cartesian tensor definitions more or less

interchangeably, using whichever is more convenient.

2.1.1 Cartesian definition

The simplest multipole moment is the total charge: q =
∑

a ea, where ea is the charge on

particle a and the sum is taken over all the electrons and nuclei. If the molecule is placed in

an electrostatic potential field V(r), its energy is

Ues =
∑

a

eaV(a),

where we are using the vector a to describe the position of particle a. In a uniform electric

field of magnitude Fz in the z direction, the electrostatic potential is V(r) = V0 − zFz, and the

energy becomes

Ues = qV0 −
∑

a

eaazFz,

where V0 is an arbitrary constant, the electrostatic potential at the origin. In the second term,

we are led to introduce the dipole moment μ̂z =
∑

a eaaz, and the energy becomes Ues =

−Fzμ̂z. If the electric field also has components Fx and Fy in the x and y directions, the energy

becomes

Ues = qV0 − (μ̂xFx + μ̂yFy + μ̂zFz) = qV0 − μ̂ · F, (2.1.1)
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Table 2.1 Examples of dipole moments in atomic units, debye and Cm. Positive values correspond to

positive charge at the left-hand end of the molecule as written.

ea0 D 10−30 Cm ea0 D 10−30 Cm

HF 0.718 1.826 6.091 H2O 0.730 1.855 6.188
HCl 0.436 1.109 3.70 H3N 0.578 1.47 4.90
CO −0.0431 −0.1096 −0.3656 (CH3)2CO 1.13 2.88 9.61
OCS −0.2814 −0.7152 −2.386 C5H5N 0.86 2.19 7.31
HCN 1.174 2.984 9.953 CH3CN 1.539 3.913 13.05

where μ̂x =
∑

a eaax and μ̂y =
∑

a eaay. We can write the three components in one equation

using ‘tensor notation’:

μ̂α =
∑

a

eaaα,

where α may stand for x, y or z. The caret over the symbol μ is to remind ourselves that this is

an operator. If we require the value of the dipole moment in state |n〉, we construct it by taking

the expectation value of this operator:

μα = 〈n|μ̂α|n〉,

=

∫
ρn(r)rα d3r,

where the second form is expressed in terms of the molecular charge density ρ(r), and again

α may stand for x, y or z. If we integrate over electronic coordinates only (but include the

contribution of the nuclear charge) we get the dipole moment for a fixed nuclear configuration.

We have to integrate over nuclear coordinates too (vibrational average) to get a result that

corresponds to the value that is measured experimentally. For example, the dipole moment

of BH at its equilibrium geometry in the ground state has a magnitude of 0.5511 ea0, but the

vibrationally averaged value is 0.5345 ea0 (Halkier et al. 1999).
Dipole moment values for some small molecules are listed in Table 2.1; for others see

McClellan (1963, 1974, 1989) or Gray and Gubbins (1984). The quantity ea0 is the atomic

unit of dipole moment, where e is the elementary charge (the charge on a proton) and a0 is the

Bohr radius. Other common units are the debye, D = 10−18 esu, and the SI unit, the coulomb

metre; 1 atomic unit = 2.5418D = 8.478 × 10−30 Cm. See Appendix D for other conversion

factors. Atomic units are convenient for describing molecular properties, since the numerical

values are typically of order unity.

The most accurate experimental technique for the measurement of dipole moments is

the Stark effect in microwave spectroscopy. Unfortunately this does not provide the sign of

the moment, and although the sign can usually be determined unambiguously on theoretical

grounds, this is not always possible. A well-known example is carbon monoxide, for which

the very small dipole moment is in the direction −CO+, contrary to elementary chemical intu-

ition and to ab initio calculations at the SCF level, though more accurate calculations allowing

for the effects of electron correlation give the correct sign. Experimental determination of the
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sign requires a separate experiment; one method involves the determination of the effect of

isotopic substitution on the rotational magnetic moment (Townes et al. 1955).∗

The next of the multipole moments is the quadrupole moment, so called because a quadru-

polar charge distribution using charges of equal magnitude needs four of them, two positive

and two negative.† We define the operator

Θ̂zz =
∑

a

ea(
3
2
a2

z − 1
2
a2),

=
∑

a

eaa2( 3
2
cos2 θ − 1

2
), (2.1.2)

where in the last line the vector a has been expressed in spherical polar coordinates. The

expectation value of this operator for a particular state has the form

Θzz =

∫
ρ(r)r2( 3

2
cos2 θ − 1

2
) d3r. (2.1.3)

The angular factor in parentheses is positive when the angle θ is less than about 54◦ or more

than 126◦, and is negative between these values, in the region of the xy plane (see Fig. 2.1a).

To estimate the quadrupole moment for a particular molecule, we can superimpose the angular

∗There is the possibility of confusion about the direction of a dipole moment. As defined here and in virtually all
of the recent literature, the direction is from negative to positive charge. However, Debye used a crossed arrow to rep-
resent the dipole moment vector, thus: �−→, the arrow pointing from positive to negative charge, and this convention
for the direction of the dipole moment may still occasionally be encountered. It causes much confusion and should
be avoided.

†There is some diversity of spelling of ‘quadrupole’ in the literature. The Latin prefix for four is ‘quadri-’ (as in
quadrilateral, for example) so ‘quadripole’ would be acceptable. However, ‘quadri-’ usually becomes ‘quadru-’ before
the letter ‘p’ (as in ‘quadruped’) so ‘quadrupole’ is correct and is the usual spelling. ‘Quadrapole’ is sometimes seen,
but this is definitely incorrect; it is presumably formed by analogy with words like ‘quadrangle’, but there the ‘a’
belongs to ‘angle’ and the prefix has lost its final vowel. ‘Octopole’ too occurs with alternative spellings. In this case
there is no clearcut rule: ‘octopole’ is more usual, but ‘octapole’ is also acceptable.
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function on the molecular charge distribution and carry out the integration schematically. For

CO2 (Fig. 2.1b) we see that the negatively charged oxygen atoms are in regions where the

angular factor is positive, while the positively charged carbon atom occupies the region near

the origin (small r) and contributes little to the quadrupole moment. Accordingly we expect

a negative quadrupole moment. The experimental value is −3.3 ea2
0 (Battaglia et al. 1981).

Once again, we are using atomic units, here ea2
0. The SI unit is Cm2, and the electrostatic

unit and debye-ångström are also commonly used. ea2
0 = 1.3450 × 10−26 esu = 1.3450DÅ =

4.487 × 10−40 Cm2. For HF (Fig. 2.1c) the H atom is positively charged, so with the origin

at the centre of mass, as shown, we expect a positive quadrupole moment, in agreement with

the experimental value of +1.76 ea2
0. In this case, however, the result depends on the choice of

origin; see §2.7 for a detailed discussion.

Other interesting examples are acetylene and benzene. Acetylene (Fig. 2.1d) has a small

charge separation between C and H, with the H atoms carrying small positive charges. These

charges are in regions where (3 cos2 θ − 1) is large and positive, and are at relatively large r.
There is also a substantial region of negative charge arising from the π-bonding orbitals in the

region where (3 cos2 θ − 1) is negative. Consequently the quadrupole moment is quite large

and positive; its value is 5.6 ea2
0—larger than for CO2. A similar situation arises in benzene

(Fig. 2.1e), but here the H atoms are in the xy plane, where (3 cos2 θ− 1) is negative, and the π
electrons are in the region where (3 cos2 θ − 1) is positive or small in magnitude. In this case,

therefore, the quadrupole moment is negative; its value is −6.7 ea2
0.

The quadrupole moment has other components besides Θzz, though they are all either zero

or related to Θzz in the molecules discussed so far. They are

Θxx =
∑

a

ea(
3
2
a2

x − 1
2
a2),

Θyy =
∑

a

ea(
3
2
a2

y − 1
2
a2),

Θxy =
∑

a

ea
3
2
axay,

Θxz =
∑

a

ea
3
2
axaz,

Θyz =
∑

a

ea
3
2
ayaz.

Notice that Θxx + Θyy + Θzz = 0, as a direct consequence of the definition. For linear and

axially symmetric molecules, Θxy = Θxz = Θyz = 0, while Θxx = Θyy, so that both are equal to

− 1
2
Θzz. Although there are three non-zero components in this case, namely Θxx, Θyy and Θzz,

the value of any one of them determines the others, so there is only one independent non-zero
component. For molecules with C2v symmetry, like water or pyridine, Θxy = Θxz = Θyz = 0

again, but Θxx and Θyy may be non-zero and unequal. In such cases it is usual to take the

independent non-zero components to be Θzz and Θxx − Θyy. The consequences of molecular

symmetry are discussed in more detail in §2.6.
The water molecule has the charge distribution shown in Fig. 2.1f. The H atoms carry

positive charges and are in the yz plane, while the lone pairs are directed in the xz plane

and contain substantial amounts of negative charge. These facts fit well with the observed
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Electrostatic Interactions between
Molecules

3.1 The electric field of a molecule

Suppose that molecule A is located at position A in some global coordinate system. The par-

ticles of this molecule are at positions a relative to A, i.e., at positions A + a. We want to

evaluate the potential at a point B where we shall in due course put another molecule. In terms

of the positions and charges of the particles of molecule A, the potential is

VA(B) =
∑

a

ea

4πε0|B − A − a|
=
∑

a

ea

4πε0|R − a|
, (3.1.1)

where R = B − A. (See Fig. 3.1.) We expand this potential as a Taylor series about A, giving

VA(B) =
∑

a

ea

4πε0|R − a|

=
∑

a

ea

4πε0

{
1

R
+ aα

(
∂

∂aα

1

|R − a|

)
a=0
+

1

2
aαaβ

(
∂2

∂aα∂aβ

1

|R − a|

)
a=0
+ · · ·

}

=
∑

a

ea

4πε0

{
1

R
− aα

(
∂

∂Rα

1

|R − a|

)
a=0
+

1

2
aαaβ

(
∂2

∂Rα∂Rβ

1

|R − a|

)
a=0

− · · ·
}

=
∑

a

ea

4πε0

{
1

R
− aα∇α

1

R
+

1

2
aαaβ∇α∇β

1

R
− · · ·

}
. (3.1.2)

As before, we can replace the second moment Mαβ =
∑

a eaaαaβ by the quadrupole moment
2
3
Θαβ, because 1/R satisfies Laplace’s equation and there is no contribution to the potential

from the trace Mαα. The higher moments are treated similarly. When we do this, we get

R+b−a

R
A

a
b

B

Fig. 3.1 Definition of position vectors in two interacting molecules.
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VA(B) =
1

4πε0

{
qA
(
1

R

)
− μ̂A

α∇α
(
1

R

)
+

1

3
Θ̂A
αβ∇α∇β

(
1

R

)
− · · ·

}

≡ TqA − Tαμ̂A
α +

1

3
TαβΘ̂A

αβ − · · · +
(−1)n

(2n − 1)!!
T (n)
αβ...νξ̂

A(n)
αβ...ν + · · · ,

(3.1.3)

where

4πε0T =
1

R
, (3.1.4)

4πε0Tα = ∇α
1

R
= −

Rα

R3
, (3.1.5)

4πε0Tαβ = ∇α∇β
1

R
=

3RαRβ − R2δαβ

R5
, (3.1.6)

4πε0Tαβγ = ∇α∇β∇γ
1

R

= −
15RαRβRγ − 3R2(Rαδβγ + Rβδαγ + Rγδαβ)

R7
, (3.1.7)

4πε0Tαβγδ = ∇α∇β∇γ∇δ
1

R

=
1

R9

[
105RαRβRγRδ

− 15R2(RαRβδγδ + RαRγδβδ + RαRδδβγ + RβRγδαδ + RβRδδαγ + RγRδδαβ)

+ 3R4(δαβδγδ + δαγδβδ + δαδδβγ)
]

(3.1.8)

and in general

T (n)
αβ...ν =

1

4πε0
∇α∇β . . .∇ν

1

R
. (3.1.9)

The superscript (n) specifies the number of subscripts, but is normally omitted when the num-

ber is obvious. If we wish to avoid ambiguity when dealing with a system of more than two

molecules, we can label the T tensors with the molecular labels: T AB, T AB
α , etc. This tends to

make the notation rather cumbersome, however, and we omit the labels in the two-molecule

case. Notice though that it is important to establish whether we are dealing with T AB or T BA,

i.e., whether R = B − A, as above, or R = A − B. The definitions above are for the T AB, and

show that T BA(n)
αβ...ν = (−1)nT AB(n)

αβ...ν .

Returning to eqn (3.1.3), we see that the potential at R due to a charge q at the origin

is q/4πε0R; the potential at R due to a dipole μ at the origin is −μαTα = +μαRα/4πε0R3 =

μ · R/4πε0R3, and so on.

Having found the potential as a function of position R, it is now very easy to determine the

electric field, the field gradient and the higher derivatives. Thus from the potential qT arising

from the charge q, we obtain the electric field at B due to molecule A as FA
α (B) = −∇αqT =

−qTα and the field gradient FA
αβ(B) = −∇α∇βqT = −qTαβ. For the dipole potential we need to

be a little more careful with the suffixes, to avoid clashes; so we write the potential as −μγTγ
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and then the electric field is FA
α (B) = −∇α(−μγTγ) = +μγTαγ. Similarly the field gradient is

FA
αβ(B) = −∇α∇β(−μγTγ) = +μγTαβγ. In this way we find, for the complete field,

FA
α (B) = −∇αVA(B)

= −Tαq + Tαβμ̂β −
1

3
TαβγΘ̂βγ + · · · −

(−1)n

(2n − 1)!!
T (n+1)
αβ...νσξ̂

(n)
βγ...νσ − · · · , (3.1.10)

and for the field gradient,

FA
αβ(B) = −∇α∇βVA(B)

= −Tαβq + Tαβγμ̂γ −
1

3
TαβγδΘ̂γδ + · · · −

(−1)n

(2n − 1)!!
T (n+2)
αβ...νστξ̂

(n)
γδ...νστ − · · · . (3.1.11)

This representation is quite compact and economical, but it is rather terse on first acquain-

tance. We will look at some examples shortly. Notice that Tα describes both the electric field

due to a point charge (regarding Tα as a vector function of position) and also the potential

due to a point dipole (where we take the scalar product −μαTα to obtain a scalar function of

position, as required for a potential).

Two important general properties of the T tensors with two or more suffixes are: (i) in-

variance with respect to interchange of suffixes, so that for example Txy = Tyx; and (ii) trace-

lessness: Tααγ...ν = 0, for any γ . . . ν. These results follow from the fact that the differential

operators commute, and from the fact that ∇2(1/R) = 0 (provided that R � 0). It follows from

these properties that T (n)
αβ...ν, like ξ

(n)
αβ...ν, has 2n+1 components. (See p. 18 for the proof.) It also

satisfies Laplace’s equation, ∇2T (n)
αβ...ν = 0, and is proportional to R−n−1 (because it is obtained

by differentiating R−1 n times), so its components must be linear combinations of the irregular

spherical harmonics of rank n, Inm = r−n−1Cnm. (See Appendix B.) A detailed discussion of

the relationship may be found in Tough and Stone (1977). From this and the orthogonality

property of the spherical harmonics a further important property follows: if T (n)
αβ...ν is averaged

over all directions of the intermolecular vector R, the result is zero, except for n = 0, i.e., for

T = 1/R.

3.2 Multipole expansion in cartesian form

We are now in a position to calculate the electrostatic interaction between a pair of molecules

in terms of their multipole moments—the multipole expansion. Molecule A has its local origin

at position A in the global coordinate system, and molecule B has its origin at B. We know the

potential VA at B due to molecule A from eqn (3.1.3), and we can write down the energy of a

molecule in a given potential from the results of Chapter 2. Combining these formulae gives

the interaction operator:

H′ = qBVA + μ̂B
αVA

α +
1

3
Θ̂B
αβV

A
αβ + · · ·

= qB[TqA − Tαμ̂A
α +

1
3
TαβΘ̂A

αβ − · · · ] + μ̂
B
α[TαqA − Tαβμ̂A

β +
1
3
TαβγΘ̂A

βγ − · · · ]

+ 1
3
Θ̂B
αβ[Tαβq

A − Tαβγμ̂A
γ +

1
3
TαβγδΘ̂A

γδ − · · · ],

= TqAqB + Tα(qAμ̂B
α − μ̂A

αqB) + Tαβ( 13qAΘ̂B
αβ − μ̂

A
αμ̂

B
β +

1
3
Θ̂A
αβq

B) + · · · . (3.2.1)
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Notice that some relabelling of subscripts has been necessary to avoid clashes. We are again

using Tαβ... rather than T AB
αβ... to avoid overloading the notation. For neutral species, the charges

are zero, and the leading term is the dipole–dipole interaction:

H′ = −Tαβμ̂A
αμ̂

B
β − 1

3
Tαβγ(μ̂A

αΘ̂
B
βγ − Θ̂

A
αβμ̂

B
γ )

− Tαβγδ( 1
15
μ̂A
αΩ̂

B
βγδ − 1

9
Θ̂A
αβΘ̂

B
γδ +

1
15
Ω̂A
αβγμ̂

B
δ ) + · · · . (3.2.2)

This expression, like the preceding one, is an operator. If we require the electrostatic interac-

tion Ues between two molecules in non-degenerate states, then we need the expectation value

of this operator, which we obtain by replacing each multipole operator by its expectation

value. Thus for two neutral molecules the result is

Ues = −TαβμA
αμ

B
β − 1

3
Tαβγ(μA

αΘ
B
βγ − Θ

A
αβμ

B
γ )

− Tαβγδ( 1
15
μA
αΩ

B
βγδ − 1

9
ΘA
αβΘ

B
γδ +

1
15
ΩA
αβγμ

B
δ ) + · · · . (3.2.3)

Eqns (3.2.2) and (3.2.3) have been derived for a pair of molecules, isolated from any others.

However, they are based on the Coulomb interactions between nuclear and electronic charges,

which are strictly additive, so we can generalize them to an assembly of molecules by sum-

ming over the distinct pairs.

Similar expressions have been derived by a number of authors: for example, Hirschfelder

et al. (1954), Jansen (1957, 1958), Buckingham (1967) and Leavitt (1980).

3.2.1 Explicit formulae

The formulae just derived are general but somewhat opaque, and for practical application we

need more transparent forms. We substitute the explicit expression for Tαβ, eqn (3.1.9), to

obtain the dipole–dipole interaction in the form

Uμμ = −μA
αμ

B
β

3RαRβ − R2δαβ

4πε0R5
(3.2.4)

=
R2μA · μB − 3(μA · R)(μB · R)

4πε0R5
. (3.2.5)

It is often convenient to choose coordinates with the z axis along R, with the origin at A. The

direction of μA is specified by polar angles θA and ϕA and the direction of μB by θB and ϕB.

(See Fig. 1.4.) Then

μA · R = μAR cos θA,

μB · R = μBR cos θB,

μA · μB = μAμB(sin θA cosϕA sin θB cosϕA

+ sin θA sinϕA sin θB sinϕB + cos θA cos θB)

= μAμB(cos θA cos θB + sin θA sin θB cos(ϕB − ϕA)
)
,

so that the dipole–dipole interaction becomes

Uμμ = −
μAμB

4πε0R3

(
2 cos θA cos θB − sin θA sin θB cosϕ

)
, (3.2.6)

where ϕ = ϕB − ϕA.
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though, the multipole expansion may not converge, even when the molecular wavefunctions

do not overlap. One way to deal with this problem is described in §4.2.3; others are discussed

in Chapters 7 and 9.

Using the multipole expansion, the operator H′ is given by eqn (3.2.2):

H′ = TqAqB + Tα(qAμ̂B
α − μ̂A

αqB) − Tαβμ̂A
αμ̂

B
β + · · · .

(We drop the terms involving the quadrupole for the moment.) Substituting in 4.1.13 gives

UB
ind = −

∑
n�0

〈00|TqAqB + Tα(qAμ̂B
α − μ̂A

αqB) − Tαβμ̂A
αμ̂

B
β + · · · |0n〉

× 〈0n|TqAqB + Tα′ (qAμ̂B
α′ − μ̂A

α′q
B) − Tα′β′ μ̂A

α′ μ̂
B
β′ + · · · |00〉

× (WB
n − WB

0 )
−1.

Now we can perform the implied integration over the coordinates of molecule A, which just

yields the expectation values of the multipole moment operators. We note also that the matrix

elements of qB vanish, because the excited states are orthogonal to the ground state and qB is

just a constant. This gives

UB
ind = −

∑
n�0

〈0|TαqAμ̂B
α − TαβμA

αμ̂
B
β + · · · |n〉〈n|Tα′q

Aμ̂B
α′ − Tα′β′μA

α′ μ̂
B
β′ + · · · |0〉

WB
n − WB

0

= −(qATα − μA
βTαβ + · · · )

∑
n�0

〈0|μ̂B
α |n〉〈n|μ̂B

α′ |0〉
WB

n − WB
0

(qATα′ − μA
β′Tα′β′ + · · · ). (4.2.1)

Now we can recognize here the sum-over-states expression for the polarizability ααα′ (see

eqn (2.3.2)), so that the induction energy is

UB
ind = −

1
2
(qATα − μA

βTαβ + · · · )αB
αα′ (q

ATα′ − μA
β′Tα′β′ + · · · ). (4.2.2)

But the expression (qATα − μA
βTαβ + · · · ) is merely minus the electric field FA

α (B) at B due

to molecule A (eqn (3.1.10)), so the induction energy is − 1
2
FA
α (B)FA

α′ (B)αB
αα′ , exactly as we

would expect from a straightforward classical treatment of the field. The only part played by

the quantum mechanical perturbation theory is to provide the formula for the polarizability.

In this derivation, we ignored all terms in the perturbation except for some of the ones

involving the dipole operator for molecule B. It is clear by analogy or by explicit calculation

that we shall have other terms in the induction energy, involving the dipole–quadrupole pol-

arizability, the quadrupole–quadrupole polarizability, and so on, so that the induction energy

takes the form

UB
ind = −

1
2
FA
α (B)FA

α′ (B)αB
αα′ − 1

3
FA
α (B)FA

α′β′ (B)AB
α,α′β′

− 1
6
FA
αβ(B)FA

α′β′ (B)CB
αβ,α′β′ − · · · . (4.2.3)

The simplest case arises when A is a spherical ion, like Na+. Then the field at B is −qTα =
qRα/(4πε0R3). For the case where A is at the origin and B at (0, 0, z) the field is Fz = q/(4πε0z2)
and the induction energy is q2αB

zz/((4πε0)
2z4). In this case, therefore, the energy is proportional

to R−4. If A is neutral but polar (μ � 0), the field is proportional to R−3 and the energy to R−6.
Notice that the induction energy is always negative.
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−2αμ2/(4πε0)2R6

−8αμ2/(4πε0)2R6

  0

Fig. 4.1 Non-additivity of the induction energy.

4.2.1 Non-additivity of the induction energy

A very important feature of the induction energy emerges when we consider the case of a

molecule surrounded by several others. The induction energy still takes the same form, i.e.,

− 1
2
Fα(B)Fα′ (B)αB

αα′ , but the field is now the total field due to the other molecules. (The sim-

plest way to view this is to regard the rest of the system as comprising ‘molecule A’. However,

the same result can be obtained by working through the perturbation theory using as pertur-

bation the sum of all intermolecular interactions, and again picking out the terms in which

only molecule B is excited.) Now consider the cases illustrated in Fig. 4.1. In Fig. 4.1a we

have molecule B in the field of a single polar neighbour, so that F(B) = 2μ/4πε0R3, and the

induction energy is −2αμ2/(4πε0)2R6. In Fig. 4.1b there are two polar neighbours, aligned so

that their fields are in the same direction at B. In this case the total field is twice as big as

before, F(B) = 4μ/4πε0R3, and the induction energy is −8αμ2/(4πε0)2R6, four times as big.

In Fig. 4.1c there are again two polar neighbours, but aligned this time so that their fields are

in opposite directions at B. Now the total field is zero and so is the induction energy.

This simple example illustrates dramatically the severe non-additivity of the induction

energy. Both types of situation may occur. For example, the local environment of an ion in

an ionic crystal is often centrosymmetric, so that the electric field has to vanish, and in such

cases there is no dipole–dipole contribution to the induction energy. In molecular crystals and

liquids, the opposite case is common; for example, in the tetrahedral structure found in ice and

(approximately) in liquid water, there are two proton donors and two proton acceptors near

each molecule, and the fields of these neighbours tend to add rather than cancel. In the case of

induction energy, then, the assumption of pairwise additivity fails totally.

If we can simply add together the fields arising from the neighbouring molecules, the calc-

ulation of the induction energy would not present any difficulties, even though it is quadratic in

the field. Unfortunately this also may fail. The simplest way to see this is to follow the deriva-

tion first given by Silberstein (1917) of the polarizability of a pair of neighbouring atoms. Two

spherical atoms, with polarizabilities αA and αB are placed a distance R apart on the z axis. An

external field F in the z direction polarizes both atoms, inducing a dipole moment in both of

them. The induced dipole of each atom produces an additional field at the other, and this must

be added to the applied field. So the equations for the induced moments are
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μA = αA(F + 2μB/(4πε0R3)),

μB = αB(F + 2μA/(4πε0R3)).

These equations are easily solved to give

μA = αAF
1 + 2αB/(4πε0R3)

1 − 4αAαB/(4πε0)2R6
, μB = αBF

1 + 2αA/(4πε0R3)

1 − 4αAαB/(4πε0)2R6
. (4.2.4)

So the effective field experienced by each atom is enhanced, and so is the induction energy.

This is the case of a uniform external field, but much the same applies when the field is due to

other molecules. It follows that we cannot in general expect to be able to add together the fields

due to the static moments of the other molecules in order to calculate the induction energy. It

may be a reasonable approximation to do so, especially if the molecules are not very polar or

not very polarizable.

A problem that is apparent from eqn (4.2.4) is that if R =
(
4αAαB/(4πε0)

2)1/6 the denomi-

nators vanish, so that the induced moments and the electrostatic energy become infinite. This

is known as the polarization catastrophe. It is a consequence of ignoring the finite extent of

the polarizable charge distribution. Typically, the value of α/4πε0 is comparable to the atomic

volume, so the catastrophe arises when the atoms are so close that they overlap. In that case

the point-polarizability model fails. One way to avoid this problem will be discussed in §4.2.3,
and others in Chapter 8.

In other geometries, the secondary effects of induction can reduce the magnitude of the

induction energy. If the external field in the above example is in the x direction rather than the

z direction, the equations for the moments become

μA = αA(F − μB/(4πε0R3)),

μB = αB(F − μA/(4πε0R3)),

and the induced moments are

μA = αAF
1 − αB/(4πε0R3)

1 − αAαB/(4πε0)2R6
, μB = αBF

1 − αA/(4πε0R3)

1 − αAαB/(4πε0)2R6
. (4.2.5)

However, the electrostatic energy often favours structures in which the induction energy is

enhanced rather than reduced, and of course the induction energy itself favours such structures.

We return to the question of cooperative induction effects in Chapter 10.

4.2.2 Multipole expansion of the induction energy

A more subtle characteristic of the induction energy emerges when we consider the multipole

expansion in more detail. It is enough to consider the simplest case of a hydrogen-like atom A
with nuclear charge Z in the field of a proton B. We take Z > 1 to avoid resonance effects (see

Chapter 11). The perturbation is

H′ =
Z
R
−

1

|R − r|
, (4.2.6)

where R is the position of the proton and r the position of the electron relative to an origin at

the nucleus of atom A. Expressed as a multipole series using eqn (3.3.2), this becomes
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H′ =
1

R

[
Z −

∞∑
n=0

( r
R

)n
Pn(cos θ)

]
, (4.2.7)

where r and θ are polar coordinates for the electron in a coordinate system in which the proton

is on the z axis.

Dalgarno and Lynn (1957a) were able to find an exact expression for the second-order

energy of the atom under this perturbation. Their result is

W ′′ = −
∞∑

n=1

(2n + 2)!(n + 2)

n(n + 1)(ZR)(2n+2) , (4.2.8)

plus some terms that decrease exponentially as R increases; the latter describe the penetration

term, which we shall discuss in Chapter 8.

Now we can use the standard ratio test to study the convergence of this series. The ratio

of successive terms is 2n(n + 3)(2n + 3)/[(n + 2)(ZR)2], and it becomes infinite as n → ∞, for

any value of R. Consequently the multipole series expansion of the induction energy diverges

for any R.
This is a very disturbing result. It suggests that in general the multipole expansion of the

interaction energy may not converge. However, Ahlrichs (1976), in a more rigorous treatment

of earlier work by Brooks (1952), proved that it is always semi-convergent (asymptotically

convergent). Specifically, he showed that the interaction energy can be expressed in the form

UAB(R) = WAB(R) − WA − WB =

N∑
ν=0

UνR−ν + O(R−N−1), (4.2.9)

so that the remainder left after truncating the multipole series at any term tends to zero as the

intermolecular distance tends to infinity. Ahlrichs also showed that the exchange terms, which

arise from overlap of the molecular wavefunctions and which will be discussed in Chapter 8,

decrease faster with increasing R than any power of 1/R. The upshot of all this is that although
the multipole expansion cannot be shown to converge at any fixed value of R, and can be shown

in some cases to diverge for all R, it gives results that can be made arbitrarily accurate if the

intermolecular distance is large enough. In practice, even at distances that are not very large,

useful results may be obtained by truncating the multipole series.

4.2.3 Avoiding the multipole expansion

Because of the convergence problems that arise from the use of the multipole expansion,

it would be desirable to avoid it. Instead of expressing the interaction with a neighbouring

molecule in terms of the multipole expansion, we may write the perturbation in one of the

forms (4.1.1–4.1.6). We shall use eqn (4.1.5), which describes the interaction between the

charge density of A and an external potential, due to molecule B or in general to the rest of

the system. If we are considering the induction energy of A, we sum over states in which A is

excited but the rest of the system stays in its ground state, so the operator V̂B(r) becomes the

potential V(r) at some point r in A due to the rest of the system:

H′ =

∫
V(r)ρ̂A(r) d3r. (4.2.10)
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When we put this into the perturbation theory, we get

UA
ind = −

∑
m�0

∫
V(r)

〈0|ρ̂A(r)|m〉〈m|ρ̂A(r′)|0〉
WA

m − WA
0

V(r′) d3r d3r′

=

∫
V(r)α(r, r′; 0)V(r′) d3r d3r′. (4.2.11)

In this way we obtain an expression for the induction energy in terms of the static charge

density susceptibility. This expression is quite general, within the long-range approximation.

By replacing V(r) and V(r′) by the multipole expansion of the potential due to a neighbouring

molecule or set of molecules, we recover the multipole expansion of the induction energy.

However, (4.2.11) is more suitable at short distances, where the multipole expansion converges

only slowly, if at all. It involves a double integral over position, and is impractical for use in

the context of a simulation, where the energy and possibly its derivatives have to be computed

at each step, but it can be evaluated quite efficiently to obtain the induction energy of a pair

of molecules at particular geometries. We shall explore other solutions to the convergence

problem in Chapter 9. We must remember, too, that in the long-range approximation we are

ignoring the effects of exchange of electrons between molecules. At short range, these effects

become important, and lead to additional terms in the induction energy, which we shall explore

in Chapter 8.

4.3 The dispersion energy

4.3.1 Drude model

We turn to the dispersion energy. Because this is a wholly non-classical phenomenon, it may

be helpful in understanding it to contemplate a simple model, first introduced by London

(1930a) (see London (1937) for a version in English). We represent each atom by a Drude

model: a one-dimensional harmonic oscillator in which the electron cloud, mass m, is bound

to the nucleus by a harmonic potential with force constant k. The Hamiltonian for each atom

takes the form p2/2m + 1
2
kx2. There is an atomic dipole proportional to the displacement x

of the electrons from the nucleus, and for two adjacent atoms the interaction energy of these

dipoles is proportional to the product of the dipole moments. Accordingly the Hamiltonian for

the complete system takes the form

H =
1

2m
(p2

A + p2
B) +

1

2
k(x2A + x2B + 2cxAxB),

where c is some coupling constant. This can be separated into two uncoupled oscillators cor-

responding to the normal modes xA ± xB:

H =
1

4m
(pA + pB)

2 +
1

4
k(1 + c)(xA + xB)

2

+
1

4m
(pA − pB)

2 +
1

4
k(1 − c)(xA − xB)

2.

The normal mode frequencies are ω± = ω0

√
1 ± c, where ω0 =

√
k/m is the frequency of an

isolated oscillator.
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Now a classical system would have a minimum energy of zero, whether coupled or not.

The quantum system however has zero-point energy, and the energy of the coupled system in

its lowest state is

1
2
�(ω+ + ω−) =

1
2
�ω0(

√
1 + c +

√
1 − c) = 1

2
�ω0[2 − 1

4
c2 − 5

64
c4 − · · · ],

so that there is an energy lowering, compared with the zero-point energy �ω0 of two uncoupled

oscillators, of

Udisp = −�ω0

(1
8

c2 +
5

128
c4 + · · ·

)
.

The interaction between the atoms leads to a correlation between the motion of their electrons,

and this manifests itself in a lowering of the energy. Notice that the energy depends on the

square of the coupling constant c and is always negative; regardless of the sign of the coupling,

the correlation between the motion of the electrons leads to a lowering of the energy. For

interacting dipoles, the coupling c is proportional to R−3, so the leading term in the dispersion

energy is proportional to R−6.
At very large separations, this picture changes slightly because the speed of light is finite.

The correlation between the fluctuations in the two molecules becomes less effective, because

the information about a fluctuation in the charge distribution of one molecule can only be

transmitted to the other molecule at the speed of light. By the time that the other molecule

has responded and the information about its response has reached the first molecule again,

the electrons have moved, so that the fluctuations are no longer in phase. Detailed calculation

(Casimir and Polder 1948, Craig and Thirumachandran 1984) shows that this ‘retardation’

effect becomes important when the separation R is large compared with the wavelength λ0
corresponding to the characteristic absorption frequency of the molecule, and the dispersion

energy is then reduced by a factor of the order of λ0/R and becomes proportional to R−7.
However, this only occurs at much larger distances than we are concerned with, since λ0 is

typically several thousand ångström. For a fuller discussion see Israelachvili (1992).

4.3.2 Quantum-mechanical formulation

We return to the perturbation-theory expression, eqn (4.1.14). For simplicity we consider first

only the dipole–dipole term in H′:

U(6)

disp
= −

∑
mA�0

∑
nB�0

〈0A0B|μ̂A
αTαβμ̂B

β |mAnB〉〈mAnB|μ̂A
γTγδμ̂B

δ |0A0B〉
WA

m0
+WB

n0

= −TαβTγδ
∑
mA�0

∑
nB�0

〈0A|μ̂A
α |mA〉〈mA|μ̂A

γ |0A〉〈0B|μ̂B
β |nB〉〈nB|μ̂B

δ |0B〉
WA

m0
+WB

n0

, (4.3.1)

where WA
m0 = WA

m − WA
0 . This is an inconvenient expression to deal with, because although

the matrix elements can be factorized into terms referring to A and terms referring to B, the
denominator cannot. There are two commonly used ways to handle it. One was first introduced

by London (1930a), and uses the Unsöld or average-energy approximation (Unsöld 1927).

Here we first write (4.3.1) as


