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Communication: On the origin of the surface term in the Ewald formula
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A transparent derivation of the Ewald formula for the electrostatic energy of a periodic three-
dimensional system of point charges is presented. The problem of the conditional convergence of
the lattice sum is dealt with by separating off, in a physically natural and mathematically simple
way, long-range non-absolutely integrable contributions in the series. The general expression, for
any summation order, of the surface (or dipole) term emerges very directly from those long-range
contributions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872019]

Molecular simulations are commonly performed under
periodic boundary conditions and by using a lattice-sum
method to solve the Poisson equation with the imposed
periodicity, thereby avoiding any truncation of long-range
Coulomb interactions.1–5 The electrostatic energy, per cell, of
the simulated periodic system is then given by the Ewald for-
mula which expresses that energy E as a sum of short-range
interactions (computed in real-space) and of smooth long-
range interactions (computed in Fourier space). The Ewald
formula, or numerically optimized mesh-based variants of it,6

are used to perform simulations of charged systems contain-
ing from a few to millions of interacting particles. Other meth-
ods than Ewald’s exist also to compute lattice-sums.6

The energy E of a simulation cell containing N particles j,
with position rj and point charge qj, is defined by the coulom-
bic lattice sum

E = 1

2

∑
m

N∑
i,j=1

� qiqj

|ri − (rj + m)| , (1)

where vector m represents the center of a periodic copy of the
simulation cell (assumed to be electrically neutral) and where
the asterisk indicates that i = j terms are omitted when m = 0.
The cell is triclinic, with a volume Vcell = |(a1 × a2) · a3|
spanned by the three basis lattice vectors a1, a2, and a3.
The sum (1) is conditionally convergent due to dipolar
1/r3 interactions (between the simulation cell and a distant
periodic replica), which are at the limit of integrability in
three-dimensional space. A summation order must hence be
specified in (1): the sum is performed first over all cells inside
a volume V (one adds the condition m ∈ V in (1) thereby
defining an energy EV ), and E = limV →∞ EV is defined as
the energy when the assembly of unit cells grows infinitely
large with fixed shape S specified by V .

Several derivations of the Ewald formula that treat prop-
erly the conditionally convergent character of the lattice-sum
(1) are available, but they are quite long and mathematically
involved, leading to a loss of physical insight on how the sur-
face contributions to the energy, and to the electrostatic po-
tential, arise from the conditional convergence. Those surface
contributions, absent in the original Ewald formula,7 have first
been derived by Redlack and Grindlay.8 Mathematically well

controlled proofs of the Ewald formula, including surface
terms, were given later by de Leeuw, Perram, and Smith,9, 10

who also generalized the formula for the surface term to the
case where the macroscopic (pseudo)crystal is surrounded by
a dielectric medium of dielectric constant ε. The proof in
Ref. 9 uses a convergence factor exp(−s|m|2) (s → 0) to
enforce a summation order over concentric spherical shells,
while another more general technique based on integral trans-
forms is used in Ref. 10. The resulting general expression for
the surface contributions, valid for any even crystal shape, was
later rewritten in a much more compact and transparent form
using a depolarization tensor.11, 12 Another derivation of the
Ewald formula which uses a non trivial generalization of the
Poisson-Jacobi summation formula to a finite number of lat-
tice points is given in Ref. 12. Finally, an elegant proof, due to
Piller, can be found in a paper by Hansen.13 The works14, 15 do
not contain complete proofs of the Ewald formula, but offer
insights on the dipolar and quadrupolar surface contributions
to the electrostatic potential.

As the Ewald formula is widely used in simulations
(often with a vanishing surface term associated to metallic
boundary conditions), having a simple derivation of that for-
mula that is physically intuitive while mathematically sound
would certainly be useful to many researchers. It should also
be helpful for deriving generalizations of the Ewald for-
mula to other long-range interactions. The surface term in
the Ewald formula takes a special importance when comput-
ing absolute positions of crystalline energy bands,16 when
simulating dielectric fluids17–19 and when using the Ewald
method to simulate interfacial properties of three-dimensional
systems.20

The main trick in the present proof of the Ewald formula
is to isolate the conditionally convergent contributions in the
lattice sum (1) by merely adding and subtracting a well cho-
sen conditionally convergent series according to

E =
∞∑

n=1

an =
∞∑

n=1

(an − bn) +
∞∑

n=1

bn. (2)

The terms bn are chosen such that the series S1 = ∑
n(an − bn)

is absolutely convergent and such that the series S2 = ∑
nbn

can be computed without difficulty. The adequate choice
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for bn turns out to be the long-range dipole-dipole inter-
action between the simulation cell and a distant cell uni-
formly polarized by the same dipole moment. The absolutely
convergent sum S1 provides the intrinsic (shape-independent)
Ewald energy, while the sum S2 contains all conditionally
convergent contributions and provides the surface term. Since
the content of each cell is replaced in S2 by a continuous dis-
tribution of dipolar moment, one recovers (and proves) that
the surface term can be computed using only macroscopic
electrostatics.15 The surface term is of course independent of
the particular method used to compute the (Ewald) energy de-
fined by the sum S1.

Besides the conditional convergence problem, the
Coulomb potential poses another difficulty, namely, its strong
variations near the origin. In the Ewald method, these two dif-
ficulties are treated separately by splitting the potential into a
short-range part that contains the strong variations at short
distances and a smooth long-range part that can be repre-
sented by a quickly converging Fourier series.

The proof starts by splitting the Coulomb potential ac-
cording to the trivial identity

1

|r| = 1

|r| − φ(r) + φ(r), (3)

where φ(r) captures the long-range part of the potential so
that ψ(r) = 1/|r| − φ(r) is short-ranged (i.e., decays faster
than 1/r3). The energy (1) splits into

E = ESR + ELR, (4)

where

ESR = 1

2

∑
m∈R3

∑
i,j

�
qiqjψ(ri − rj − m), (5)

ELR = 1

2

∑
m∈V

∑
i,j

�
qiqjφ(ri − rj − m). (6)

Since ψ(r) is short-ranged, the calculation of the fast converg-
ing sum ESR poses no difficulty. ELR is implicitly understood
to be computed in the limit V → ∞. The restriction on the
sum implied by the asterisk can be lifted by adding the “miss-
ing” i = j terms when m = 0 and subtracting them:

ELR = E′
LR − Eself, (7)

where

E′
LR = 1

2

∑
m∈V

∑
i,j

qiqjφ(ri − rj − m), (8)

and Eself = 1
2

∑
i q

2
i φ(0) corrects for the φ(r = 0) interaction

of each particle with itself that are included in E′
LR. Notice

that E′
LR = 1

2

∑
i qi�(ri) where

�(r) =
∑
m∈V

∑
j

qjφ(r − rj − m) (9)

is the far contribution to the electrostatic potential at r. Since
φ(r) reduces at large distances to the Coulomb interaction, the
sum (8) contains the same conditionally convergent contribu-
tions caused by dipolar interactions between the primary cell

and its periodic copies, as in the original lattice-sum (1). From
the Taylor expansion

1

|r − rj | ∼ 1

|r| − (rj · ∇)
1

|r| + 1

2
(rj · ∇)2 1

|r| + . . . , (10)

valid for large |r|, and using
∑

i qi = 0, one finds that

∑
j

qjφ(r − rj − m) ∼ −(M · ∇)
1

|r − m| + . . . , (11)

when |r − m| is large. In (11), M = ∑N
j=1 qj rj is the total

dipole moment of the simulation box. The leading term in (11)
corresponds to the interaction energy between a test charge
at r in the primary cell and a point dipole M located at the
center m of a distant copy of the primary cell. Imagine that
we replace the point dipole M at m by a uniform distribution
of dipolar moment (of volume density M/Vcell) within the cell
of center m. When |m| → ∞, the interaction between the test
charge at r and this distant uniformly polarized cell,

− 1

Vcell
(M · ∇)

∫
Vcell

dx
1

|r − m − x| , (12)

behaves as (11) at leading order because deviations appear
only at the next (quadrupolar) order. We now apply the simple
trick (2), i.e., subtract and add the problematic conditionally
converging contributions in (8), using form (12) rather than
(11):

E′
LR = E′′

LR + Esurf, (13)

where

E′′
LR = 1

2

∑
m∈V

∑
i

qi

(∑
j

qjφ(ri − rj − m)

+ 1

Vcell
(M · ∇i)

∫
Vcell

dx
1

|ri − m − x|
)

, (14)

Esurf = − 1

2Vcell

∑
m∈V

∑
i

qi(M · ∇i)
∫

Vcell

dx
1

|ri − m − x| .

(15)

By construction, the sum over m in (14) is absolutely conver-
gent (as long as

∑
i qi = 0). One can therefore replace

∑
m∈V

by
∑

m∈R3 and use the Poisson-Jacobi formula

∑
m

f (r + m) = 1

Vcell

∑
k

f̂ (k)eik·r, (16)

where f̂ (k) = ∫
Vcell

f (r) exp(−ik · r)dr is the Fourier trans-
form of the fast-decaying function f (r) and k is a vector on
the reciprocal lattice. Notice that the rhs of (16) is merely
the Fourier series of the periodic function of the lhs. Using
the Fourier transform 4π /k2 of the Coulomb potential and
Eq. (16), one finds

E′′
LR = 1

2Vcell

∑
i

qi

∑
k

eik·ri

( ∑
j

qj e
−ik·rj φ̂(k)

+ (M · ik)
4π

k2

1

Vcell

∫
Vcell

dx e−ik·x
)

. (17)
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The integral over Vcell in (17) vanishes for all wave vectors
except for k = 0 where it gives Vcell. The regularization intro-
duced in (14) to make the sum absolutely convergent affects
therefore only the zero Fourier mode.

Since φ(r) reduces to the Coulomb potential at large dis-
tances, its Fourier transform φ̂(k) behaves as 4π /k2 when k
→ 0 [see later Eq. (23)]. By expanding the parenthesis in (17)
at small k and by using

∑
i qi = 0, it is easy to verify that the

k = 0 term vanishes thanks to the regularization.21 One finds
therefore22

E′′
LR = 1

2Vcell

∑
k �=0

|ρ̂(k)|2φ̂(k), (18)

where ρ̂(k) = ∑N
i=1 qi exp(−ik · ri) is the Fourier transform

of the charge density ρ(r) = ∑
i qiδ(r − ri).

It remains to calculate, in the limit V → ∞, the surface
term Esurf [Eq. (15)], which captures all conditionally con-
vergent contributions in the original lattice-sum. The integral
over x in Vcell together with the sum over m ∈ V can be re-
placed by an integral over the volume V of the macroscopic
sample:23

Esurf = − 1

2Vcell

∑
i

qi(M · ∇i)
∫

V
dx

1

|ri − x| . (19)

Remembering the expression of the charge-dipole interaction
[see rhs of Eq. (11)], Eq. (19) shows that the energy Esurf is
merely the sum of the energies of the N point charges qi in an
electrostatic potential created by a continuous body of volume
V → ∞ that is uniformly polarized by a volume dipolar den-
sity P = M/Vcell. The electric field Edep(r) that derives from
that potential is called the depolarization field. By moving the
operator (M · ∇i) inside the integral and by applying the gra-
dient theorem, one sees that

Esurf = −1

2

∑
i

qi

∫
S

1

|ri − x| P · dS (20)

is entirely determined by surface contributions (surface
charge density σb = P · dS), a well-known result of macro-
scopic electrostatics. In the limit V → ∞, Edep(r) = Edep is
uniform across the primary unit cell, for any sample shape, be-
cause the surface charges that produce it are located infinitely
far away.

The integral in (19) gives the potential at ri in a body
carrying a uniform unit charge density. In the case of a sphere
of radius R,

∫
V

1
|r−x| dx = 2π (R2 − r2/3) and hence

Esurf = 2π

3
M2 (spherical sample). (21)

In the general case, one can expand, as in (10), the Coulomb
potential in (20) since |ri | � |x|. The first term in that expan-
sion drops by charge neutrality, while all other terms, apart
from the second one, vanish in the limit V → ∞. Therefore,
Esurf = − 1

2 M · Edep, where Edep = − ∫
S
(∇ 1

|x| ) P · dS. The en-
ergy Esurf can be interpreted as the work performed against the
uniform depolarizing field when charging up the simulation
cell. The depolarizing field is often written as Edep = −J · P,
where J = ∫

V
dx ∇∇ 1

|x| is the depolarization tensor which de-
pends only on the shape S of V . The tensor J is known for var-

ious shapes.24 Esurf is sometimes called the dipole term since
it depends on particle coordinates solely via the total dipole
moment M.

Gathering results, one has proved the Ewald formula

E = ESR + E′′
LR − Eself + Esurf

= 1

2

∑
m∈R3

∑
i,j

�
qiqjψ(ri − rj − m) + 1

2Vcell

∑
k �=0

|ρ̂(k)|2φ̂(k)

−1

2

∑
i

q2
i φ(0) + 1

2Vcell
M · J · M, (22)

in the general case of an arbitrarily shaped crystal. The
splitting 1/|r| = ψ(r) + φ(r) is often done by defining φ(r)
as the potential created by a Gaussian charge distribution
s(r) = exp(−α2r2) α3/π3/2 of width controlled by parame-
ter α, though other choices are possible.25 The sums ESR and
E′′

LR converge then exponentially fast. Indeed, the convolution
φ(r) = ∫

s(r′) · 1/|r − r′| dr′ that gives the long-range part of
the interaction becomes the fast-decaying function

φ̂(k) = 4π

k2
ŝ(k) = 4π

k2
e−k2/(4α2), (23)

in Fourier space, while ψ(r) = 1−erf(αr)
r

= erfc(αr)
r

is also
short-ranged. The truncations used in practice for comput-
ing the sums ESR and E′′

LR introduce numerical errors that are
very sensitive (exponential dependence) to the chosen cutoffs
and chosen α. The error estimate of Ref. 26 can be used to de-
termine the α that provides the best accuracy at given cutoffs.
The Ewald formula for the force Fi = −qi∇iE on a particle i
follows by taking the gradient of the Ewald energy (22).

Equation (22) holds for any summation order specified
by a crystal shape V . We recall that, for a spherical sample
surrounded by a medium of dielectric constant ε, the gener-
alization of Eq. (21) reads Esurf = 2πM2/(2ε + 1).27 Besides
the spherical order, the cylindrical order (radius R → ∞ and
height H → ∞) is of particular interest. In slab-shaped sys-
tems, one performs first the sum over images mx and my up to
some radius R, let R → ∞, and then sums over mz ∈ [−H/2,
H/2] with H → ∞. In cylindrical rod-like systems, the one-
dimensional infinite (H → ∞) summation on mz is performed
first, followed by R → ∞. The expressions for the surface
term in those two cases can be derived by taking the cor-
responding limits in the formula for the depolarization ten-
sor J of an ellipsoid surrounded by a dielectric medium ε.24

For a slab-shaped system (with z-axis normal to the slab),
Esurf = 2πM2

z /Vcell, independently of ε, a result which is use-
ful for simulating planar interfaces using three-dimensional
Ewald sums with a gap introduced in the z direction.20 For
a rod-like system, with z-axis parallel to the rod, one finds
Esurf = 2π (M2

x + M2
y )/((ε + 1)Vcell). That result is useful for

simulating rod-like systems using three-dimensional Ewald
sums with gaps in the x and y directions and vacuum bound-
ary conditions (ε = 1). The surface energy gives rise in gen-
eral to a force Fsurf

i = −qi∇iEsurf on a particle i. That force
vanishes, in spherical and rod-like systems, only if metallic
boundary conditions (ε = ∞) are applied. The treatment of
long-range interactions in the case where periodic boundary
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conditions are applied in two dimensions only (no summation
over mz) is discussed in Refs. 5 and 28.

We have presented a proof of the Ewald formula in which
the effects due to the long-range character of the coulomb in-
teraction (absence of the ill-defined k = 0 term in the sum
over Fourier modes, emergence of a surface contribution to
the energy) are treated in a very simple and physically trans-
parent manner. The surface term is seen to arise directly
from the conditionally convergent long-range dipole-dipole
(or equivalently a sum of charge-dipole) interactions between
the simulation cell and its periodic copies when one iso-
lates an intrinsic (shape-independent, absolutely convergent)
Ewald contribution in the total energy. Thanks to its simplic-
ity, the present approach should be quite useful for deriving
generalizations of the Ewald formula to other long-range in-
teractions in three or less dimension(s).

Our approach can be applied as well to the lattice-sum for
the potential, where quadrupolar surface contributions arise,
and also when the macroscopic sample is surrounded by a
dielectric medium. As will be shown in a future work,29 the
discrepancy between different published formulas2, 15 for the
surface contributions to the potential in a periodic system with
a net charge can in particular be resolved.
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