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Non-Ewald methods: theory and applications to molecular systems
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Abstract Several non-Ewald methods for calculating elec-
trostatic interactions have recently been developed, such as
the Wolf method, the reaction field method, the pre-
averaging method, and the zero-dipole summation method,
for molecular dynamics simulations of various physical
systems, including biomolecular systems. We review the
theories of these approaches and their potential applications
to molecular simulations, and discuss their relationships.
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Introduction

Molecular simulation via molecular dynamics (MD) or
Monte-Carlo calculations is a powerful tool for understanding
the nature of biomolecular systems, including water, proteins,
lipids, DNAs, and their complexes. In these simulations,
appropriate treatment of the electrostatic interactions is criti-
cal, since they play essential roles in a number of systems, by
maintaining physical structures, generating chemical proper-
ties, and performing biological functions (Patra et al. 2004;
Koehl 2006; Reif et al. 2009; Srivastava et al. 2010).

Specifically, the Coulombic electrostatic interaction of N
atoms with point charges {q1,…,qN} (the non-SI unit is
used, for simplicity) and positions (r1,…,rN) is
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where rij � rij
�� �� � ri � rj

�� �� is the distance between atoms

i and j. The manner of summation with respect to j depends
on the boundary conditions.

Until recently, many of these simulations were performed
by using lattice sum (LS) methods such as the Ewald
method or its variants, with the assumption of the
periodic boundary condition (PBC). At the beginning
of these simulation studies, the cutoff truncation method,
which is much simpler than the LS method, was frequently
used. This is because the monotonic decreasing feature of the
Coulombic potential function with increasing rij allows the
truncation of the interaction (Nicolas et al. 1979; Brooks et al.
1985). However, artifacts of the cutoff method have been
pointed out in a number of studies (Patra et al. 2004; Saito
1994). In contrast, it has been mentioned that there are fewer
artifacts when applying the PBC used in biophysical system
simulations, and thus the PBC would be acceptable for such
simulations (de Souza and Ornstein 1997; Buştuğ et al. 2006).
Furthermore, a computationally inefficient feature of the LS
method has been eliminated, using, e.g., a mesh-based
approach. For these reasons, the LS method has been
utilized as a standard tool.

However, quite recently, it has been understood that
the artifacts of the cutoff method can be sufficiently
minimized if a suitable device is added. Such devices
take into account specific features, including a system–
environment interaction, electrostatic neutrality, and a
symmetry of the system, which lead to modifications
of the bare Coulomb potential function. Namely, in such
a cutoff-based (CB) method, interactions are defined by
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a certain pairwise function of rij within a predetermined
cutoff length, and the energy is represented by a finite
sum of the pair function and often includes configuration-
irrelevant terms. In principle, they are irrelevant to boundary
conditions. In contrast, artifacts in applying the PBC to intrin-
sically non-periodic systems, as well as the problems in the
Ewald method and its variants, have been reconsidered. In
fact, many biological systems are not intrinsically periodic and
have imperfect mathematical periodicity except for certain
ideal crystal states.

The CB method is simple and capable, enhancing its
straightforward implementation to high-performance
computational architectures, including highly parallel
protocols and special purpose architectures (Kikugawa
et al. 2009). Once the problems of the artifact and the
accuracy are solved, the CB method could be more
widely used because of its simplicity omitting the long
range part of the interactions (Kikugawa et al. 2009;
Yonezawa et al. 2011) and the irrelevance to boundary
conditions.

A basic criticism of the conventional cutoff method is
that an interaction truncation at only about 10–20 Å regard-
ing the slowly decaying Coulombic potential is nothing but
a complete artifact. This criticism applies to a system where
the particles are spread in a broad area in a vacuum. How-
ever, this does not apply in the vivo environment, since
many molecules and ions crowd over individual particles.
Each positively or negatively charged particle assembles in
such a way that the electrostatic interactions cancel each
other well, unless very high energy phenomena suddenly
occur. This feature should be the same for condensed ionic
systems (Clarke et al. 1986). Thus, actual interactions in
biological systems are essentially screened, as compared
with the bare Coulombic form 1/r. In addition, considering
the screened nature, we may assume that many biological
processes occur through the consecution of adjacent inter-
actions among the particles surrounding every part, rather
than through distant, instantaneous interactions. These con-
siderations provide positive motivation for employing the
CB methods.

In fact, the CB methods have recently been reconsidered
by many researchers, with the use of effective devices
(Steinbach and Brooks 1994; Hünenberger and van Gunsteren
1998; Wolf et al. 1999; Yakub and Ronchi 2003; Fukuda et al.
2011). In this review, we discuss these efforts and the relation-
ships among individual methods.

PBC and the Ewald method

In the 3-dimensional PBCs, the Coulombic energy of N
charges belonging in an MD cubic unit cell with the cell
length L is considered to be
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Here, n0(n1,n2,n3) is a lattice point represented by three
integers, and the prime on the summation indicates the
omission of the i0j term when n0(0,0,0). Throughout this
review we assume total charge neutrality,

XN
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qi ¼ 0; ð3Þ

which is critical to defining finite energy. Due to the slow
decay of the function, in general, the summation (2) is
conditionally convergent, and thus the value is completely
dependent on the ordering of the summation. In other words,
we should define the answer by choosing the ordering. This
fact is in total contrast to the absolutely summable summa-
tion, where any order gives unique value and thus any
(correct) summation method can be used, in principle.

In the periodic system, the Ewald method (Ewald 1921)
has been used as the standard. According to de Leeuw et al.
(1980), the Ewald energy (except for the dipole term) is
interpreted to be a value of the sum, Eq. (2), obtained by a
spherical-shell ordering with respect to the copies of the unit
cell (i.e., image cells). Namely, the interactions from image
cells that are closer to the unit cell in view of the 2-norm

[viz., nk k � nk k2 � n21 þ n22 þ n23
� �1=2

] are counted in a
preceding way. Although the counts of the interactions from
certain charges that are closer to the unit cell are postponed,
the above counting seems to be physically natural (e.g., as
compared with counting via the cubic-shell ordering, for
which another norm nk k1 � max n1j j; n2j j; n3j jf g is used
instead of the 2-norm). This may be the basis for justifying
the definition that the Ewald sum is the answer. To effec-
tively handle such an ordering, de Leeuw et al. employed a
convergence factor, which adapts well to the ordering, in the
original sum, thus yielding a weighted sum in the spherical-
shell ordering. In addition, the convergence factor, which
contains a parameter, has mathematically good properties
that lead to absolute summability and uniform convergence
with respect to the parameter.

The Ewald energy traces the properties of the energy, Eq.
(2). First, it depends on the cell length L: In practice, the
Fourier term is influenced so it is smaller for larger values of
L. While the Ewald energy is invariant under a translation of
the axis, this is not the case for a rotation O:ri↦Ori (∀i),
where the coordinate value of each particle in the unit cell is
transformed due to the rotation of the axis. Namely, the
energy (of the original system) depends on such a rotation,
in general. Invariance is ensured through particular rotations
that map ℤ3 onto ℤ3; e.g. p

2-rotation around the z-axis. The
dependences of the energy on the cell-size and the rotation
do not necessarily correspond to physical reality. One
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attempt to recover the rotational invariance is seen in the
pre-averaging method, demonstrated in the next section.

The above discussion is focused on possible artifacts
generated from the definition of the period. However, once
the definition is fixed, the energy upon the period is effec-
tively calculated by the Ewald method (Sagui and Darden
1999). In addition, if the original system permits the peri-
odic structure, then such an artifact can be ignored. However,
the application of the PBC to an intrinsically non-periodic
system often causes unignorable artifacts.

For an intrinsically non-periodic system such as aqueous
protein solutions, the interactions from the infinite copies of
the cell, imposed by the PBC, are clearly duplicated (Weber
et al. 2000; Kastenholz and Hünenberger 2004), unless we
can treat it as a crystal state. As the visible physical effect of
such a PBC artifact, enforced stabilization has been observed,
e.g., through lower root mean square deviations. Excessively
stable alpha-helical structures for explicitly solvated polypep-
tides (Beck et al. 2005; Lins and Röthlisberger 2006) as well
as an entrapment around a non-helical structure in a >20-ns
simulation (Lins and Röthlisberger 2006) were found. Erratic
phenomena for strain were also observed in nanowires with
free surfaces (Gdoutos et al. 2010).

Extensive use of the PBCmay be followed by early success
in treating an isotropic bulk system. This is because the PBC
allows us to avoid the creation of an interface, which often
causes significant artifacts, and to mimic the bulk state. How-
ever, note that, even in a bulk system, macroscopic fluctua-
tions and wave transport are not necessarily periodic
phenomena, given the periods. Although some aspects of
these artifacts may be sufficiently reduced by careful consid-
eration of the simulation conditions, such as the cell size,
dielectric constant, charge distribution, and the sampling
duration, the issues are still under discussion (Hünenberger
and McCammon 1999; Monticelli et al. 2006).

Finally, we note there are alternative approaches such as
considering the Poisson equation in the PBC. Several meth-
ods, including those to attain a fast convergence, have been
intensively developed (Tyagi 2005; see also the references
therein).

CB methods

We first discuss general issues, including a truncation mode,
function smoothing technique, and artifacts we should con-
sider in cutoff approaches. Second, as a specific issue,
individual CB methods are discussed, mainly for recently
developed ones. Here, we address the reaction field (RF)
method, the pre-averaging (PA) method, the Wolf method,
and the zero-dipole (ZD) summation method.

To specifically perform a cutoff, as well as the pair
potential function itself, a cutoff truncation mode (i.e. how

to truncate the interactions) should be fixed. This is not
trivial, because the choice affects the simulation results
and often causes significant artifacts. In the atom-based
cutoff (AC) mode, for atom i, the contribution from atom j
such that rij>rc is simply ignored. In the group-based cutoff
(GC) mode, all atom–atom interactions between any two
molecules should be on or off, according to a certain “marker”
being inside or outside the cutoff sphere, respectively. Such a
marker is usually chosen to be a certain center of the molecule
(Baumketner 2009; Chipot et al. 1994; Neumann 1985;
Schreiber and Steinhauser 1992a; van der Spoel et al. 1998),
a certain atom (Alper and Levy 1989; Leach 2001), or a
certain distance (Fukunishi et al. 2003; Leach 2001). Some
implementations consider the marker out to a distance several
Angstroms beyond the cutoff distance (this is often combined
with a pair-list recycling feature). Smoothed on–off is also
possible (Steinbach and Brooks 1994), and a certain-defined
(e.g., neutrally charged) atom group is usually used (Wohlert
and Edholm 2004), instead of a whole molecule.

Biophysical system needs an aqueous environment.
Although cutoff methods have been applied to water(-like)
systems, the results of the dielectric property, which would be
the most sensitive property to a treatment of the electrostatic
interaction (Andrea et al. 1983), often involve significant
artifacts. This is particularly for the distance-dependent
Kirkwood factor GK(r), which is the ensemble average
of the dipole–dipole angle distribution in the sphere of
radius r (Steinhauser 1982; Höchtl et al. 1998). Many
cutoff methods (Yonetani 2006) yielded GK(r) with a
significant hole-like structure around rc, contradicting
the expected results (Mark and Nilsson 2002).

Such artifacts appear for several reasons. First, earlier
simulations suffered from limited computational time. That
is, the dielectric properties require a long simulation dura-
tion, typically over a ns, to yield reliable results, because of
the slow convergence of the (time) ensemble average (Heinz
et al. 2001; Li et al. 2007; Gereben and Pusztai 2011).
Second, ad hoc procedures, such as velocity rescaling to
stabilize the system, are not recommended for evaluating
sensitive properties. Finally, and often critically, the discrep-
ancies are prominent in the GC mode, rather than the AC
mode. In fact, the artifacts intrinsic in many GC modes have
been pointed out. The energetic and statistical jumps were
discussed (Steinhauser 1982). A clear explanation by
Baumketner (2009) mentions the generation of an arti-
ficial dipole layer on the cutoff sphere of each atom: the
interaction unbalances by the GC mode disrupt the
charge compensation near the cutoff surface (Hummer
et al. 1997).

However, as many molecular simulations utilize the GC
mode in cutoff methods, there are several reasons to use it:
(1) a force-field is usually developed on interactions
between molecules; (2) it can prevent large energy
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fluctuations near rc, which are encountered in the straight AC,
because individual inter-atom interactions are often signifi-
cantly large (Steinbach and Brooks 1994; Leach 2001); (3) if
both molecules are neutral, then the leading term of their
interaction can be described by a dipole–dipole interaction
[∼(rMM)

−3], whose enhanced screening feature conforms to
justify the cutoff (Wohlert and Edholm 2004); and (4) it is
preferable for the RFmethod (see below) to attain the assump-
tion of charge neutrality in the cavity, when every molecule is
neutral (Neumann 1985).

If these issues can be addressed using the AC mode with
certain other devices, then we expect the AC mode will be
used to avoid the artifacts in the GCmode. Potential (or force)
smoothing techniques (see, e.g., Steinbach and Brooks 1994)
are useful to address issues (1) and (2). In fact, the artifacts in
the dielectric properties of a water system using the GC mode
were reduced by using the AC mode when employing
smoothing methods, involving the force-switching or the
force-shifting (Mark and Nilsson 2002; van der Spoel and
van Maaren 2006). In the other systems, an artifact in explic-
itly solvated peptide conformation in the GC mode cutoff was
obtained (Schreiber and Steinhauser 1992a), but physically
reasonable behavior was confirmed in the AC mode using a
force-shifting method (Beck et al. 2005). An oligonucleotide
in aqueous solution can be stabilized via the AC mode with
smoothingmethods such as the force shift, although it failed in
the GC mode (Norberg and Nilsson 2000). The issues (3) and
(4) will be considered in specific CB methods.

The reaction field method

During the long history of the RF method (Onsager 1936),
its effectiveness and artifacts have both been pointed out
(Barker and Watts 1973; Steinhauser 1982; Neumann 1983;
Hünenberger and van Gunsteren 1998; Essex 1998;
Hansson et al. 2002; Gargallo et al. 2003; Robertson et al.
2008; Schulz et al. 2009; Míguez et al. 2010). The method
can be viewed as a modification of the simple truncation
method. It takes into account the interactions between each
atom (or molecule) and the environment outside its cutoff
sphere. Specifically, we consider a “cavity” of each mole-
cule a (the “cavity” resembles a cutoff sphere with radius rc
for each atom; see assumption (ii) below), with the region
outside the cavity assumed to be a dielectric continuum,
with dielectric constant εRF, polarized by reacting with the
molecules inside the cavity. The polarization generates an
electric field (reaction field) Ea represented by

Ea � 2ð"RF � 1Þ
2"RF þ 1

1

r3c

X
b

μb; ð4Þ

where the summation is over all molecules in the cavity of
molecule a and μb �

P
i2Molb

qiri is the dipole of molecule

b (Fröhlich 1958; Allen and Tildesley 1987). Assume that
(i) the total charge in each cavity equals zero, and (ii) each
molecule a is sufficiently small such that the set of atoms in
the cavity of molecule a equals the atoms in the cutoff
sphere of atom i, for every i of molecule a. The RF energy
of the system of M molecules is thus shown to be
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Hence, the total energy is
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Considering its application to MD, however, the non-
smoothness of the energy causes problems, such as the
energy non-conservation in NVE simulations. Although the
physical basis is rather unclear, the potential-shifted method
may serve as a remedy; viz.,

VRFðrÞ � VRFðrcÞ ð8Þ

is used instead of VRF(r) for r<rc, and 0 is set for r≥rc. The
continuity of the potential function at r0rc is thus gained,
but the force function, defined by FRF(r)≡−DVRF(r) for r<
rc and FRF(r)≡0 for r≥rc, does not share in the benefit. In
fact, FRF is continuous at rc only in the limit of εRF→∞. Of
course, we can treat Eq. (5) as a molecule–molecule inter-
action, instead of an atom–atom (site–site) interaction. In
any case, the energetic non-smoothness is a significant
problem in the MD simulation. In fact, the atomic velocities
were rescaled at every certain timing, to prevent energy or
temperature drift (Neumann 1985; Alper and Levy 1989).
Although several smoothing procedures are available, an
appropriate correction to the total energy, to address the
potential-energy deformation, should generally be made.

Here, we discuss the remaining issues addressed in the
GC mode requirements. As for issue (4), note that combi-
nation of the GC mode with the neutrality of each molecule
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is a sufficient, but not necessary, condition for assumption
(i). Furthermore, other theoretical derivations or interpreta-
tions may not need such assumptions. In fact, the derivation
of RF energy can be achieved without reference to the
dipolar interactions (Tironi et al. 1995). Several meth-
ods, utilizing such as the Poisson equation, and exten-
sions have been demonstrated (Hünenberger and van
Gunsteren 1998; Perram and Smith 1987; Nakamura
1996). In addition, in the ZD summation method, de-
scribed later, the RF method in the case of εRF→∞,
which is the most suitable case in view of the force-
function continuity as stated, naturally arises, and issues
(3) and (4) are addressed with the AC mode.

The RF method has also been applied to aqueous bio-
systems, and some of the properties were well reproduced.
However, it still often generates significant artifact in the
distance-dependent Kirkwood factor (Neumann 1985; Belhadj
et al. 1991). As stated, also in the RF method, the artifacts in
the GC mode (Neumann 1986; Alper and Levy 1989) were
reduced by using the AC mode (Hünenberger and van
Gunsteren 1998; Schulz et al. 2009). To reduce artifacts
in the RF method, a large dielectric constant εRF may
be used. In fact, the deviated structure in GK(r) in water
system is reduced as εRF increases (van der Spoel and
van Maaren 2006). Schulz et al. (2009) obtained good
results in the case of εRF≡∞. The infinite value has also
been used (Neumann 1986; Essex 1998; Míguez et al.
2010; Schreiber and Steinhauser 1992b). For the water
system, the potential curves with εRF∼80 and εRF≡∞ a
re similar (Fig. 1), and so the approximation of εRF≡∞
may be more suitable. Note that the very low dielectric
constant (around 3) for proteins is derived from dried,
powdered protein data. The effective value for real
solvated proteins is much closer to that of water (Beck

et al. 2005), and is 10 to 50, depending on the pair
separation distance.

There may be several other limitations in the RF method.
The physically unnatural assumption of the instantaneous
response by the RF in its derivation has been discussed (van
Gunsteren et al. 1978). Homogeneity of the system may be
required to represent the environment of each particle as a
constant dielectric. However, the RF method was shown to be
effective in evaluating an inhomogeneous system. For exam-
ple, the interfacial properties of different water models were
well described (Míguez et al. 2010), and a stable simulation
using the AC mode was conducted in a solvated DNA system
(while the GC mode failed; Ni and Baumketner 2011).

The pre-averaging method

The pre-averaging procedure was introduced by Yakub and
Ronchi (2003), to remove the artificial cubic symmetry in the
LSmethod and recover the rotational invariance. Their energy
formula was obtained using the Ewald summation expansion
and by averaging the quantities in the expansion over spher-
ical angular coordinates. This corresponds to a situation treat-
ing a uniformly distributed system. The energy formula is
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where rm is the radius of the volume-equivalent sphere of the
MD cubic cell with edge L:

4

3
pr3m ¼ L3: ð10Þ

The PA method has been very successfully applied
(Yakub et al. 2007; Arima et al. 2009; Jha et al. 2010). It
yields accurate energy in disordered systems, including a
one-component plasma and a two-component fluid (Yakub
and Ronchi 2005; Yakub 2006), and, further, in non-
spherical, crystal systems (Yakub and Ronchi 2003; 2005).
Moreover, Guerrero-García et al. (2011) applied the PA
method to inhomogeneous systems, constituted by two fixed
nanoparticles immersed in a size-asymmetric monovalent
electrolyte.

However, the cutoff length, rm, intrinsic to the PA formal-
ism, causes severe practical limitations in certain cases.
Namely, since rm is proportional to the cell size L and is larger
than L/2, enormous computational efforts will be
required to treat a large system, for example in biolog-
ical systems where the size is >nm. Reinterpretation of
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Fig. 1 Pair potential functions for CB methods with the cutoff length
of rc08. For the RF method, Eq. (8) is shown with the dielectric
parameter ε≡εRF (curves over ε040 are indistinguishable). Functions
are shown for the Wolf method, V(r)−V(rc) in Eq. (11); the ZD
summation method, u(r)−u(rc) in Eq. (15). For comparison, Eq. (12),
the real part of the Ewald method, and the bare Coulomb, 1/r, are
shown
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the cutoff length is possible in the ZD summation
method, as described below. See also the recent work
by Vernizzi et al. (2011).

The Wolf method

Here, we briefly review the Wolf method and its variants,
for which the effectiveness in terms of the accuracy and
computational cost have been demonstrated in many appli-
cations (Wolf et al. 1999; Demontis et al. 2001; Zahn et al.
2002; Fennell and Gezelter 2006; Avendaño and Gil-Villegas
2006; Sepliarsky et al. 2006; Ribeiro 2007; Desai 2007; Goto
et al. 2007; Mahadevan and Garofalini 2007; Nagata and
Mukamel 2010; Chen et al. 2010; Kuang and Gezelter 2010;
Gdoutos et al. 2010; Chevrot et al. 2011; Kannam et al. 2012;
Méndez and Villegas 2012).

In seeking theMadelung energies of crystal systems via the
straight cutoff method, Wolf (1992) and Wolf et al. (1999)
showed that the energy exhibited very slow convergence and
oscillated around the exact value as the cutoff length
increased, but the value was very accurate only when certain
cutoff lengths, characteristic of individual crystal structures,
were adopted. They found that this feature was not only due to
the oscillating feature but also to the (near) achievement of the
charge neutrality in the cutoff spheres with those characteristic
cutoff lengths. They also found that the energy error was
nearly proportional to the net charge in each sphere. These
observations led to the idea of the subtracting the interactions

by excess charges in the cutoff sphere, qi
P

j; rij<rc
qj

� �
=rc ,

from the straight pairwise sum. Here, for the excess charges,
their total quantities are equal to the net charge in the sphere,
and their positions are assumed to be at the surface. Hence,
they led to a formula for the electrostatic energy,

EWolf r1; :::; rNð Þ � 1
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Here, instead of 1/r, the damped function,

V ðrÞ � erfcðarÞ
r

; ð12Þ

was introduced, since it was very effective to achieve a fast
convergence. The last term was derived by an approximation,
1
2

PN
i¼1

P
jð6¼iÞ qiqj 1=rij � V rij

� � � � �ða= ffiffiffi
p

p ÞPN
i¼1 q2i , for

a small damping factor α(≥ 0) (Wolf et al. 1999; but see
Angoshtari and Yavari 2011).

Equation (11) can be viewed as considering the contri-
butions from image charges; viz., for every atom in the

cutoff sphere around i, the opposite signed image-charge
exists on the surface and interacts with (only) i. Since the
straightforward differentiation of Eq. (11) leads to the dis-
continuous scheme at r0rc, further consideration is needed
to define an atomic force for MD. Analogous to the effective
potential V(r)−V(rc) reflecting the view of the image
charges, one might suppose an effective force function,
FWolf ðrÞ � � DV ðrÞ � DV rcð Þ½ �. Although this “force” sat-
isfies the continuity, unfortunately it is not compatible with
the energy function Eq. (11). These problems arise from a
straightforward interpretation of the image-charge picture.

The second view of Eq. (11) can be obtained when one
considers its first term to be the shifted-potential method for V.
In developing such a potential-deformation picture (Zahn et al.
2002; Fennell and Gezelter 2006), the shifted-force method for
the force−DV was proposed. This means that the force func-
tion is given by FWolf, and that the corresponding potential
energy is constructed by the integration. Many physical prop-
erties can be traced in these approaches. However, note that the
physical basis would be unclear, and the treatment of the self
image term (2nd term in Eq. (11)) becomes ambiguous.

The third view of Eq. (11) is that the energy can be obtained
from a suitably-defined neutralized summation. That is, it is
derived from the assertion that the interaction contribution
should be counted in a neutralized subset Li (including i),
whose existence is assumed and characterized where: (a) any
particle in Li is inside the cutoff sphere; (b) the total charge in
Li is zero; and (c) a particle not belonging to Li but inside the
sphere is located close to the cutoff surface. Based on this
physically clear view, the force-switching Wolf method
(Fukuda et al. 2008) established an approximation to the
neutralized summations, and the energy becomes
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þ affiffiffi
p

p
" #XN

i¼1

q2i ; ð13Þ

where

bV ðrÞ � V ðrÞ for 0 < r < r1
V*ðrÞ þ V r1ð Þ � V* r1ð Þ for r1 � r � rc

V r1ð Þ � V* r1ð Þ for rc < r < 1

8<: ;

ð14Þ
with r1 being the switching length and V

* a suitable switching
function. This provides consistent potential and force func-
tions, and smoothness for safely conducting MD simulations.

This is simply the Wolf formula [Eq. (11)] with bV instead of V
(Eq. (11) is recovered as r1→rc). It was applied to calculate
the free energies of an alanine dipeptide in explicit water, and
reliable results were obtained (Yonezawa et al. 2011).
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The ZD summation method

In developing the neutralizing principle, the ZD summation
method (Fukuda et al. 2011) provides the energy derived by
counting the interactions for a neutralized subset regarding
the dipoles as well as the charges. Thus, the ZD summation
method can be viewed as an extension of the Wolf method.
It effectively avoids the nonzero-dipole and nonzero-charge
state artificially generated in the simple cutoff scheme. Its
physical basis is clear, and the axiomatic approach ensures
there is no confusion in defining its energy,

EZD r1; :::; rNð Þ ¼ 1

2

XN
i¼1

X
jð6¼iÞ
rij<rc

qiqj u rij
� � u rcð Þ� �

� u rcð Þ
2

þ affiffiffi
p

p

 �XN

i¼1

q2i ; ð15Þ

where

uðrÞ � V ðrÞ � 1

2

DV rcð Þ
rc

r2: ð16Þ

Equation (15) is simple enough, and also takes the form
of Eq. (11) using u instead of V. In addition to the
information obtained in the zero charge scheme by the
Wolf approach such that the excess charge is on the
cutoff sphere, the zero dipole condition adds informa-
tion about the states, which helps to improve the accu-
racy. Furthermore, this scheme accepts the AC mode
well, and the above-mentioned four issues regarding
the GC mode are sufficiently addressed. In fact, the
pair function smoothly tends to zero at rc, and the
remaining issues (3) and (4) can be cleared by including
the damping factor and considering the neutralized con-
dition through the whole cutoff sphere, rather than each
molecule.

Relationship to other CB methods

Thus far, we have discussed the RF, PA, and Wolf methods.
These methods differ in their concepts, derivations, and the
energy formulae themselves. Surprisingly, we see that they
are related to each other by considering the connection of
the individuals to the ZD summation method, through spe-
cial limits of the parameters.

As well as the fact that the ZD summation method is an
ideaistic extension of the Wolf method, function u [Eq. (16)]
tends to function V [Eq. (12)] as rc→∞, and the difference
of the pair potentials and that of the constant terms between
the two methods approach 0 as rc→∞ (they also approach 0
as α→∞).

For the PA method, note that its energy, Eq. (9), can be
rewritten as

EPA r1; :::; rNð Þ ¼ 1

2

XN
i¼1

X
jð6¼iÞ
rij<rc

qiqj VPA rij
� � VPA rmð Þ� �

� VPA rmð Þ
2

XN
i¼1

q2i ; ð17Þ

where VPAðrÞ � 1=rð Þ 1þ 1
2

� 
r=rmð Þ3

n o
. We see that the

energy of the ZD summation, Eq. (15), gives Eq. (17) when
we set α00 and rc0rm, noting that the potential function u
then corresponds to VPA. This fact enhances the free use of
the cutoff length, which is not limited to rm, in the PA
method, and might explain why the PA method yields “sur-
prisingly positive” results in anisotropic systems (Yakub and
Ronchi 2003).

In the RF method, a pairwise sum is conducted by VRF

[Eq. (7)] (Neumann 1985) or by the shifted form VRF−
VRF(rc) [Eq. (8)] (van der Spoel and van Maaren 2006;
Baumketner 2009). Note that VRF with εRF→∞ corresponds
to u with α00. In other words, if we propose a modified RF
summation by

EMRF r1; :::; rNð Þ � 1

2

XN
i¼1

X
jð6¼iÞ
rij<rc

qiqj VRF rij
� � VRF rcð Þ� �

� VRF rcð Þ
2

XN
i¼1

q2i ; ð18Þ

then its limit as εRF→∞ equals the ZD summation energy
(15) with α00. The difference between the RF energy and
the modified one is the “self energy,” viz. the last term
in Eq. (18).

Other methods

Other promising CB approaches exist. The ZD summation
method can be extended to accommodate higher multipoles.
The force-matching method (Ercolessi and Adams 1994;
Shi et al. 2008), the isotropic periodic summation (Wu and
Brooks 2005; 2008), and the screening scheme using the
Yukawa potential (Carré et al. 2007) are highly effective.
Important new non-Ewald electrostatics methods have been
developed, including local molecular field theory (Chen and
Weeks 2006), a fast multipole method combined with a
reaction field (Mathias et al. 2003), the lattice-sum-
emulated reaction-field method (Heinz and Hünenberger
2005), an image-charge reaction field method (Lin et al.
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2009, 2011), and a model of electrostatic and liquid-
structure forces (Hassan 2007).

Conclusion

After reviewing intrinsic aspects of the PBC with the LS
method, we mainly considered the CB methods including
the conventional RF method and the recently-developed PA,
Wolf, and ZD summation methods.

Although the PBC with the LS method has been most
frequently applied to biomolecular systems, they are still far
from reality, and some artifacts have been recognized. The
CB method could provide a promising solution, and, be-
cause of its simple features, it could satisfy the demands of
high-performance computational architectures. Investiga-
tion of the RF method using the AC mode should be
continued. Pursuit of symmetry of the system, as considered
in the PA method, will be useful in particular for reconsider-
ing the boundary conditions. Although more considerations
may be required, the relationships between the CB methods
suggest new interpretations and extensive applications. The
“interactions” among the individual CB methods, even with
the LS method, should mature the algorithm for calculating
electrostatic interactions.
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