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Abstract 

The problem of unbiasing and combining the results of umbrella sampling calculations is reviewed. The weighted 
histogram analysis method (WHAM) of S. Kumar et al. (J. Comp. Chem. 13 (1992) 1011) is described and compared 
with other approaches. The method is illustrated with molecular dynamics simulations of the alanine dipeptide for one- 
mad two-dimensional free energy surfaces. The results show that the WHAM approach simplifies considerably the task of 
recombining the various windows in complex systems. 
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1. Introduction 

The potential of mean force (PMF) W(s  c) along 
some coordinate s ~, first introduced by Kirkwood in 
1935 [ 1 ], is a key concept in modern statistical me- 
chanical theories of liquids and of complex molecu- 
lar systems. It is defined from the average distribution 
function (p(s ¢)), 

[ 
W(s  c) = W(~:*) - kBTln L ~ J  ' (1) 

where ~:* and Y¢(~:*) are arbitrary constants. The av- 
erage distribution function along the coordinate ~ is 
obtained from a Boltzmann weighted average, 

(p(~:)) = f d R  t~ (~:'[R] - s c) e -U(R)/kBT 
f dR e-U(R)/kBr , (2) 

where U(R) represents the total energy of the sys- 
tem as a function of the coordinates R and ~:t[R] is 
a function depending on a few or several degrees of 

freedom in the dynamical system (e.g., stY[R] may be 
an angle, a distance, or a more complicated function 
of the Cartesian coordinates of the system). In par- 
ticular, conformational equilibrium properties or the 
transition rate of dynamical activated processes can be 
expressed conveniently in terms of the function W(~:) 
[2]. For these reasons, the PMF is a central quantity 
in computational studies of macromolecular systems. 

It is often impractical to compute the PMF W(~:) 
or the distribution function (p(s~)) directly from a 
straight molecular dynamics simulation. For example, 
the presence of large energy barriers along s ~ may pre- 
vent an accurate sampling of the configurational space 
within the available computer time. To avoid such dif- 
ficulties, special sampling techniques have been de- 
signed to calculate the PMF from a molecular dynam- 
ics trajectory effectively. One of these approaches is 
the umbrella sampling technique of Torrie and Val- 
lean [3,4]. In this method, the microscopic system of 
interest is simulated in the presence of an artificial bi- 
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asing window potential, w(sC), introduced to enhance 
the sampling in the neighborhood of a chosen value 
s c. The biased simulations are generated using the po- 
tential energy [U(R) + w(~ c) ]. Typically, the biasing 
potential serves to confine the variations of the coordi- 
nate ~: within a small interval around some prescribed 
value, helping to achieve a more efficient configura- 
tional sampling in this region (this is the reason why 
the biasing potential is called a window potential). For 
example, a reasonable choice to produce the biased en- 
sembles, though not the unique one, is to use harmonic 
functions of the form wi(~) = ½K((  - ~i)2, centered 
on successive values of sci. Because the sampling is 
confined to a small region during a given biased sim- 
ulation, only a small piece of the estimated PMF is 
sufficiently accurate to be useful. To obtain the PMF 
over the whole range of interest of ( ,  it is necessary to 
perform a number of biased window simulations, each 
biasing the configurational sampling around a differ- 
ent region of s c. Ultimately, the results of the various 
windows are unbiased and then recombined together 
to obtain the final estimate W(~) .  

These last steps are the most important in an um- 
brella sampling calculation. According to Eq. (2), the 
biased distribution function obtained from the ith bi- 
ased ensemble is 

( P ( ( ) ) ( i )  = e-Wi(()/kBr (P(sc)) (e-W'(()/kBr) - l  (3) 

The unbiased PMF from the ith window is 

W/(~:) = W ( ( * )  - kBTln [ (P( ( ) ) ( i ) ]  
(p(sC*)) J 

- -w i ( ( )  + Fi, (4) 

where the undetermined constant F/defined from 

e-F'/k"r = (e--W'(()/~:Br), (5) 

represents the free energy associated with introduc- 
ing the window potential. There have been numer- 
ous efforts at addressing the problems of unbiasing 
and recombining the information from umbrella sam- 
piing calculations. Traditionally, the unknown free en- 
ergy constants F,. are obtained by adjusting the various 
Wi (~) of adjacent windows in the region in which they 
overlap until they match [3,4]; the matching can be 
done manually or automatically, using a least-squares 
procedure [ 5]. After the free energy constants have 

been obtained, the PMF for the whole range of in- 
terest is generated by connecting the various W i ( ( )  
together and discarding the superfluous data in the re- 
gion in which they overlap [3,4]. Although this is a 
valid procedure to construct the PMF, it is very lim- 
ited in practical applications. For example, a signifi- 
cant overlap between the adjacent windows is neces- 
sary to overcome the statistical errors in each individ- 
ual estimates. Thus a large quantity of the simulation 
data is not used. Furthermore, because the process of 
matching the adjacent windows is somewhat arbitrary, 
the uncertainty involved in the process results in a 
global error that grows with the number of windows. 
Additional problems arise in the case of free energy 
surfaces in a space of higher dimensionality [6], e.g., 
the value of a free energy constant Fi allowing a best 
match along one coordinate may differ from that al- 
lowing a best matching along other coordinates due to 
statistical fluctuations. 

Different approaches have been proposed to con- 
struct a PMF function valid over the range of interest 
and avoid discarding any information in combining 
the available data from the umbrella sampling simu- 
lations. To avoid adjusting the unknown free energy 
constants Fi on the basis of a matching of the adja- 
cent windows, Haydock et al. [7] proposed to calcu- 
late the relative value of the free energy constants F/ 
using free energy perturbation [8]. The central idea 
of the approach is to compute the free energy differ- 
ence AF/d = [ F i - F j ]  between the adjacent windows. 
Since the absolute value of the constants Fi is not 
required, only the relative value of each of the con- 
stants Fi needs to be determined according to the nor- 
malization of the distribution function. One arbitrary 
constant, F1, is set from ~* and W(~*) in Eq. (1). 
Woolf and Roux obtained the constants Ft- with free 
energy perturbation and expressed the best estimate of 
the PMF as a weighted sum over the unbiased PMF's 
of the windows [9]. In a calculation of the three- 
dimensional free energy surface of superoxide inside 
the active site of superoxide dismutase, Shen and Mc- 
Cammon used a least-squares fitting procedure to ob- 
tain the free energy constants Fi and expressed the 
best estimate of the distribution function as a weighted 
sum over the unbiased distributions of the individual 
windows [ 5 ]. Nevertheless, most approaches require 
a significant amount of overlap between adjacent win- 
dows and may not be optimal computationally. 
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The weighted histogram analysis method (WHAM) 
proposed by Kumar et al. [ 10] aims at using all the 
information present in the umbrella sampling simula- 
tions and avoids the problems mentioned above. One 
of the main advantages of WHAM is that it can be 
easily extended to treat the case of a PMF depending 
on more than one variable [10,11]. The approach 
represents a generalization of the histogram method 
developed by Ferrenberg and Swendsen [12]. The 
central idea, which goes back to the maximum over- 
lap method developed by Bennet to estimate free 
energy differences [ 13], consists in constructing an 
optimal estimate of the unbiased distribution function 
as a weighted sum over the data extracted from all the 
simulations and determining the functional form of 
the weight factors that minimizes the statistical error. 
The WHAM approach is now routinely used to cal- 
culate the PMF along a single coordinate [ 10,11,14]. 
However, no applications of the approach to the case 
of a multidimensional free energy surface could be 
found in the literature when this paper was written 
despite the fact that this represents a straightforward 
extension of the methodology [ 11 ]. 

In this paper, we describe and compare different 
methods to unbias and recombine the results from um- 
brella sampling calculations. Three different weight- 
ing methods, the weighted histogram analysis method 
(WHAM) [ 10], a weighted distribution function (W- 
DF) [5], a weighted potential of mean force (W- 
PMF) [9,15] as well as an approach based on free 
energy perturbation (FEP) [7], are considered. The 
alanine dipeptide was chosen for a model system and 
PMF's depending on one and two coordinates were 
examined. 

2. Theory and method 

We consider an umbrella sampling calculation in- 
volving Nw biased window simulations. The WHAM 
equations express the optimal estimate for the unbi- 
ased distribution function as a C-dependent weighted 
sum over the Nw individual unbiased distribution func- 
tions [ (p(g))  ] unbiased (i) [ 10,12], 

Nw 
~"~ [ ,  (-,-),]unbiased 

(P(¢))=2_., ~P ¢ ) (0 
i=l 
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nie_[W~(~l_Fd/~r 
x [E ;~  nJ e-[wA¢)-Fxl/*Br ' (6) 

where ni is the number of independent data points used 
to construct the biased distribution function. Based on 
Eqs. (3) and (5),  the individual unbiased distribution 
function is 

[ ( p ( g ) ) l  unbiased e+Wi('~)/kaT(p(g))(i)e-Fi/knT 
J (i) = 

(7) 

and Eq. (6) can be re-written in the form [ 10,11] 

Nw 

(p(g) ) = ~ ni(p(g) )(i) 
i=l 

[z ] Nw 
x nje -lwj(~)-Fjl/kBr (8) 

L j=' J 
The free energy constants Fi, needed in Eq. (8),  are 
determined from Eq. (5) using the optimal estimate 
for the distribution function, 

= / dg e-W'(~)/kaT(p(g)). (9) e-F~/kaT 

Because the distribution function itself depends on the 
set of constants {Fj}, the WHAM equations (8) and 
(9) must be solved self-consistently. In practice this is 
achieved through an iteration procedure. Starting from 
an initial guess for the Nw free energy constants F/, an 
estimate for the unbiased distribution is obtained from 
Eq. (8). This estimate for (p(g))  is used in Eq. (9) to 
generate new estimates for the Nw free energies con- 
stants F/and a new unbiased distribution is generated 
with Eq. (8). The iteration cycle is repeated until both 
equations are satisfied. 

Extensions of the method to multidimensional cases 
is straightforward. For example, in the case of two 
variables ~:l and g2, Eqs. (6) and (9) become 

Nw 

(P(gl, g2)) = ~ ni(P(gl, g2) )(i) 
i=l  

(lO) 

and 
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e-F'/kBr = / del / de2 e--WJ(¢l'¢2)/kBr (p(1~l,t~2) ) . 

(11) 

As in the one-dimensional case, the WHAM equa- 
tions (10) and ( 11 ) are solved self-consistently. 

For a comparison with the PMF calculated with 
WHAM, let us consider the free energy perturbation 
method (FEP) of Haydock et al. [7]. The central idea 
of the method is to calculate the free energy difference 
AFi,i_l between the window potentials w i and Wi_l, 

AF/,i_l = F / -  F~_I 

= -kBT In [(e -lw'<~:)-w'-' (~) l/kBr)(i-1)] .(12) 

An equivalent expression can be written for the back- 
ward free energy Fi-l,i. In one dimension, the con- 
stants F, can be obtained by recurrence, i.e., 

Fi = F1 + AF2,1 + "" + AFi,i_I. (13) 

Extension of the FEP method to the case of higher di- 
mensions is relatively straightforward, although it re- 
quires special care. The relative free energy difference 
between the adjacent windows can be calculated in 
two-dimensions using Eq. (12). However, it can be ex- 
pected that the cumulative free energy resulting from 
the free energy differences along any closed path is 
not identically zero due to statistical fluctuations in the 
sampling; e.g., ~-~'9 °sed path AFi, j =it= O. ThUS, the cal- 

culated free energy differences AFi,j may not be con- 
sistent with a unique set of constant F,. In the present 
application, a least-squares procedure was used to de- 
termined a unique set of constants Fi from all the rel- 
ative free energy differences AF/,j between the adja- 
cent windows. Once the Fi are determined, the PMF's 
from the individual windows, )4;i, can be generated 
with the proper offset constants and no supplementary 
matching is required. 

Different approaches have been proposed to com- 
bine the available data avoiding the discarding of 
any information. To construct the PMF over the 
whole range of interest, Shen and McCammon used 
a weighted sum over the individual unbiased distribu- 
tion functions extracted the Nw windows [5], 

Nw 
(p(~:)) = ~[ (p(~:)) ] ~n~iased 

i=! 
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[ ni(p(~))(i) ] 
× ~ - ~  , (14) 
L~-]j_-i njIp(~) )(y) J 

with a straightforward extension to cases of higher di- 
mension. In the following, the weighted distribution 
function procedure is referred to as W-DE The s c- 
dependent weighted average expressed by Eq. (14) 
is not unique. For example, Woolf and Roux used 
a weighted sum over the individual unbiased PMF's 
)/~i (~) [9,15], 

N. [ Nwni(p(~))(i) ] w(~) = ~ wi(~) (15) 
i=, L~j=1 nj(p(~))(j) 

with a similar expression for the two-dimensional case. 
In the following, the weighted PMF procedure is re- 
ferred to as W-PME Both W-DF or W-PMF can be 
used to recombine the results from FEE 

In fact, the W-DF and W-PMF ~:-dependent 
weighted sum are very similar to the WHAM equa- 
tion (6). The three expressions, Eqs. (6),  (14) and 
(15), serve to recombine all available data into a 
smooth function valid over the whole range of s c. 
Eq. (6) gives more weight to the ith estimate where 
the Boltzmann factor of the ith window potential is 
large whereas Eqs. (15) and (14) give more weight 
to the estimate of the ith window where the biased 
distribution (P(~))(i)  is statistically more important. 
This similarity with the WHAM formulation suggests 
that Eqs. (15) (or Eq. (14) ) and (9) may be solved 
self-consistently providing a different estimate of the 
free energy constants F/. To examine the validity of 
the weighted sums equations (15) and (14) the self- 
consistent W-PMF and W-DF approaches were also 
tested. 

3. Illustration of  the methods 

The alanine dipeptide, CH3-CO-AIa-NH-CH3, was 
chosen for the purpose of illustrating the different 
methods. This system is convenient because it repre- 
sents a prototypical model of the protein backbone and 
has been studied extensively by molecular dynamics. 
In the present work, one and two-dimensional PMF's 
characterizing the C1-7 intramolecular N-H.. .O=C 
hydrogen bond of the alanine dipeptide were consid- 
ered. The PMF's were calculated in vacuum (one- 
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dimensional) and in the presence of one isolated water 
molecule (two-dimensional) using the FEP and the 
self-consistent WHAM, W-PMF and W-DF methods. 
All the calculations were done including all hydrogen 
atoms with the CHARMM PARM22 potential func- 
tion [16] for the peptides and TIP3P [17] for the 
water. 

To first test the methods in a one-dimensional case, 
the PMF W ( r )  along the N-H...O--C distance r of 
the alanine dipeptide was calculated in vacuum• The 
potential energy of the system was biased with a har- 
monic potential, ½K(r - ri) 2, centered on successive 
values of ri, where K is the harmonic force constant• 
The conformational sampling was performed with 
Langevin dynamics; trajectories of 100 ps were gener- 
ated for five windows, centered on 1.5, 2.5 . . . . .  5.5 
with a harmonic force constant K of 5 kcal/mol/A 2. 
A time step of 0.002 ps was used for all simulations 
and a friction constant of 25 ps -1 was applied to all 
non-hydrogen atoms• Each window was equilibrated 
during 10 ps starting from the last configuration of 
the previous window• The self-consistent set of equa- 
tions (WHAM, W-PMF and W-DF) were iterated 
until changes in the free energy constants Fi were 
less than 0.001 kcal/mol. The free energy differences 
in the FEP method were calculated by averaging the 
backward and forward perturbations and the resulting 
YVi(r) were combined together using Eq. (15). To 
provide a reference for comparison with the PMF 
calculated with the umbrella sampling method, a sin- 
gle unbiased simulation of 2 ns was generated. In the 
remainder of the paper, the PMF calculated from the 
2 ns simulation is referred to as exact. 

To illustrate the methods in the case of a two- 
dimensional free energy surface, the PMF of the 
Ci-7 hydrogen bond, VV(r ,d ) ,  was calculated in 
the presence of a single water molecule at a dis- 
tance d from the carbonyl oxygen of the C=O group 
(d is the water hydrogen - carbonyl oxygen dis- 
tance). The two-dimensional free energy surface was 
computed using a protocol similar to that described 
above. The potential energy of the system was biased 
with two harmonic potentials, centered on succes- 
sive values of the distances r and d, i.e., wi ( r , d )  = 
I g r ( r  - r i )  2 -~- I g d ( d  - d i )  2, where  Kr and Ka are 

the harmonic force constant of the window potential. 
After equilibration for 10 ps, Langevin trajectories of 
100 ps were generated for an eight by eight grid of 
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Fig. 1. Histograms generated for each window for calculation of 
the PMF of the intramolecular hydrogen bond characterizing the 
Ci-7 conformation. The histograms were calculated with a bin 
width of 0.1 ,~. A total number of 10000 data was used from the 
time-series. The average position from each window ( 1 to 5) was 
2.05403, 2.41345, 3.44748, 4.62168 and 5.16744/~, respectively. 
and the rms fluctuation was 0.17047, 0.26313, 0.41399, 0.32528 
and 0.19046/~. 

windows along r and d, centered on 1.0, 1.5, 2.0 . . . . . .  
5.5/~ with force constants of 10 kcal/mol//~, 2. The 
self-consistent set of equations (WHAM, W-PMF 
and W-DF) were iterated until changes in the free 
energy constants F/ were less than 0.001 kcal/mol. 
No stable self-consistent solution could be found 
with W-PMF. The free energy differences in the FEP 
method were calculated by averaging the backward 
and forward perturbations and the resulting VVi(r) 
were combined together using a two-dimensional 
extension of Eq. (15). 

4. Results and discussion 

The histograms of the five windows are shown in 
Fig 1; all the calculated PMF's along the N-H. • .O=C 
intramolecular distance r are shown in Fig 2. The three 
PMF's calculated self-consistently (WHAM, W-PMF 
and W-DF) agree well with the PMF extracted from 
the 2 ns unbiased simulation. The results from FEP 
differ most, in particular at the local minimum near 
5.05/~. The largest deviations with the PMF extracted 
from the unbiased simulation are in the order of 0.10 
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Fig. 2. PMF of the intramolecular hydrogen bond characterizing the 
Ci-7 conformation. ( r  corresponds to the N-H...O=C distance). 
The PMF's calculated from the unbiased 2 ns simulation (exact), 
free energy perturbation (FEP), and the self-consistent weighted 
histogram analysis method (WHAM), the weighted PMF method 
(W-PMF), and the weighted distribution function (W-DF) are 
shown. The FEP windows were recombined using Eq. (15). 

kcal/mol with WHAM and 0.06 kcal/mol with W- 
PMF in the region of the central barrier. In this region 
a larger error may be expected because the number of 
counts in the histogram bins of the biased simulations 
is smaller; the relative error in the histogram bins is in 
the order of 1/v/-N, where N is the number of counts 
[ 10]. The average number of counts is around 2500 
for r around 2 and 5/~, whereas it is only 600 around 
3.5/~ due to the influence of the central barrier. For 
comparison, the number of counts in those bins was 
1200 for the 2 ns simulation. The convergence in the 
barrier region could be improved by using an approx- 
imate guess to the PMF as an overall biasing potential 
in addition to the successive harmonic window poten- 
tials, i.e., wi( r ) = ½ K ( r - ri ) 2 - wguess ( r ) ,  such that 
the resulting free energy profile of the system is more 
uniform [ 18]. 

The free energy constants Fi used in Eq. (4) to un- 
bias the individual W i  are given in Table 1. Gener- 
ally, the values calculated with FEP using Eq. (12) 
and those obtained with WHAM and W-PMF using 
Eq. (9) are in good accord with the free energy con- 
stants extracted from the 2 ns unbiased simulation. In 
the W-PMF method, the best estimate of the PMF is 
constructed from a linear combination of the individ- 
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r ( A n g s )  
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Fig. 3. Individual Wi from the five windows shown with the final 
W-PMF estimate. 

Table 1 
Comparison of the free energy constant Fi 

Free energy constants (kcal/mol) 

Exact WHAM W-PMF W-DF PEP a 

F1 0.000 0.000 0.000 0.000 0.000 
F2 -1.020 -1.027 -1.041 -1.059 -1.095 
F3 -0.321 -0.316 -0.358 -0.410 -0.229 
F4 -0.715 -0.745 -0.802 -0.874 -0.716 
F5 -0.437 -0.467 -0.525 -0.597 -0.403 

aCalculated from an average of the forward and backward free 
energy perturbation with Eq. (12). 

ual Wi using Eq. (15) whereas those quantities enter 
as exp(-Wi/kBT)  in Eq. (6) in WHAM and in W- 
DE The unbiased Wi from each individual window 
are shown in Fig 3. The individual W i  are in good 
agreement with the final unbiased estimated PMF in 
the center of the individual windows, although they 
deviate significantly at the boundaries of the window. 
In the W-PMF and W-DF methods, the individual es- 
timates are combined with a weighting proportional 
to the occurrence in the corresponding histograms us- 
ing Eqs. (14) and (15), respectively. The histograms 
of the five windows, shown in Fig. 1, are centered on 
the successive value of the H. • .O distance where the 
individual estimates are accurate. 

The two-dimensional free energy surfaces were 
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Fig. 4. PMF's of the intramolecular hydrogen bond characterizing the C1-7 conformation in the presence of a water molecule (r corresponds 
to the N-H...O=C distance and d to the water-H..-O=C distance). The results obtained with the free energy perturbation (FEP) and from 
the self-consistent weighted histogram analysis method (WHAM) and weighted distribution function (W-DF) are shown. The contours 
are traced at the levels 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 kcal/mol with an increasingly thick line. More information about 
the six local minima of the free energy surfaces is given in Table 2. 

Table 2 
Minima of the two-dimensional free energy surface 

Position (,~) Free energy (kcal/mol) 

r d WHAM W-DF FEP 

3.35 1.85 0.000 0.000 0.000 
3.35 3.15 0.042 - -0.084 
3.35 3.25 - -0.564 - 
2.15 5.45 1.051 0.887 
2.45 4.65 - 1.008 - 
5.05 1.85 0.639 0.635 0.677 
5.05 3.05 0.729 0.730 
4.95 3.05 0.635 - 
4.85 4.95 1.120 0.998 
4.55 4.95 0.820 - 

calculated from the 64 biased simulations using the 
W H A M ,  W - D F  and FEP approaches. Unexpectedly, it 
was not possible  to reach self-consistency in the case 
of  the W - P M F  method for the two-dimensional free 
energy surface. The reason for this failure is not clear. 
Nevertheless, it indicates that the approach has severe 
limitations. The free energy surface calculated with 
W H A M ,  W - D F  and FEP are shown in Fig. 4; infor- 
mation about the minima of  the free energy surfaces 
is given in Table 2. Whereas the W H A M  and FEP 
free energy surfaces look qualitatively similar, the 
free energy surface obtained with the W-DF approach 

appears to be significantly different. In the case of  
W H A M  and FEP, the location of  the six local minima 
is identical. The relative free energy is slightly differ- 
ent with the absolute minimum found at a different 
location; e.g., the absolute minimum of  one surface 
is a relative minimum on the other surface, although 
the free energy difference between the two minima is 
very small (less than 0.1 kc a l /mo l ) .  In the case of  
self-consistent W-DF, the relative energy and even the 
position of  the six minima is appreciably different. 

The simple examples considered here suggest that 
W H A M  is the most reliable approach to unbias and 
recombine all available data from umbrella sampling 
calculations. W H A M  has many advantages over the 
more traditional approaches used to unbias and re- 
combine the umbrella sampling calculations. A par- 
ticularly important advantage is that W H A M  can be 
easily extended to any number of  coordinates. A mul- 
t idimensional free energy surface may be useful even 
if  the function of  interest is a PMF along a single co- 

ordinate. For example, sampling problems along a c o -  
ordinate ~:2 can be present during the calculation of  
a PMF along the coordinate ~l [ 15]. In such a situ- 
ation, the computation of  a two-dimensional  free en- 
ergy surface, )4;(~:t, so2 ), may be an effective approach 
to obtain W(~:1 ), which itself can be obtained from a 
direct numerical integration, 
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e_lW((,)_w((7)l/kBr= f d~2(P((l,(2)) (16) 
fd~2(p(~,¢2))" 

Furthermore, the convergence properties of um- 
brella sampling calculations may be exploited more 
effectively using WHAM. Generating short umbrella 
sampling simulations for a large number of narrow 
windows is computationally more advantageous than 
generating longer simulations with a smaller num- 
ber of wider windows [ 19]. This observation can be 
demonstrated using a crude argument. Assuming that 
the dynamics of the umbrella sampling coordinate is 
governed by a simple damping constant y, the sam- 
pling of the window histogram (in one dimension) 
should take place on a time scale of rw ~ y/K, 
where K is the force constant of the harmonic win- 
dow potential. I f  Nw simulations are used to cover the 
whole range L, the force constant K of the umbrella 
sampling potential must be chosen to insure a proper 
overlap between the adjacent windows, i.e., each 
window should cover a range of AL = L/Nw and the 
value of K should be on the order of kBT/AL 2 based 
on the magnitude of the rms fluctuations. It follows 
that the total simulation time Trot needed to generate 
the Nw windows varies as ,~ L2/Nw. Thus, it is more 
advantageous to run short umbrella sampling simu- 
lations for a large number of narrow windows (the 
simulation time required to prepare and equilibrate 
the windows, which is also important, is ignored in 
this simple analysis) [19]. Traditionally, the uncer- 
tainty in matching adjacent windows introduced a 
cumulative error and there was no clear advantage to 
generating a large number of windows. With WHAM 
it should be possible to take advantage of this conver- 
gence property. 

5. Summary 

Automatic schemes (WHAM, W-PMF, W-DF and 
FEP) to unbias and recombine the windows in um- 
brella sampling calculation were described and imple- 
mented. Tests with the alanine dipeptide system indi- 
cated that the approaches generate similar results in 

the case of a one-dimensional PME Although the four 
different approaches can, in principle, be extended to 
the case of multidimensional free energy surfaces, tests 
with a PMF depending on two coordinate showed that 
WHAM is the most reliable approach. 
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