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We review a class of efficient wavefunction approximations that are based around
the limit of low entanglement. These wavefunctions, which go by such names
as matrix product states and tensor network states, occupy a different region
of Hilbert space from wavefunctions built around the Hartree–Fock limit. The
best known class of low entanglement wavefunctions, the matrix product states,
forms the variational space of the density matrix renormalization group algo-
rithm. Because of their different structure to many other quantum chemistry
wavefunctions, low entanglement approximations hold promise for problems
conventionally considered hard in quantum chemistry, and in particular prob-
lems which have a multireference or strong correlation nature. In this review,
we describe low entanglement wavefunctions at an introductory level, focus-
ing on the main theoretical ideas. Topics covered include the theory of effi-
cient wavefunction approximations, entanglement, matrix product states, and
tensor network states including the tree tensor network, projected entangled pair
states, and the multiscale entanglement renormalization ansatz. C© 2012 John Wiley &
Sons, Ltd.
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INTRODUCTION

I n wavefunction-based quantum chemistry, we
wish to determine the stationary states of the elec-

tronic Schrödinger equation. This is a difficult task
because the dimension of the Hilbert space grows
exponentially with the number of electrons. Thus,
any practical calculation must use some simplifying
approximations, or ansatz, for the state we wish to
study.

Figure 1 illustrates schematically the full Hilbert
space of wavefunctions. Complete expansions, for ex-
ample, via full configuration interaction or full reso-
nance valence bond theory, span the entire Hilbert
space at exponential cost. Practical wavefunction ap-
proximations are of polynomial cost, and are nec-
essarily biased toward a given portion of the Hilbert
space. In opposite corners of the rectangle in Figure 1,
we show two families of approximations salient to
our discussion. One is biased toward the Hartree–
Fock mean-field or independent particle limit. Such
wavefunctions are well developed in quantum chem-
istry and can be systematically made more flexible
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by increasing the excitation level in the wavefunc-
tion. The other family of wavefunctions, which are
the main subject of this review, are biased toward the
independent local subsystem, or zero entanglement,
limit. These wavefunctions are systematically made
more flexible by increasing the amount of encoded
entanglement.

Low entanglement wavefunctions first became
widely applied with the advent of the density ma-
trix renormalization group (DMRG).1–8 Within a
few years, it was understood that the DMRG algo-
rithm is an energy minimization algorithm within a
class of low entanglement wavefunctions known as
matrix product states (MPS).5–7,9–15 Decimation in
the renormalization group (RG) algorithm is equiv-
alent to encoding limited entanglement in the state,
linking the RG picture with quantum information
perspectives.6,13,15–17 In the last decade, MPSs also
have been used in quantum chemistry via the DMRG
algorithm.8,17–50 Quantum chemical DMRG has sig-
nificantly widened the scope of ab initio calcula-
tions with respect to strongly correlated electrons.
In particular, it has allowed multireference active
space calculations with more than 30, and in some
cases up to 100, active orbitals (see Refs 8,22,23,25–
30,42,43,47–49 and Ref 7 for a summary of recent
calculations).
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FIGURE 1 | The Hilbert space of many-electron wavefunctions.
The independent particle and independent local subsystem limits lie in
different regions of the Hilbert space. By increasing the excitation level
or entanglement, respectively, in approximations built around these
limits, they can be made to span the full Hilbert space.

FIGURE 2 | Area laws express locality in physical systems. In a
one-dimensional system, the boundary area is independent of the
overall system size, thus entanglement entropy in a physical ground
state is expected to be independent of system size, unless at a
quantum critical point. In two-dimensional system, the boundary area
can scale as the system width, and the entanglement entropy scales
similarly, except for critical and topological corrections.

More recently, generalizations of MPSs, which
remove some fundamental limitations, for example,
with respect to system dimensionality, have been
introduced.15,51–64 Such tensor network wavefunc-
tions are still in their infancy, and efficient compu-
tational techniques to work with them remain under
development. Indeed, they have yet to be applied to
quantum chemistry (also, see Refs 50, 60, 65 for early
work in this direction). Nonetheless, they hold consid-
erable promise due to their increased flexibility over
MPSs. We describe them also in this review.

The structure of the discussion is as follows. In
section Wavefunctions and the Orthogonality Catas-
trophe, we first consider why, despite the exponen-
tial size of the Hilbert space, it is possible to faith-
fully approximate a quantum state. In sections Wave-

functions around the Hartree–Fock Limit and Low
Entanglement Wavefunctions, we describe the two
families of wavefunctions presented above. We be-
gin with a brief discussion of wavefunctions built
around the independent particle limit. Then we turn
to our main focus—low entanglement wavefunctions.
We introduce the mathematical definition of entan-
glement, and proceed to describe in detail the theory
of MPS. We next describe more general tensor net-
work wavefunctions, including tree tensor networks
(TTNs), projected entangled pair states, and the mul-
tiscale entanglement renormalization ansatz (MERA).
We finish with our conclusions in section Conclu-
sions.

WAVEFUNCTIONS AND THE
ORTHOGONALITY CATASTROPHE

How do we construct a many-electron wavefunction
to represent a quantum state? At first glance, there
appears to be a fundamental problem, as the orthog-
onality catastrophe shows that in a large system, any
approximate wavefunction is orthogonal to the state
of interest. This might even suggest that a wavefunc-
tion is not a valid way to describe large quantum sys-
tems (see, e.g, the discussion in Ref 66). To illustrate
the catastrophe, consider a set of N noninteracting
electrons. For simplicity, we neglect antisymmetry.
Then the ground-state wavefunction is a product of
N orbitals

� = φ1(r1)φ2(r2) . . . φN(rN). (1)

We imagine representing each orbital φ by an approx-
imate φ′, with a small error,

〈φ|φ′〉 = 1 − ε. (2)

The overlap of the approximate and exact wavefunc-
tions is a product of the overlaps of the orbitals

〈�|�′〉 = 〈φ1|φ′
1〉〈φ2|φ′

2〉 . . . 〈φN|φ′
N〉

= (1 − ε)N

∼ exp(−εN). (3)

We see that the overlap of the true and approxi-
mate determinants decreases exponentially with the
number of particles. This is not essentially changed
if include antisymmetry, or add in the interactions
between the electrons. This suggests that any approx-
imate wavefunction is a very poor representation of
the quantum state in a large systems.

The practical success of quantum chemistry,
however, indicates that approximate many-electron
wavefunctions do contain useful information. Indeed,
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even with a poor overlap, expectation values of op-
erators can be very good. In the above case, for a
single-particle operator Q̂ = ∑

i q̂i , with expectation
value Q = 〈�|Q̂|�〉,

〈�′|Q̂|�′〉 =
∑

i

〈φ′
i |q̂i |φ′

i 〉 = Q+ NO(ε). (4)

We see that the error in the expectation value per
particle is O(ε), independent of the number of par-
ticles. Thus, wavefunctions with poor overlap can
yield meaningful expectation values even in the limit
of large particle number, that is, the thermodynamic
limit.

Further examination of the original argument
also shows that the catastrophe is not actually as se-
vere as it first appears. We assumed that we compute
each orbital to within an error of ε, regardless of how
large the system is. However, we could try to repre-
sent each orbital more accurately as the number of
electrons increases. Indeed, to defeat the exponential
loss of overlap we need the error in each orbital to
decrease such as

〈φ|φ′〉 ∼ 1 − ε

N
. (5)

In this case, the approximate wavefunction can retain
unit overlap with the true state. For the scheme to
be practical, we must be able to determine an orbital
to a given error of ε in a time polynomial in ε−1.
Current methods to solve the single-particle molecu-
lar Schrödinger equation (e.g., by Gaussian basis set
expansion) satisfy this criterion.67–70 Thus, even using
the total wavefunction overlap as a measure of accu-
racy, it is possible in some cases to faithfully represent
the state of a large system with a wavefunction.

Now that we have established that approximate
wavefunctions can in principle provide meaningful
descriptions of N electron systems, we still have the
problem of determining appropriate approximations
for physical problems. We first describe wavefunc-
tions that are built around the Hartree–Fock limit,
then move to our main focus of low entanglement
wavefunctions.

WAVEFUNCTIONS AROUND THE
HARTREE–FOCK LIMIT

Wavefunctions built around the Hartree–Fock mean-
field limit are widely used in quantum chemistry. The
Hartree–Fock wavefunction is the determinant which
minimizes the energy E = 〈�|H|�〉/〈�|�〉71,72. Start-
ing from a determinant allows a separation of orbitals
into an occupied space (labeled by i, j, . . .) and a vir-
tual space (labeled by a, b, . . .), thus defining excita-

tions relative to the determinant. In the standard ex-
citation hierarchy, one expands a general wavefunc-
tion as a linear combination of excitations around the
Hartree–Fock reference,

|�〉 = |�0〉 +
∑
ia

ca
i |�a

i 〉

+
∑

i> j,a>b

cab
i j |�ab

i j 〉 + . . . . (6)

By mixing in successively higher excitations, one cov-
ers the full quantum Hilbert space. Compact wave-
function approximations are constructed by restrict-
ing the generality of the excitation expansion. In
truncated configuration interaction and perturbation
theories,71,72 we restrict the maximum excitation
level in the expansion (6), whereas truncated coupled
cluster theory rewrites the expansion first in cluster
form71–74

|�〉 = exp(T̂)|�0〉, (7)

and truncates the excitation level in the cluster oper-
ator T̂,

T̂ =
∑
ia

ta
i a†

aai +
∑

i> ja>b

tab
i j a†

aa†
baia j + . . . . (8)

There are other ways to construct wavefunc-
tions around the Hartree–Fock limit aside from an
excitation expansion. Another class of compact wave-
functions is obtained by applying diagonal operators,
known as Jastrow factors (sometimes known as cor-
relation factors), to the determinant.75–77 Jastrow fac-
tors take the general form

Ĵ =
∑

i

ji n̂i +
∑
i> j

ji j n̂i n̂ j + . . . , (9)

where n̂i is a number operator a†
i ai in some basis,

not necessarily the molecular orbital basis of the de-
terminant. The Jastrow determinant wavefunction is
then

|�〉 = Ĵ |�〉. (10)

As successively more terms are included in the Jas-
trow factor, the Jastrow determinant wavefunction
can also cover the full quantum Hilbert space.

In both the excitation and Jastrow expansions,
the choice of starting determinant is not unique.
For example, the Hartree–Fock energy minimization
has many local minima, each of which may form
a suitable reference. Some solutions of the energy
minimization do not preserve the symmetry of the
original Hamiltonian. Symmetry-broken solutions
can often be associated with different kinds of elec-
tronic phases and can thus be chosen to reflect the
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nature of the final state we wish to capture. Break-
ing spin symmetry yields unrestricted and general
Hartree–Fock determinants, while breaking number
symmetry leads to the Bardeen–Cooper–Schrieffer
(BCS) wavefunction.78 (We refer to the BCS wave-
function also as a determinant for simplicity, although
it is a determinant of quasiparticles, not electrons.) In
molecular systems, the BCS wavefunction is typically
projected to restore the particle number symmetry,
and the projected states are known as the antisym-
metrized geminal power79,80 or (if they break spin
symmetry also) Pfaffian wavefunctions.81

Despite the flexibility in the choice of start-
ing reference, there are some situations when no
good starting determinant can be found. Determinant
wavefunctions are eigenfunctions of one-particle ef-
fective Hamiltonians

ĥ =
∑

i j

ti j a
†
i a j + �i j (aia j + a†

j a
†
i ), (11)

where the first term is a number conserving one par-
ticle term, and the second is the pairing field associ-
ated with breaking particle number symmetry in the
BCS wavefunction. The quality of the starting refer-
ence is governed by the magnitude of the perturbation
V̂ = Ĥ − ĥ, where Ĥ is the full electronic Hamilto-
nian of the problem. Strongly correlated electronic
structure, commonly found in transition metal chem-
istry and excited electronic states, is characterized by
a large magnitude of V̂ relative to the energy spacing
of ĥ.

For small numbers of strongly correlated elec-
trons, one can augment the starting reference deter-
minant by a linear combination of starting determi-
nants. This gives rise to multireference wavefunction
approximations. Perturbative, configuration interac-
tion, and coupled cluster theories from a multirefer-
ence starting point can be formulated,72,82–86 as can
multireference Jastrow wavefunctions.87 However,
multireference approximations are compact only so
long as the number of starting references remains
polynomial in the system size. This is not the case
for large numbers of strongly correlated electrons.
We therefore turn our attention to a different class of
wavefunction approximations that seems well suited
to strong correlation problems: the low entanglement
wavefunctions.

LOW ENTANGLEMENT
WAVEFUNCTIONS

Valence Bond Theory
The motivations for constructing wavefunctions by
encoding entanglement between local objects are il-

lustrated by the stretched two-electron bond in the hy-
drogen molecule. Using an excitation expansion such
as Eq. (6), the wavefunction at large separation may
be written as

|�〉 = 2−1/2(A[σg(1)ασg(2)β]

−A[σu(1)ασu(2)β]), (12)

where σ g and σ u are the bonding and antibonding
molecular orbitals. The stretched bond wavefunction
requires a multireference approximation as there is no
dominant determinant. At large separation, however,
it seems more natural to build the wavefunction from
the atomic states. Denoting the atomic orbitals as 1sa

and 1sb, we write

|�〉 = 1
2

[1sa(1)1sb(2) + 1sa(2)1sb(1)]

× [αa(1)βb(2) − βb(1)αa(2)]. (13)

The coupling between the atomic spins reflects strong
correlations. For example, if we measure spin α on
atom A, the corresponding spin measurement on atom
B will yield spin β. This type of strong correlation is
known as entanglement, and is associated with the
chemical bond. (Note that as discussed above, strong
correlation is commonly defined with respect to a
perturbative partitioning of the Hamiltonian; strong
correlation and entanglement are thus not synonyms.
One of the attractions of entanglement as a descriptor,
rather than strong correlation, is the ability to define
precise mathematical measures of entanglement, as il-
lustrated in the next section). However, in a molecule,
not all atoms are bonded to all other atoms, that is,
there are only spin couplings of the above form along
specific chemical bonds. This suggests that compact
wavefunction approximations may be constructed by
encoding only the entanglement between local states
to reflect the bonding network of the molecule.

Equation (13) is also the starting point for va-
lence bond (VB) theory. In VB theory, the wavefunc-
tion is expanded in a valence bond basis, correspond-
ing to the classical resonance structures of chemistry.
For example, for three hydrogen atoms, there are
three neutral doublet resonance structures. However,
transforming to the valence bond basis does not by
itself yield a compact wavefunction, as the basis is ex-
ponentially large. For a compact parametrization, we
have to limit the number of resonance structures in the
expansion. If only a single-resonance structure is used,
we obtain a method known as generalized valence
bond theory.88,89 Moving beyond a single-resonance
structure theory in a scalable, fully general, and com-
pact way, however, proves quite difficult.90–92 Low
entanglement wavefunctions change the focus from
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the bonds to the local states and provide a more prac-
tical framework for compact approximations. We
now turn to a mathematical discussion of entangle-
ment.

Entanglement
Bipartite entanglement,93 or the entanglement be-
tween two systems, is defined as follows: let systems
1, 2 be spanned by sets of (orthonormal) states {|n1〉},
{|n2〉}, respectively. Any state in the combined system
1, 2 is expanded in the product space {|n1n2〉} as

|�〉 =
∑
n1n2

ψn1n2 |n1n2〉. (14)

(Here we work in a second quantized formulation,
where fermion antisymmetry is expressed in the com-
mutation relations between operators, rather than by
antisymmetrizing products of states). The bipartite
entanglement entropy is defined from a singular value
decomposition of the coefficients ψn1n2 . Writing this
as a matrix ψ , then

ψ = UσVT, (15)

where σ is the diagonal matrix of singular values. The
entanglement entropy is

S = −
∑

i

σ 2
i log2 σ 2

i . (16)

The entanglement entropy quantifies the corre-
lations between the systems. If the wavefunction is a
product wavefunction, there is only a single nonzero
singular value, and the entanglement entropy is zero.
In the maximally entangled state, all singular values
are the same. The maximally entangled state is thus
written as

|�〉 = 1√
M

M∑
i

|ri li 〉, (17)

where {|ri〉} and {|li〉} denote the basis in which the en-
tangling is performed, and the entanglement entropy
is log2M. The hydrogen molecule at infinite separa-
tion is in a maximally entangled state. Considering
the spin part of the wavefunction

|�spin〉 = 1
2

[α(1)β(2) − β(1)α(2)], (18)

we find that the entanglement entropy is log22 = 1,
that is, there is one pair of entangled spins.

Any wavefunction can be written in a diagonal
form similar to the maximally entangled state. From
Eq. (15), the matrices U and V define a transforma-
tion of the original bases. We define {|li〉} and {|ri〉}

through

|ri 〉 =
∑
n1

Un1i |n1〉, (19)

|li 〉 =
∑
n2

Vn2i |n2〉. (20)

In terms of the transformed basis, the wavefunction
then assumes a diagonal form

|�〉 =
∑

i

σi |ri li 〉. (21)

Matrix Product States
When constructing a wavefunction from the states
of two local systems, the wavefunction can always be
written in the diagonal form |�〉 = ∑

iσ i|rili〉. Relating
this to the original basis |n1n2〉, this gives

|�〉 =
∑

n1n2,i

An1
i An2

i |n1n2〉, (22)

where we have for notational purposes absorbed the
singular values in Eq. (15) into the definitions of the
A matrices. This form is very suggestive, as we can
think of the index i (which we call an auxiliary index)
as entangling the original states {|n1〉}, {|n2〉}, in the
two systems.

We can now try to generalize the above to more
than two local systems. Consider three systems 1, 2,
and 3. We imagine entangling system 1 with system 2,
and then system 2 with system 3. The natural gener-
alization of Eq. (22) is to use two entangling auxiliary
indices i1, i2, and to write the wavefunction as

|�〉 =
∑

n1n2n3

∑
i1i2

An1
i1 An2

i1i2 An3
i2 |n1n2n3〉

=
∑

n1n2n3

An1An2An3 |n1n2n3〉, (23)

where in the last line we have switched to a matrix
notation, and An1 and An3 are thin matrices (a row
vector and a column vector, respectively). The mul-
tiplication of the matrices An1 , An2 , An3 , yields the
wavefunction coefficient �n1n2n3 associated with the
configuration |n1n2n3〉. Since the wavefunction coef-
ficient is obtained as a matrix product, this wavefunc-
tion approximation is known as a matrix product
state (MPS).5–7,9–15 The accuracy and complexity of
the MPS is controlled by the dimension of the auxil-
iary indices i1, i2 of the matrices. If we fix this at some
dimension M, we say that the MPS is of dimension
M.
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We can generalize the MPS to k systems, where
we entangle them in a sequential manner,

|�〉 =
∑

n

An1An2 . . . Ank|n〉, (24)

where n denotes the configuration |n1n2. . .nk〉. Note
that the MPS construction is general and does not
depend on the definition of the local system or the
nature of the constituent states |n〉. For example, we
may take each system to be an atom (in which case
the local states span the Fock space of each atom,
where by Fock space we mean the full Hilbert space
across all particle number sectors). Or, we could take
each system to be as small as a single orbital, spanned
by the four states, | − 〉, |α〉, |β〉, |αβ〉. To emphasize
this generality, we now introduce the term site as a
synonym for local system. This is the terminology
primarily used in the MPS and DMRG literature. The
wavefunction approximation in Eq. (24) is thus an
MPS wavefunction for k sites.

One way to analyze the accuracy of the MPS ap-
proximation is to consider how much (bipartite) en-
tanglement entropy can be described by such a state,
if we imagine dividing our k sites into two sets. If the
dimension of the auxiliary indices is M, then the max-
imum entanglement expressed by the MPS for any cut
between the sites is log2M, irrespective of the number
of sites in the problem. We might, however, more nat-
urally expect the true entropy to capture in a physical
problem to scale with the size of the problem.

The link between entanglement entropy, sys-
tem size, and dimensionality is given rigorously by
so-called area laws.94–96 Whereas thermodynamic en-
tropy is an extensive quantity (i.e., it is simply propor-
tional to volume), entanglement entropy is believed
to scale only with the size (i.e., area) of the bound-
ary between the two systems used to define the en-
tropy. At an intuitive level, this expresses locality.
Given local interactions in the Hamiltonian, then in
the ground state, only quantum degrees of freedom
along the boundary can be entangled with each other,
and thus the entropy scales with boundary size. The
boundary size depends on the overall system size in a
dimensionally dependent way. In one dimension, any
division of the system yields a boundary size indepen-
dent of system size, thus entanglement entropy in a
one-dimensional ground state is independent of sys-
tem size. However, in a two- or higher-dimensional
system, the boundary of a division of the system can
scale like the width L of the system, and thus the en-
tanglement entropy scales as the system width (see
Figure 2).

As we argued above, for an MPS of dimen-
sion M, the maximum entanglement entropy log2M

is independent of system size, and we see that this
is clearly appropriate to a one-dimensional system
ground state. If we apply an MPS to describe a two
or higher-dimensional system, however, to capture
the growing entanglement entropy, the matrix di-
mensions must grow exponentially with the boundary
area, that is, M ∼ eL.

This may suggest that using an MPS to simulate
two- and three-dimensional systems is a bad idea. It
is indeed possible to devise states with more general
entanglement structures than the MPS, which natu-
rally capture the area law in higher dimensions and
such states are discussed in section General Tensor
Network States. However, crucially, the MPS cap-
tures the correct structure of entanglement for one
of the spatial dimensions, and thus the exponential
cost is associated only with the remaining dimensions,
that is, an area. This is a clear improvement over
full configuration interaction, where the cost scales
exponentially with the system volume. In practice,
therefore, MPS offers significant computational ad-
vantages when simulating systems even with two- or
three-dimensional connectivities.97

We now discuss a few miscellaneous topics re-
lated to MPS: algorithms, their interpretation as pro-
jected wavefunctions, and finally their graphical rep-
resentation.

MPS Algorithms
MPSs are compatible with many efficient computa-
tional algorithms. For example, overlaps and expec-
tation values can be obtained efficiently.5,6,15 We il-
lustrate this with the computation of the norm. The
norm of a matrix product state is

〈�|�〉 =
∑

n

(An1 †An2 † . . . Ank†) ⊗ (An1An2 . . . Ank)

= E1E2 . . . Ek, (25)

where the E matrices are of dimension M2 × M2,

Ei =
∑

ni

Ani † ⊗ Ani . (26)

The evaluation of the norm is itself a matrix prod-
uct. From Eq. (25), it would appear to take O(M4k)
time; however, using the fact that the E matrices have
an outer product structure, it requires only O(M3k)
time. By a similar construction, one finds that expec-
tation values of local operators can also be evaluated
in O(M3k) time.6

The expectation value structure in Eq. (25) is
reminiscent of a transfer matrix expression in statis-
tical mechanics, where the E matrices are the trans-
fer operators. This structure means that correlation
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functions such as 〈Q̂i Q̂j 〉 (where Q̂i , Q̂j act on sites
i and j, respectively) decay in MPS exponentially like
exp ( − λ|i − j|). λ is related to the smallest eigenvalue
of the transfer operator.6,12 As M (and thus the di-
mension of E) is increased, it is possible to reproduce
smaller and smaller λ, thus capturing longer range
correlations.

The (matrix) product structure of MPS means
that they are a generalization of a mean-field theory.14

Unlike Hartree–Fock theory, which is a mean-field
theory for independent electrons, MPSs represent a
mean-field theory for each of the local systems or
sites. By minimizing the variational MPS energy with
respect to the individual matrix components An, we
obtain a Schrödinger equation for each component,

H · a = Ea, (27)

where H is an effective Hamiltonian and a denotes An

flattened into a vector form. This is analogous to the
orbital equation in Hartree–Fock theory. As described
in Introduction, MPS arose originally in conjunction
with the DMRG. From the viewpoint of the current
discussion, we see the DMRG as an algorithm which
works within the space of MPS to variationally min-
imize the energy with respect to a single component
An at a time. The equations solved at each step of
the DMRG are the effective Schrödinger equations
(27), and the sweep algorithm of the DMRG is then
analogous to the traditional self-consistent field algo-
rithm of Hartree, where each orbital is determined
sequentially, and the effective Fock operator is up-
dated one orbital at a time until self-consistency is
reached.6,10,14

Projected Wavefunctions
There is another way to view MPS that is often use-
ful and which connects to some traditional quantum
chemistry ideas. In this language, the MPS arises as a
projection from a reference function. The particles ap-
pearing in the reference are not the actual electrons,
but are fictitious or auxiliary particles.13,15 In other
contexts, the idea of introducing fictitious particles
to describe a state is sometimes known as using a
shadow wavefunction.98

Consider, the MPS for two sites

|�〉 =
∑

n1n2,i

An1
i An2

i |n1n2〉. (28)

Formally, we can introduce auxiliary states |rili〉. We
then find that the MPS can be written as a set of
projections

|�〉 = Â1 Â2

∑
i

|ri li 〉, (29)

FIGURE 3 | Graphical representation of matrix product states.
(Left) For every state of a site |np〉, there is a matrix Anp . The indices of
the matrix, ip−1 and ip, are referred to as auxiliary indices and are of
dimension M. Note that the leftmost and rightmost matrices are, in
practice, row and column vectors. In this way, the product over all the
matrices yields a scalar, the wavefunction coefficient �n1n2 ...nk . (Right)
To obtain the matrix product state approximation to the wavefunction
coefficient �n1n2 ...nk , we contract over all the auxiliary indices in the
product An1 An2 Ank . Graphically, the contraction is represented by
joining together the auxiliary index lines.

where we have defined projection operators Â1, Â2

as

Â1 =
∑
in1

An1
i |n1〉〈ri |, (30)

Â2 =
∑
in2

An1
i |n2〉〈li |. (31)

The state that is being projected from is a maxi-
mally entangled state of auxiliary particles

∑
i|rili〉. In

general, the reference for an MPS for k sites can be
viewed as a simple product of entangled states (one
set for each auxiliary index) operated on by a set of
commuting projection operators

|�〉 = Â1 Â2 . . . Âk

(∑
i1

|ri1li1〉
)

×
(∑

i2

|ri2li2〉
)

. . .

⎛
⎝∑

ik−1

|rik−1lik−1〉
⎞
⎠ . (32)

The view of the MPS as a set of commuting operators
acting on a simple product reference function for-
mally connects the MPS construction to other kinds
of wavefunctions studied in quantum chemistry such
as the coupled cluster wavefunction (which is a prod-
uct of a set of commuting excitation operators on a
single-determinant reference) although this analogy
has yet to be much explored.

Graphical Representation
The proliferation of indices in the MPS means that
it is often more convenient to use a graphical rather
than algebraic representation.6 The graphical repre-
sentation of an MPS is shown in Figure 3. A matrix
An is represented by an inverted T-shaped object with
lines going left and right (the two auxiliary indices),
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FIGURE 4 | (Bottom) A norm can be represented graphically by
fusing the vertical indices of the matrix product state (MPS) bra
(pointing downward) with the vertical indices of the MPS ket (pointing
upward), denoting summation over all the state indices, n1, n2. . .nk.
(Top) Performing a state summation at each site leads to an
intermedate matrix E of dimension M2, and the norm evaluation is a
product of the E matrices. (Note that the leftmost and rightmost
matrices are, in practice, row and column vectors.)

and a vertical line (the site index n). Lines that are
connected represent indices that are summed over.

The graphical representation is useful not only
for representing the states, but also operators and
expectation values. The computation of an overlap
is shown in Figure 4. The graphical representation
clearly shows the nature of the index contractions.
This becomes even more essential when considering
states with a more general entanglement structure
than the MPSs, to which we now turn.

General Tensor Network States
The limitation of MPS is that they can only efficiently
encode a sequential structure of entanglement. For
arbitrary systems, more general encodings can be ex-
plored. This is a rapidly expanding area of investi-
gation, and many questions remain to be answered.
Here we discuss three promising kinds of tensor net-
works: TTN,57,58,60 which extend MPSs and maintain
a similar computational efficiency, but which still re-
strict the structure of the entanglement; projected en-
tangled pair states (PEPS),,15,52,54,55 which are a very
general way to encode a network of entanglement;
and the MERA,61–64 which combines some of the
practical strengths of the TTN while achieving some
of the formal advantages of PEPS.

FIGURE 5 | (Left) For every local state |np〉, a tree tensor network
(TTN) associates a tensor with z auxiliary indices. Here shown is a TTN
where each tensor has three auxiliary indices. (Right) The
wavefunction coefficient �n1n2 ...nk is obtained by contracting the
auxiliary indices according to the tree connectivity

Tree Tensor Networks
In an MPS, a local system is represented by a matrix
An with two auxiliary indices, which allows entan-
gling to the left and right neighbors. In the general-
ization to a tree structure, a local system is represented
by a tensor with z auxiliary indices, which allows cou-
plings to z neighbors. The TTN state can be written
as

|�〉 =
∑

n

∑
z

∏
i

Ani
zi
|n〉, (33)

where zi denotes the set of z indices on each tensor,
and

∑
z denotes the contraction with the indices of

neighboring tensors according to the connectivity of
the tree, shown in Figure 5. The accuracy of the TTN
is controlled by the dimensions of the auxiliary indices
z, which we can denote by M.

One advantage of the TTN over the MPS is that
the maximum distance between two sites in a tree is
logarithmic in the total number of sites, as opposed
to linear in the case of the MPS. This allows the TTN
to describe states with correlation functions, which
decay algebraically with respect to site separation,
as opposed to exponentially in the case of MPS, as
described in section MPS Algorithms.

A second advantage of the TTN is that, just as
in the MPS, expectation values can be efficiently ob-
tained. By contracting the tensors from out to in, we
see that the cost for calculating a norm is O(M)z+1k.
While the scaling of a z > 2 TTN computation is
higher than that for a corresponding MPS (z = 2),
the ability of TTN to better represent long-range
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FIGURE 6 | Projected entangled pair states (PEPS) are associated
with arbitrary networks of entanglement. Shown here is a
representation of the PEPS for a square lattice of sites. Each local state
|np〉 is then associated with a tensor with four auxiliary indices l, r, u, d
that point along the bonds of the square lattice. The PEPS
approximation for the wavefunction coefficient �n1n2 ...nk is obtained
by contracting all the auxiliary indices.

correlations means that we expect a TTN will reach
the accuracy of a given MPS calculation with smaller
auxiliary dimension of the tensors. Preliminary inves-
tigations appear to confirm this.60

Projected Entangled Pair States
The TTN and the MPS possess a special connectivity,
with no cycles between the tensors in the wavefunc-
tions. This is why these states are compatible with
very simple and efficient algorithms for calculating
norms and expectation values. As one contracts the
expectation value network, shown in Figure 4 for the
MPS, one proceeds through intermediates where the
number of dangling bonds is independent of system
size.

States with arbitrary networks of entanglement
on the other hand, including cycles, are known as
PEPS. To illustrate the PEPS construction, we con-
sider an appropriate state to describe a square lattice
of sites. In the PEPS, each site is associated with a
tensor An

z , where z denotes the four auxiliary indices
l, r, u, d that point toward the neighbors in the di-
rections left, right, up, and down. In this notation,
the PEPS wavefunction takes exactly the same form
as the TTN (33), except the auxiliary indices are con-
tracted according to the ‘bonds’ of the square lattice
(see Figure 6).

The name PEPS arises from the projected wave-
function interpretation of the state, described in sec-
tion Projected Wavefunctions for MPSs. Every site is
surrounded by four “bonds” on which we place maxi-
mally entangled states of auxiliary particles,

∑
m |ηη̄〉,

and each site is associated with a projector operator
which projects from the auxiliary particles onto the

FIGURE 7 | (Bottom) Projected entangled pair states (PEPS) norm
evaluation can be represented by fusing a PEPS bra lattice (pointing
downward) with a PEPS ket lattice (pointing upward). The result is a
square lattice which must be contracted over the auxiliary indices.
(Top) Each contraction of the local states |np〉 results in an E tensor
with four auxiliary indices, each of dimension M2.

physical particles,

Â =
∑
nlrud

An
lrud|n〉〈ηlηrηuηd|. (34)

The whole PEPS wavefunction is the product of such
commuting projection operators (associated with the
sites) on a reference, which is a product of entangled
pairs on the bonds.

PEPS wavefunctions can be constructed to sat-
isfy the correct entanglement area laws in two and
three dimensions. Consequently, they are expected to
provide compact descriptions of the ground states of
almost arbitrary physical systems. However, the abil-
ity to represent the wavefunction compactly does not
guarantee that computations of observables are effi-
cient. For the square lattice PEPS above, the evalu-
ation of an expectation value requires contracting a
square lattice network of E-type tensors, as shown
in Figure 7, where Ezz′ = ∑

n An
z An

z′ . As we contract
column by column, we form intermediates where the
number of dangling bonds is proportional to the sys-
tem width. The cost of forming these intermediates,
and thus the cost of the contraction, grows expo-
nentially with system width. However, for physical
systems, it appears to be possible to approximate
these intermediates by simpler forms. For example,
a two column contracted intermediate can be accu-
rately approximated by a single-column intermediate
with slightly larger auxiliary dimension (Figure 8).
This means that an iterative approximation algo-
rithm can be constructed where the evaluation of an
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FIGURE 8 | Naive contraction of the square lattice of E tensors
that arises from the projected entangled pair states (PEPS) norm
evaluation is of exponential cost. Instead, we consider first a
contraction of two E columns, starting from the left edge. We then
view the dangling bonds (pointing toward the right, here r1, r2, r3, r4)
as the local state indices of a fictitious wavefunction F r1r2r3r4 . We can
imagine approximating such a wavefunction by a matrix product state
(MPS) of a small auxiliary dimension, Ar1 Ar2 Ar3 Ar4 . This effectively
approximates the two column structure by a single-column structure.
Repeating this for the remaining columns of the E-square lattice, we
can contract the full PEPS from left to right efficiently. The final
top-to-bottom contraction involves only a single column and is of the
same complexity as an MPS norm evaluation.

observable reduces finally to a single-column con-
traction, as in the case of an MPS observable
evaluation.55,56

Multiscale Entanglement Renormalization
Ansatz
The MERA is a flexible entanglement structure that is
closely related to the original real space renormaliza-
tion group used in statistical problems. For simplicity,
we describe the MERA in one dimension, although
analogous constructions can be considered in two and
three dimensions.

MERAs consist of a set of operators known as
isometries, which perform coarse graining, and disen-
tanglers, which are unitary rotations. We first discuss
the isometries. We divide the k sites under considera-
tion into blocks. For concreteness, we take each block
to contain three sites. The first block spans the space
{|n1n2n3〉}. We now coarse grain from the Hilbert
space of the three site block {|n1n2n3〉} to a single
effective site with a reduced Hilbert space {|n′

1〉} of
specified dimension M. The operator which performs
this projection is an isometry,

Ŵ =
∑

n′
1,n1n2n3

|n′
1〉Wn′

1
n1n2n3〈n1n2n3|, (35)

as illustrated in Figure 9. In a similar way, we coarse
grain all the three site blocks onto effective sites, thus
giving a lattice with k/3 effective sites, each with an M-
dimensional Hilbert space. Once all the blocks have
been coarse grained, the coarse graining can be iter-
ated. For example, we can use another isometry to
map a block of three coarse-grained sites to a single,

FIGURE 9 | The multiscale entanglement renormalization ansatz is
constructed from two types of tensors: isometries W, which map the
states of a block of sites to a single effective sites; and disentanglers U,
which perform a unitary rotation of the basis of two or more sites.

even more coarse-grained site {|n′
1n′

2n′
3〉} → {|n′′

1〉}.
After log3k levels of coarse graining, we obtain a final
effective site with an M-dimensional Hilbert space,
in which the ground state of the entire problem is
expressed. The iterated isometries are connected in
a tree structure (of different nature to the TTN de-
scribed above) and the coefficient of the isometries Ŵ
are the variational parameters of the state.

The problem with using only isometries in a tree
structure is that the coarse graining does not treat the
sites uniformly, and thus neglects some entanglement
that may be present in the ground state. For exam-
ple, in the above, the effective coarse-grained states
in the first two blocks {|n′

1〉}, {n′
2〉} build in entangle-

ment within the first and second blocks of three sites
in the ground state, but do not between sites 3 and
4, which are on the boundaries of the blocks. The
idea behind the MERA is that one can incorporate
this missing entanglement between the block bound-
aries, by applying a unitary operator to these sites.61

For example, in the above example, we would use a
unitary operator which acts on the product space of
sites 3 and 4. The MERA consists of a layer of disen-
tanglers, which first handle the entanglement between
the boundaries of the blocks, alternating with layers
of isometries, which handle the entanglement within
the blocks,

|�〉 = (Ŵ1Û1Ŵ2Û2 . . . Ŵl)
∑

n

|n〉, (36)

where l is log3k, the number of layers in the MERA.
The MERA structure is illustrated in Figure 10.

The MERA possesses several unique strengths.
First, the presence of disentanglers allows the MERA
to correctly describe the entanglement area laws in
any dimension, even including the corrections to
area laws that are present in gapless one-dimensional
systems. Second, the close relationship between the
MERA and a tree structure means that unlike the
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FIGURE 10 | (Left) The original real space RG is associated with a
tree structure for the wavefunction, where a layer of sites is subjected
to successive coarse grainings (isometries, W). However, the coarse
grainings within the blocks neglect to take into account entanglement
at the boundaries of the blocks. (Right) This is rectified within the
MERA by first performing a disentangling operation U between the
block boundaries before coarse graining.

PEPS, expectation values and observables can be ex-
actly computed in polynomial time.61 Nonetheless,
the computational effort of using the MERA remains
high, and applications remain at a very early stage of
development.

CONCLUSIONS

In this review, we have described the basic theory
behind low entanglement wavefunction approxima-
tions. Because low entanglement wavefunctions oc-
cupy a region of Hilbert space far from the Hartree–

Fock mean-field limit, they offer the intriguing pos-
sibility to efficiently model chemical problems that
challenge standard quantum chemistry methods. In
recent years, practical evidence of this has been pro-
vided by the DMRG algorithm (based on low en-
tanglement wavefunctions known as MPSs). This has
been used to describe large multireference, strong cor-
relation problems involving transition metals and ex-
cited states. In our discussion, in addition to MPSs, we
have also described more general low entanglement
approximations, such as TTNs, PEPS, and MERA.
These states are considerably more complex than
MPSs and their properties are not yet completely un-
derstood. Nonetheless, it is clear at the mathematical
level that they overcome many of the formal limita-
tions of MPSs, particularly in relation to the encoding
of entanglement as a function of dimensionality. A
key remaining challenge is the development of practi-
cal numerical algorithms to work with these flexible
states. This is an area where we can expect the wealth
of knowledge in quantum chemistry in computational
algorithms for complex wavefunctions to play a ma-
jor part. Numerical computation with general low
entanglement approximations is thus positioned to
be an exciting possibility for quantum chemistry to
explore in this coming decade.
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31. Legeza Ö, Röder J, Hess BA. Controlling the accuracy
of the density-matrix renormalization-group method:
the dynamical block state selection approach. Phys Rev
B 2003, 67:125114.
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