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The ab-initio density matrix renormalization group (DMRG) is a tool that can be applied to a wide
variety of interesting problems in quantum chemistry. Here, we examine the density matrix renormal-
ization group from the vantage point of the quantum chemistry user. What kinds of problems is the
DMRG well-suited to? What are the largest systems that can be treated at practical cost? What sort
of accuracies can be obtained, and how do we reason about the computational difficulty in different
molecules? By examining a diverse benchmark set of molecules: π-electron systems, benchmark
main-group and transition metal dimers, and the Mn-oxo-salen and Fe-porphine organometallic
compounds, we provide some answers to these questions, and show how the density matrix renormal-
ization group is used in practice. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905329]

I. INTRODUCTION

The density matrix renormalization group algorithm
(DMRG), introduced by White,1,2 has by now been widely
applied in quantum chemistry.3–15 Developing from its roots in
condensed matter, its earliest application to chemical problems
used the semi-empirical π-electron Pariser-Parr-Pople Hamil-
tonian.16–18 White and Martin introduced the first efficient
formulation of the DMRG algorithm for ab-initio Hamilto-
nians (using some algorithmic contributions from Xiang19)
and the ab-initio density matrix renormalization group method
was born. Since then, many groups have independently im-
plemented and improved on the ab-initio DMRG algorithm.
Some of these improvements include parallelization,8,20 non-
Abelian symmetry and spin-adaptation,7,21–23 orbital order-
ing5,24–26 and optimization,9,27–29 more sophisticated initial
guesses,5,24,25,30,31 better noise algorithms,5,32 extrapolation
procedures,5,33,34 response theories,35,36 as well as the combi-
nation of the DMRG with various other quantum chemistry
methods such as perturbation theory,37 canonical transforma-
tions,38 configuration interaction,39 and relativistic Hamilto-
nians.40

In the ecosystem of quantum chemistry, the DMRG
occupies a unique spot. On one hand, because the accu-
racy depends on a single, essentially continuously, tunable
parameter—the number of renormalized states M—calcula-
tions can be converged and extrapolated in a simple way to the
exact full configuration interaction limit. As a result, its earliest
applications were as a proxy for full configuration interaction
(FCI) in modest sized molecules where FCI would be too
expensive. Examples include the early water34 and nitrogen41

calculations that used relatively small (but still inaccessible to
FCI) basis sets, as well as more recent benchmarks, such as
the exact treatment of the Be2 molecule42 at the complete basis
set limit. On the other hand, the matrix product state (MPS)
wavefunction43–46 underlying the DMRG is not based on an

a)R. Olivares-Amaya and W. Hu contributed equally to this work.

excitation expansion around a single-reference, and is thus well
suited to non-mean-field, or strongly correlated, electronic
structure, such as arising in transition-metal chemistry. Here,
the DMRG has so far been applied in a complete active
space setting,8,38,47–51 starting with the early work of Reiher
and coworkers,47 to the latest calculations on systems as
large as the bioinorganic Mn4Ca core of photosystem II by
Kurashige et al.,52 and the ubiquitous [4Fe-4S] biological
iron-sulfur complexes by Sharma et al.;53 these have active
spaces in excess of 50 orbitals. Finally, the internal structure
of the MPS means that it is uniquely suited to pseudo-one-
dimensional correlation, and in the ab-initio chemical context,
the DMRG has been used since its inception to study ground-
and excited-states of π-conjugated molecules,27,54,55 such as
the polyacenes55 and graphene nanoribbons,49 as well as other
one-dimensional systems, such as atomic chains and rings.54,56

The entanglement structure of the MPS has even generated a
niche in interpretative quantum chemistry.52,57–60

With the advent of publicly available quantum chemistry
DMRG codes,10,20–22 the DMRG is transitioning into a method
available not only to expert developers but also to the informed
user. As with all complex methods, there is some degree of
experience required to use it effectively. The purpose of this
article is therefore to answer the following questions:

• What sort of molecules can the DMRG be practically
applied to?

• What sort of accuracies can be obtained and at what
cost? What are the typical sizes of systems (e.g., number
of active orbitals) that can be treated with practical
computational resources?

• How do we reason about the accuracy of DMRG calcu-
lations for different molecules?

• How is a DMRG calculation best specified (e.g., in
terms of starting orbitals and their order)?

We answer these questions both from theoretical reasoning
and by applying the method to a “representative” set of
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molecules for DMRG applications: π-conjugated systems
(polyenes and arenes), benchmark dimers (C2 and Cr2) in
several basis sets (with more than 100 orbitals), and organo-
metallic complexes (Fe-porphine and a Mn-oxo-salen model of
Jacobsen’s catalyst) in large active spaces (with more than 40
active orbitals). Importantly, the calculations we describe are
all run in a completely black-box fashion using the default set-
tings of our B code, and thus should be easily replicated.
The B code is currently available in the M,61 O,62

and Q-C63 distributions, and can also be freely downloaded
from our weblink.64

In Secs. II A–II E, we give a self-contained overview of
the DMRG algorithm and MPS. We describe both the theory
and how to reason about it with respect to orbital choices,
ordering, accuracy, and cost, from the viewpoint of the user.
We further define some of the choices and settings used in our
particular implementation of the DMRG algorithm in B,
with respect to the sweep and noise schedule. The various
issues are then explored in the context of the set of “represen-
tative” molecules in Sec. III. The summary of our findings and
recommendations is given in Sec. IV.

II. THEORETICAL BACKGROUND

A. The DMRG wavefunction
and optimization algorithm

As with other wavefunction methods in chemistry, the
DMRG is based on an approximate wavefunction ansatz. This
ansatz is known as the MPS. A MPS is a non-linear wave-
function ansatz, built as a product of variational objects for
each orbital in the basis. Technically, the DMRG refers to the
combination of a specific, efficient, and self-consistent opti-
mization algorithm (the sweep algorithm) with the variational
MPS ansatz. In fact, historically, the DMRG is discussed pri-
marily in terms of the optimization algorithm,1,2 which derives
from the original numerical renormalization group,65 rather
than in terms of its wavefunction structure. However, the two
pictures are closely intertwined because in practice the exis-
tence of an efficient optimization scheme for the highly non-
linear ansatz is a key to the success of the DMRG in practice.
The close relationship between the wavefunction and optimi-
zation method in DMRG recalls the close relationship between
the Hartree-Fock Slater determinant approximation and the
self-consistent field algorithm used to optimize it. Indeed, in
quantum chemistry, we often interpret “SCF” to mean Slater
determinant in an eigenvalue (e.g., ground-state) context, and
similarly “DMRG” is often synonymous with MPS for eigen-
value problems. Note that the parallel terminology is not the
only similarity between DMRG and Hartree-Fock theory; the
product structure of the MPS is the source of further useful
analogies, discussed in detail in Refs. 66–69.

In practice, a DMRG calculation will often use two types
of matrix product states: a one-site and a two-site MPS. (Site
is here synonymous with orbital, in an occupation number
representation.) These refer to different but related ansatz. The
one-site MPS is easier to reason about and converge to high
precision, but optimization with this ansatz alone often ends
up trapped in local minima32 due to the inability to change

“quantum numbers” (a type of internal wavefunction symme-
try) during the DMRG sweep, as described in Sec. II C. A
standard strategy is therefore to start the DMRG calculation
using the more flexible two-site MPS and then to switch near
convergence to the one-site MPS.

To define a MPS, we are first required to order the orbitals
φ1. . .φk. Then, the one-site MPS is defined as

|Ψ⟩=

n

An1An2. . .Ank |n1. . .nk⟩. (1)

Here, ni denotes the occupancy of orbital φi. It takes four
values corresponding to the states |−⟩, | ↑⟩, | ↓⟩, and | ↑↓⟩. For
a given index ni, Ani is then an M ×M matrix, and each A
is correspondingly a 3-index tensor. Ani contains information
on the wavefunction coefficients for that particular choice of
occupancy of orbital φi. The first and last A’s are slightly
special, as the dimensions of An1 and Ank are 1 × M and
M × 1, respectively; this ensures that for a given occupancy
string n1. . .nk, performing the vector, matrix, matrix . . . vector
product defined by An1An2. . .Ank yields a scalar wavefunction
amplitude, corresponding to the coefficient of the determinant
|n1. . .nk⟩.

We see that the DMRG is a kind of product wavefunction,
but unlike a Slater determinant, there is a variational object
associated with each orbital in the basis, rather than with
each electron. The variational freedom and thus accuracy of
a DMRG wavefunction is controlled by the single dimen-
sional parameter M , referred to as the “number of renormalized
states,” or MPS bond dimension. In total, there are O(M2k)
variational parameters in the wavefunction. When M2 ∼ Nd

(where Nd is the total number of possible determinants), the
DMRG wavefunction becomes exact, but typically the conver-
gence with M is rapid and a much smaller M (in the range of
1000–100 00) is used for chemical accuracy in practice.

The two-site DMRG wavefunction is defined similarly,
but the A tensors of a special pair of adjacent (“two”) sites are
fused together to become a four-index tensor T

|Ψ⟩=

n

An1An2. . .Tnini+1. . .An
k |n1. . .nk⟩. (2)

For each pair of occupancies ni and ni+1, Tnini+1 is an
M × M matrix. The T tensor in the two-site MPS gives it
slightly more variational freedom than the one-site MPS.
This allows for an optimization of the quantum numbers as
described below, which helps to avoid local minima. During
the DMRG sweep the boundary for the special pair of sites is
iterated from the first (last) pair of orbitals to the last (first)
during the DMRG forwards (backwards) sweep optimization;
each boundary corresponds to a single step of the sweep. Thus
in the DMRG sweep there is not a unique two-site MPS, but
rather k−1 of them, depending on where we choose to place the
two sites i+1. When we refer to the DMRG energy from a two-
site wavefunction, we therefore mean the energies obtained at
the lowest point in the sweep. This is often near to when the
two sites are at the middle of the lattice.
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B. Sweeps and operators

In the DMRG sweep algorithm, the energy is variationally
optimized with respect to a single A (or T in the case of the
two-site MPS) tensor at a time. This is analogous to Hartree’s
original SCF procedure in Hartree-Fock theory where a single
orbital is updated at a time, and is also conceptually related
to “alternating” methods in multi-linear algebra. The sweep
traverses tensors from left to right (forwards) and from right
to left (backwards) and multiple sweeps are carried out to
converge the energy. To obtain the updated Ani matrices at
each site, we solve an effective Schrödinger equation with
an effective Hamiltonian (analogous to a Fock equation for
each site) for the O(M2) coefficients in Ani. Because M2 can
be quite large, and we only need the lowest eigenvalue and
eigenvector (if we are interested in a single state), we use
the Davidson algorithm.70 The wavefunction solution is the
dominant computational cost in a DMRG calculation. It has a
formal cost scaling of O(M3k3) per sweep, where M3 derives
from matrix multiplication, although in practiceO(M2) scaling
is often observed due to the block-sparse structure of the Ani

matrices deriving from quantum numbers, as is used in this
work.

The effective Hamiltonian at each site is defined by tracing
the Hamiltonian in the energy expectation value ⟨Ψ|H |Ψ⟩ with
tensors from all other sites in the bra and ket. The efficient
construction of the effective Hamiltonian requires decompos-
ing it into contributions from all orbitals to the left of the
current optimized tensor (the left block), and orbitals to the
right of the current optimized tensor (the right block). These
intermediates (renormalized operators) are stored in memory
and on disk, and form the dominant memory cost of the DMRG
calculation: O(M2k2) memory and O(M2k3) disk.

Because the sweeps are variational in nature, the DMRG
energy at each sweep decreases monotonically. (Strictly speak-
ing, monotonicity is guaranteed only with the one-site algo-
rithm but is usually observed with the two-site algorithm also
except when very close to final convergence.) It is more effi-
cient to carry out the initial DMRG sweeps with small values
of M to approximately converge the DMRG wavefunction,
and then to carry out later sweeps with larger M . The choice
of successive increasing M’s leads to a sweep schedule. The
default sweep schedule in B, as used in all our calculations
here, is listed in Table I. In the calculation, the desired final M
is input, and the sweep schedule is followed up to the desired
M . The first sweep (the warmup sweep) is a little bit special
as we need to provide an initial guess for the A tensors in the
MPS. In B, we build the A tensors for the warmup sweep
corresponding to a small number of low-energy determinants.5

C. Quantum numbers, symmetries, and noise

Global symmetries, including Abelian symmetries (such
as particle number, point-group symmetry, and Sz symmetry)
as well as non-Abelian symmetries (such as the SU(2) or
S2 symmetry, or non-Abelian point-group symmetry) can be
efficiently used with the DMRG algorithm and our B
implementation. We can ensure that the underlying MPS trans-
forms according to an irrep of a global symmetry, by assigning

TABLE I. Default schedule for a DMRG calculation.

M No. of iterations Noise

500 8 1 × 10−4

1000 8 5 × 10−5

2000 4 5 × 10−5

3000 4 5 × 10−5

. . . 4 5 × 10−5

Max. M 4 5 × 10−5

Max. M 2 0

irreducible representations to the left and right matrix indices
of Ani. In this context, the irreps associated with the left and
right matrix indices are referred to as “quantum numbers.” The
global irrep then implies a block-sparse structure in the Ani

matrices. The global molecular symmetry thus imply symme-
tries of local transformations of the matrices.

Note that symmetry does not itself dictate the sizes of
the non-zero blocks of Ani. In principle, these sizes should be
optimized during the optimization of the wavefunction, as an
additional discrete optimization problem. A poor distribution
of block sizes in the tensors is the main cause of the local
minimum problem in DMRG, where a calculation appears to
converge to a state of too high energy. This phenomenon is
sometimes also referred to as having incorrect, or “losing”
quantum numbers (i.e., not having the appropriate irrep labels
for the states).20 One way to detect an incorrect convergence
to a local minimum is to increase M . A calculation with incor-
rect quantum numbers at small M will exhibit a very sudden
lowering of the energy at larger M when the correct quantum
number sector is finally recovered.

So far in the literature, the discrete optimization of block
sizes has not been addressed in a very sophisticated way
in DMRG algorithms. Since the original formulation it was
recognized that the two-site MPS allowed for a limited local
variation of block sizes for the particular choice of the “two
sites.”2,5 When coupled with perturbative noise which intro-
duces random quantum numbers into the wavefunction, a
DMRG sweep with the two-site wavefunction provides some
ability to dynamically search different block distributions.32

Using the perturbative noise is particularly important in the
initial sweeps in the DMRG, as different block distributions
can be easily ignored due to the small total number of states M .
However, the noise should be gradually reduced in later sweeps
in the schedule to avoid affecting the final converged answer.
In conjunction with the default sweep schedule in B, we
use an accompanying noise schedule as shown in Table I. For
the final sweeps at the desired maximum M , the noise is set to
zero.

D. Truncation error and extrapolation

Because the two-site MPS has additional variational free-
dom over the one-site MPS, there is, in general, an error from
projecting from a two-site MPS to a one-site MPS, which only
vanishes in the limit of large M . This “truncation error” (equiv-
alent to the discarded weight in the density matrix in the tradi-
tional DMRG language) provides an estimate of the accuracy
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of the DMRG wavefunction. It was empirically observed5,33

that the truncation error is almost linearly proportional to the
error in the DMRG energy. In an exact (i.e., for sufficiently
large M) calculation, the truncation error becomes zero, and
thus extrapolating to zero error gives an estimate of the “exact”
energy for infinite M .

As a practical note, the “noise” in the initial sweeps intro-
duces random error into the DMRG wavefunction and can
cause problems with extrapolation when using the data at small
M . One can avoid this by carrying out a few sweeps at each M
without noise before proceeding to higher M .10 Alternatively,
after the calculation is converged, we can carry out a “reverse
schedule” where M starts at its maximum value and is then
lowered to its smallest value, to obtain good data at small M
(which is often biased by the warmup sweep). We call this
the reverse schedule. Using energies from the reverse schedule
can sometimes lead to more accurate linear extrapolations of
the DMRG energy. Comparison of the extrapolations using the
standard schedule and reverse schedule data is shown in Fig. 1.

E. Orbital choice and ordering in DMRG

Choosing an orbital space for a DMRG calculation, much
like the selection of an active space in other wavefunction
methods, requires some trial and error. However, unlike many
other common wavefunction methods, a MPS is not invariant
to orbital rotations within the active space, except at large
M .27,28 Orbital re-ordering can be viewed as a large rotation.
Although the DMRG calculation becomes less sensitive to
these choices as M increases, at fixed M , a good choice of or-
bitals and ordering greatly improves the accuracy of a DMRG
calculation in practice.

In principle, the best ordering and choice of orbitals mini-
mizes the maximum entanglement at any cut of the DMRG
orbital lattice (the lattice being the one-dimensional ordering
of orbitals). Indeed, for a MPS wavefunction with M renormal-
ized states, there is an upper bound of log2 M on the amount
of entanglement that can be captured by such a state. A related

FIG. 1. Extrapolation of Cr2 (24e, 30o) energy (basis and active space
described in Sec. III) using the default schedule and reverse schedule. Note
that there is more noise in the data in the default schedule, as shown by the
error of the fit.

criterion is to minimize entanglement (defined in some way)
between distant orbitals in the lattice.

Entanglement is distinct from quantum chemical correla-
tion. One way to reason about ground-state entanglement is to
view it as generated by the one- and two-electron parts of the
Hamiltonian, as we project from a simple product state of or-
bitals to the ground-state with the operator exp(−βH), β→ ∞.
If we start with very localized orbitals such as orthogonalized
atomic orbitals, the one-electron part of the Hamiltonian will
cause the orbitals to mix due to electron delocalization (to
reduce the “spread” in the energy domain) and this can generate
a large amount of entanglement. The “one-electron” entan-
glement effects can be removed by transforming to molec-
ular orbitals. On the other hand, the two-electron part of the
Hamiltonian generates entanglement also, which can typically
be minimized by working with a more local (in real-space)
representation, as familiar from local correlation methods. A
reasonable compromise is to use split-localized orbitals, which
correspond to orbitals where the occupied and virtual orbitals
are separately localized.

Once the orbitals have been determined, we still need to
choose an order. (One could, in principle, optimize both the
shapes and the order of the orbitals directly via energy mini-
mization: in complete active space terminology, this would
correspond to “active-active” rotations. We do not consider
these in this work.) The ordering should place orbitals which
are most entangled (such as orbitals which are close in space,
or pairs of bonding and anti-bonding orbitals) close together.
In quasi-one-dimensional molecules (such as chain, strip, or
ring-like molecules), there is an obvious ordering that follows
the connectivity of the molecule. However, finding the optimal
ordering in general is NP-hard.

Nonetheless, reasonable heuristic algorithms are avail-
able. These start with by defining a matrix, or entanglement
metric. A rigorous measure of entanglement between two or-
bitals is the mutual information (pair entanglement entropy)
first investigated by Rissler and White.26 However, this re-
quires knowledge of the final wavefunction. A much simpler
proxy, which has some of the correct properties, is the ex-
change integral between the two orbitals Ki j =

 
dr1dr2r−1

12
φ∗i(r1)φ j(r2)φ∗j(r1)φi(r2), which measures their proximity and
spatial overlap. (The one-electron Hamiltonian was initially
used in Ref. 5 and provides an alternative simple metric.) The
goal is then to optimize the ordering such that


i j |Ki j | (or some

related function) is minimized.
In our B code, we have two default orderings: a

Fiedler vector order and a genetic algorithm optimized or-
der. The Fiedler vector is a graph theoretic technique which
provides good approximations to the graph min-cut problem,
which is what we are interested in.71–73 Graph techniques had
earlier been examined in the DMRG ordering problem,5 but
a detailed study of the Fiedler vector was first presented by
Barcza et al. in Ref. 25. The derived ordering can be obtained as
follows. First, we assume that the positions of the k orbitals on
the DMRG orbital lattice are continuous 1D variables x1. . .xk.
Then, we measure the distance between orbitals on the lattice
by

F({x})=

i j

(xi− x j)2|Ki j |. (3)
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We now minimize F(x) with respect to the vector of
positions {x}. To prevent rigid translation of all “coordinates,”
we fix


i xi = 0, and to prevent a trivial solution where x

= 0, we impose normalization


i x2
i = 1. We therefore solve

min F({x}) subject to


i xi = 0;


i x2
i = 1, a simple linear

algebra problem, equivalent to finding the second lowest eigen-
vector of the graph Laplacian L =D−K where D is a diag-
onal matrix with entries Dii =


j |Ki j | (the first eigenvector is

simply the constraint condition).74,75 Sorting the values of the
vector coordinates {x} then gives the Fiedler ordering. The
advantage of this method is that it is trivial to obtain from
a small matrix diagonalization, and since our optimization
metric |Ki j | is in any case approximate, it is not necessary to
obtain the true global optimum. For this reason, the Fiedler
ordering is the default ordering in the B code.

We can look for additional improvement in the metric by
using a genetic algorithm (GA). Genetic algorithms are global
optimization algorithms based on an analogy to natural selec-
tion76 and were first employed in the DMRG orbital ordering
problem by Moritz et al.77 In our work, we use as our cost
function

F(x)=


i j |Ki j |D2
i j(x)

i j |Ki j | , (4)

where Di j(x) is the distance matrix that depends on the order-
ing x. To implement the GA, we need crossover and/or muta-
tion operators upon selection. The crossover operator gener-
ates a new ordering from two different input ordering strings.
The implementation in B uses a partially matched cross-
over (PMX), which works well for permutation strings.78,79

The mutation operator modifies a string randomly, and in our
case, we pick two parts of string randomly and swap them to
create a new string. We have further chosen the probabilities
of selection (by trial and error) to avoid local minima for the
orbital ordering problem. We start the GA using the Fiedler
vector as an initial guess, which greatly reduces the optimiza-
tion time in the GA. For all cases we tested, the solution with
and without the Fiedler vector guess results in the same GA
minimum.

F. Accuracy and computational cost

As discussed above, once the orbitals and ordering are
defined, the accuracy of the DMRG calculation is controlled
by a single parameter M , the number of renormalized states.
The memory and CPU costs are summarized as follows:

• Memory: The scaling with the number of states M
and orbitals k is roughly O(M2k2), while disk usage is
O(M2k3). DMRG calculations are very memory inten-
sive. The largest calculation in this work is the butadiene
calculation (22e, 82 orbs, C1 symmetry), which used
850 Gb of memory and 17 Tb of disk. However, note
that the parallel DMRG algorithm used in the B
code20 distributes both memory and disk storage across
different nodes, and thus even modest sized computa-
tional clusters provide quite substantial resources.

• CPU: DMRG CPU times scale as O(M3k3) per sweep.
For small M (say, less than 1000), and for the initial

DMRG warmup sweep, our implementation has a large
M2 overhead associated with large sets of quantum
numbers which can dominate the computational cost.
Using the parallelization strategy in Ref. 20, we observe
reasonable parallelization up to a number of cores equal
to the number of orbitals. For the largest calculation
in this work (butadiene, 22e, 82 orbs, C1 symmetry), a
single sweep at M = 3000 (which gave an energy below
CCSDT) took 25 h on 42 cores.

In almost all cases in chemistry, the DMRG energy con-
verges almost exponentially with M (empirically, a conver-
gence of exp(κ(lnM)α), where α ≈ 2 is observed5,80); however,
the exponent κ of the exponential is molecule dependent. To
understand κ and the rate of convergence in different mole-
cules, we can make a few general statements. As discussed
above, M determines the maximum amount of entanglement
by the MPS wavefunction. In the simple case of (non-critical)
1D system where every orbital is equivalent (e.g., a chain of
hydrogen atoms in a minimal orthogonalized atomic basis)
the ground-state entanglement is controlled only by the gap
of the system and is otherwise independent of length. In this
case, M can be held fixed and will give a fixed accuracy per
electron regardless of system size, and the only scaling of
the method derives from the significant Hamiltonian matrix
elements. This is why the DMRG and MPS are informally said
to give a polynomial complexity solution for correlation in one-
dimensional systems. Moving to two-dimensional systems in
a similar atomic basis (i.e., where every orbital is equivalent),
the amount of entanglement grows linearly with the width of
the system (for systems that satisfy the area law). This requires
M to depend exponentially on width, which is why the DMRG
is said to have an exponential scaling with the width of a 2D
system.

However, in many molecular calculations, we may be
more interested in the computational scaling with respect to
increasing the basis size (for fixed energy accuracy and molec-
ular size). In this case, as one is increasing the basis, the orbitals
entering are not all equivalent; for example, one might have in
the basis valence orbitals and correlating Rydberg like orbitals.
These typically have very different occupancies and contri-
butions to the wavefunction and energy. In a large basis, the
molecular wavefunction, even in strongly correlated systems,
tends to be somewhat “concentrated” around the occupied and
valence orbitals. Linear combinations of a few (say Nlarge) large
weighted determinants, as is the case for many multireference
problems in molecules, can only generate logNlarge entangle-
ment and are thus easy to capture with a MPS. It can be more
effort to capture the manifold of double excitations that, in
small molecules, provide the bulk of the dynamical correla-
tion contributions. Assuming that the reordering of orbitals
results in the occupied and virtual orbitals being distributed
randomly in the DMRG lattice, this generates O(lognoccnvirt)
entanglement, and thus M ∝ noccnvirt. Thus, we expect a worst
case scaling of O(n6

virt), for fixed accuracy in the dynamical
correlation as the basis size increases, for a fixed molecular
size. (As the molecular size increases, the locality results in a
lower scaling, as reasoned about in the paragraphs above.)
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FIG. 2. Arenes studied here. We label
them from left to right by their “width”
(1-5).

III. RESULTS

A. Arenes

We begin with the arenes, shown in Fig. 2. These conju-
gated molecules can be viewed as finite strips of graphene
of various “widths.” We used octatetraene (8 carbon atoms),
tetracene (18 carbon atoms), and three larger analogous poly-
aromatic hydrocarbons with 28, 38, and 48 carbon atoms,
respectively, corresponding to widths 1–5. The range of widths
allows us to study the dependence of the DMRG energy
convergence on molecular dimensionality. To provide an ideal-
ized test system for orbital shapes and orbital ordering, we
limit this particular study to the π-electron system in a minimal
(STO-3G) basis.81 We used optimized restricted Hartree-Fock
(RHF/STO-3G) geometries. Within the π-active spaces, cor-
responding to (8e, 8o), (18e, 18o), (28e, 28o), (38e, 38o), and
(48e, 48o) for 1–5, respectively, we considered several orbital
choices: canonical Hartree-Fock orbitals, split-localized or-
bitals (that resemble two-centre π-bonding and anti-bonding
orbitals), and fully-localized orbitals (orthogonalized p
atomic orbitals). We localized orbitals using the Pipek-Mezey
method.82

For each orbital choice, the subsequent ordering was
determined using both the Fiedler vector and GA optimization
schemes described in Sec. II E. These orderings are shown for
localized orbitals in Fig. 3. It is known that a good DMRG
ordering in 2D sheets is a simple “snake-like” pseudo-1D
ordering traversing each row.83 This is reproduced in the
smaller arenes both by the Fiedler and GA orderings. For arene
5, which has more of a square aspect ratio, the Fiedler and GA

orderings produce orderings that roughly go diagonally across
the arene, and the resulting orderings are slightly different.

Fig. 4 shows the energy convergence for arene 3 for
different orbital choices and orderings. This convergence is
representative of the other arenes. The differences between the
Fiedler and GA ordering results are very small; the effect of
orbital choice is far more significant. Due to the valence only
nature of the active space, we observe fastest convergence with
fully-localized orbitals (atomic-like p orbitals), even though
the energy at small M is relatively poor. In contrast, the canon-
ical Hartree-Fock orbitals give good energies at very small M
(since the Hartree-Fock limit is captured by M = 1) but only
slowly converge the energy as M is increased. Split-localized
orbitals are a good compromise, capturing the Hartree-Fock
limit at M = 1 and giving better energies than the localized
orbitals at very small M , while giving rapid convergence to the
exact result that is only slightly slower than the fully localized
basis.

Note in Fig. 4 the near-exponential convergence of the
energy error with M , typical of the DMRG. As discussed in
Sec. II F, a more careful analysis predicts that the energy error
follows ln |δE | ∼ κ(lnM)2.5 This behaviour is seen from the plot
in Fig. 5. Finally, the linear relationship between the discarded
weight and the energy is shown in Fig. 6. This demonstrates the
simple extrapolation of the energy to zero discarded weight.

In Fig. 7, we study the DMRG energy convergence as a
function of the arene “width.” As expected, the M required for
a given accuracy grows roughly exponentially with width, re-
flecting the exponentially increasing set of fluctuations across
any “boundary” that cuts across the system. However even for

Fiedler

Genetic algorithm

FIG. 3. Fiedler and GA orderings for
the arenes 1–5 using localized orbitals.
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FIG. 4. Error in the energy per C atom for arene 3 (π active space, 28
electrons in 28 orbitals, STO-3G basis) for different orbital choices and
orderings.

the largest arene, we see that it is possible to converge the active
space energy per carbon atom in 48 orbitals nearly exactly (to
0.01 mEh) with an accessible M < 100 00. (As a technical note,
it should be noted here that because we use S2 symmetry in our
DMRG code, our M values refer to the number of multiplets
retained. The above would thus correspond to M = 200 00
−300 00 states in a code with only Sz symmetry.)

B. Dimers

In our next test case, we consider two diatomics, C2 and
Cr2. Diatomics provide a contrast to the π-electron system of
the arenes as there is little meaningful spatial locality in such a
small molecule. Further here, we carry out calculations with all
electrons and larger basis sets. This provides a wide range of
energies and weights in the wavefunction, unlike in the arenes,
and allow us to explore the use of the DMRG for dynamical
correlation.

FIG. 5. Energy error per C atom for arene 3 (π active space, 28 electrons in
28 orbitals, STO-3G basis) as a function of (log10M )2.

FIG. 6. Linear relationship between the DMRG energy and discarded weight
in calculation of arene 3, using localized orbitals and Fiedler ordering.

We start with C2. We use the equilibrium bond distance
of 1.24253 Å (the same as in the initiator full configuration
interaction quantum Monte Carlo (i-FCIQMC) calculations
in Ref. 84) and perform calculations in Dunning’s cc-pVDZ,
cc-pVTZ basis, and cc-pVQZ basis sets. We carry out both
all electron (AE) calculations (corresponding to (12e, 28o),
(12e, 60o), and (12e, 110o) spaces for cc-pVDZ, cc-pVTZ,
and cc-pVQZ, respectively). We first examine the effect of
different orderings. There is no natural ordering in a diatomic
molecule, unlike for localized orbitals in the arenes. However,
we can still reorder the orbitals using the Fiedler and genetic
algorithms as for the arenes. The corresponding energies are
shown in Table II. Also shown in Table II are energies obtained
using the reverse sweep schedule where M is decreased from
its maximum value of 5000 to 500. These are much better at
smaller M than the energies obtained in the standard sweep, ev-
idence that the warmup sweep is relatively poor in the standard
schedule and also that additional important quantum numbers
are detected during the sweeps at larger M that were not picked
at smaller M .

FIG. 7. M to obtain a set accuracy of 0.01 mEh in the energy per carbon
atom, as a function of arene width. Calculations use Fiedler ordering and
localized orbitals.
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TABLE II. DMRG energies (E + 75 in Eh) using Energy Fiedler and GA orderings for the ground-state of C2
(all-electron, cc-pVQZ). Reverse indicates energies from a reverse schedule. Note that the reverse schedule GA
energy at M = 5000 is below the default schedule GA energy at M = 5000. This is due to the noise setting in the
default schedule, which is slightly too large for this molecule at large M .

Energy Genetic Fiedler Reverse genetic
M E (Eh) E (Eh) E (Eh) E (Eh)

500 −0.846 422 −0.839 705 −0.838 761 −0.853 141
1000 −0.851 769 −0.847 877 −0.849 565 −0.855 803
2000 −0.854 534 −0.853 348 −0.853 724 −0.856 866
3000 −0.855 732 −0.855 104 −0.855 446 −8.857 135
4000 −0.856 425 −0.855 890 −0.856 238 −0.857 231
5000 −0.856 762 −0.856 386 −0.856 645 −0.857 256

Extrapolated −0.857 28

Note also that the energy at M = 5000 for the reverse
schedule (GA ordering) is about 0.9 mEh lower than the M
= 5000 energy (GA ordering) in the default schedule. This
difference is entirely due to the noise in the default sweeps,
which is turned off for the reverse schedule. (Recall that noise
is used to ensure more robust convergence in the early sweeps.)
We see that in this molecule, the default setting for the noise
in Table I should be decreased at larger M to achieve faster
convergence. This is unsurprising as the sweep parameters
have been chosen for general utility rather than for specific
molecules and illustrates the gains in convergence that could
in principle be made by optimizing the sweep settings on a per
molecule basis. However, the detrimental effect of the non-
optimal noise remains quite small and is unimportant on the
chemical scale of 1 mEh.

For the GA ordering, we further give converged energies
(accurate to better than 0.05 mEh) for the 1s frozen core (FC)
calculations in the same bases. This allows direct comparison
(shown in Table III) to i-FCIQMC calculations in the litera-
ture.84 The i-FCIQMC energies reported in Ref. 84 for the TZ
and QZ bases are in rough agreement with the DMRG energies.
However, the variational DMRG energies are clearly lower
and have significantly smaller error bounds. The difference
between the DMRG and i-FCIQMC energy corresponds to
the remaining initiator error in the i-FCIQMC calculation, as
we have also found in other comparisons between the two
techniques.42

In C2, we are using basis sets with many virtual orbitals,
thus much of the correlation we describe is dynamic. This,

TABLE III. DMRG energies of C2 (all-electron and frozen core, in cc-pVDZ
(DZ), cc-pVTZ (TZ), and cc-pVQZ (QZ) bases). Energy (E + 75) in Eh.
i-FCIQMC energies TZ, QZ, from Ref. 84 shown for comparison, estimated
statistical error in brackets.

M DZ TZ QZ

500 −0.731 449 −0.807 296 −0.853 141
1000 −0.731 856 −0.808 662 −0.855 803
2000 −0.731 945 −0.809 123 −0.856 866
4000 −0.731 958 −0.809 260 −0.857 231
6000 . . . −0.809 285 . . .

(FC) DMRG −0.728 556 −0.785 054 −0.802 671
(FC) i-FCIQMC −0.7287(8) −0.7849(3) −0.8025(1)

together with the lack of spatial locality in the system, means
(as described in Sec. II F) that the M required for a given
accuracy in a molecule should scale roughly as noccnvirt to
capture the dominant doubles excitations, i.e., the required M
should scale linearly with the number of electrons and basis
size. The M required to achieve an accuracy of 0.01 mEh is
plotted against noccnvirt in Fig. 8. We observe a good linear-fit
to noccnvirt, confirming that the entanglement is dominated by
the double excitations, and that correlation in this molecule is
mainly dynamic in character.

We next consider the Cr2 dimer. Cr2, with its formal hex-
tuple bond, is a long-standing favourite of quantum chemistry,
due to the difficulty in adequately describing the shelf-like
nature of its potential energy curve.85 This unusual curve arises
from a combination of non-dynamic (strong) correlation and
dynamic correlation in large basis sets. Cr2 has been studied
previously with DMRG methods, which (in combination with
perturbation theory) give a very accurate description of the Cr2
potential energy curve.37

Here, for benchmark purposes, we use smaller basis sets
where it is possible to converge the DMRG energy “exactly,”
i.e., to beyond chemical accuracy. We consider Cr2 at the Cr-
Cr distance of 1.5 Å with the Ahlrichs’ SV basis,86 both

FIG. 8. M required to obtain 0.01 mEh accuracy. This shows a linear
dependence on noccnvirt as is expected for a system dominated by dynamic
correlation.
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TABLE IV. DMRG energies (E + 2086 in Eh) of Cr2 in a SV basis. All electron (48e, 42o) and active space (24e, 30o) results are shown, as obtained from
the default and reverse schedule. Extrapolated DMRG energies from Fig. 9 and CCSD(T), CCSDTQ energies shown for comparison.

(24e, 30o) (48e, 42o)

Default Reverse Default Reverse

M DW E (Eh) DW E (Eh) DW E (Eh) DW E (Eh)

500 1.02 × 10−4 −0.414 935 9.47 × 10−5 −0.416 106 2.73 × 10−4 −0.177 377 4.78 × 10−4 −0.421 928
1000 4.59 × 10−5 −0.418 219 4.36 × 10−5 −0.418 693 2.18 × 10−4 −0.426 115 2.89 × 10−4 −0.432 057
2000 2.34 × 10−5 −0.419 707 1.87 × 10−5 −0.419 986 1.34 × 10−4 −0.436 820 1.51 × 10−4 −0.438 127
3000 1.38 × 10−5 −0.420 246 1.10 × 10−5 −0.420 386 9.24 × 10−5 −0.439 855 9.59 × 10−5 −0.440 324
4000 1.10 × 10−5 −0.420 480 7.78 × 10−6 −0.420 570 7.14 × 10−5 −0.441 211 6.92 × 10−5 −0.441 458
5000 9.26 × 10−6 −0.420 609 5.65 × 10−6 −0.420 672 5.55 × 10−5 −0.441 927 5.41 × 10−5 −0.442 146
6000 6.69 × 10−6 −0.420 686 4.44 × 10−6 −0.420 735 4.50 × 10−5 −0.442 439 4.37 × 10−5 −0.442 607
7000 5.58 × 10−6 −0.420 745 3.44 × 10−6 −0.420 776 3.61 × 10−5 −0.442 792 3.66 × 10−5 −0.442 933
8000 4.55 × 10−6 −0.420 774 2.69 × 10−6 −0.420 780 3.15 × 10−5 −0.443 334 3.08 × 10−5 −0.443 173

Extrapolated 0.0 −0.420 948 0.0 −0.444 784

CCSD(T) −0.398 638 −0.422 229
CCSDTQ −0.406 696 −0.430 244

correlating all electrons (a (48e, 42o) space) as well as a
(24e, 30o) active space subset, used in previous DMRG bench-
marks.21,37 We used GA ordering for all calculations.

The DMRG energies and weights are shown in Table IV
with CCSD(T) and CCSDTQ calculations for comparison.
We see a large difference between the CCSDTQ and DMRG
energy indicating the importance of high-order correlations in
this complex system. The linear extrapolation of the energies
in Table IV is plotted in Figure 9 from which obtain the
estimated exact energies. The error bars from the fitting are
±0.007 and±0.19 mEh for the (24e, 30o) and (48e, 42o) active
spaces, respectively, probably an underestimate. Alternatively,
a conservative rule of thumb used in some DMRG extrapola-
tions87 is to assign the error bar as 1/5 the extrapolation energy,
which comes to ±0.034 and ±0.32 mEh for the two active
spaces, respectively, probably overestimates. Either way, the
energies are very accurate. Further, with the maximum M
= 8000, even the unextrapolated energies are within 0.2 mEh

of the estimated exact result in the (24e, 30o) active space, and
within 1.6 mEh of the estimated exact result in the (48e, 42o)
active space.

C. Butadiene

We next consider a larger polyatomic molecule, butadiene.
Butadiene has been of continuing interest to quantum chemists,
due to the correlation effects in the π-conjugated system, and
has recently been the target of “exact” methods including
i-FCIQMC88 and composite high-order coupled cluster ap-
proaches.89

Unlike in our earlier model arene calculations, here we
correlate all electrons except for a frozen 1s core. We carry
out calculations in the same ANO-L-pVDZ basis106 as used in
Ref. 88. This generates a space of (22e, 82o). This is repre-
sentative of a large “all-electron” exact calculation with the
DMRG. We considered both restricted HF canonical orbital as

FIG. 9. Extrapolations of (24e, 32o) (a) and (48e, 42o) (b) Cr2 DMRG
energies using the reverse schedule and GA ordering, and comparisons to
CCSD(T) and CCSDTQ energies.
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TABLE V. Comparison of the DMRG sweep energies (E + 155 in Eh) from
the reverse schedule for butadiene (22 electrons in 82 orbitals, ANO-L-pVDZ
basis) using canonical, MP2 natural orbitals, and split-localized MP2 natural
orbitals.

Type of orbital

Canonical MP2 nature
M Canonical Split-localized MP2 natural Split-localized

500 −0.500 593 −0.550 526 −0.505 492 −0.552 366
1000 −0.516 424 −0.554 396 −0.523 147 −0.555 348
2000 −0.531 067 −0.556 172 −0.537 489 −0.556 669

well as MP2 natural orbitals, at the geometry given in Ref. 88.
Orbitals were ordered by the GA.

Energies using the different orbital choices up to a modest
M = 2000 are given in Table V. We observe that the natural
orbitals perform better than the Hartree-Fock orbitals, and
the split-localized orbitals perform better than the canonical
orbitals. Clearly for a molecule of this size locality is already
very important. We thus use only the split-localized natural
orbitals for the larger M calculations on this molecule.

The DMRG energies using the split-localized natural or-
bitals are given in Table VI together with comparison coupled
cluster and i-FCIQMC energies. We find that we already
begin to surpass CCSDT accuracy by about M = 2000. By M
= 6000, we are more than 1 mEh below the CCSDT energy,
giving an estimate of quadruple and higher order effects.
These calculations, however, required considerable resources,
especially because there was no point-group symmetry in the
split-localized basis: a single M = 3000 sweep in C1 symmetry
required 25 h on 42 cores.

The total energy of butadiene in the ANO-L-pVDZ basis
was very recently the subject of a large scale i-FCIQMC study.
We note that our final DMRG energy is more than 8 mEh below
the i-FCIQMC energy. Since the DMRG energy is variational,
this means that the i-FCIQMC energy is too high, due to
initiator bias. The results reported by Daday et al. in Ref. 88
used 1×109 walkers and were limited by the available memory.
Clearly, larger numbers of walkers are necessary to remove the
initiator bias.

TABLE VI. DMRG sweep energies (E + 155 in Eh) of butadiene (default
schedule) in an ANO-L-pVDZ basis compared to various other methods
(i-FCIQMC results are from Ref. 88). Energy in Eh.

M Energy

500 −0.550 134
1000 −0.554 182
2000 −0.555 899
3000 −0.556 543
4000 −0.556 874
5000 −0.557 050
6000 −0.557 178

CCSD(T) −0.555 002
CCSDT −0.555 959
i-FCIQMC −0.5491(4)

(a) (b)

FIG. 10. oxo-Mn()salen and Fe()-porphine.

D. Organometallics

We now turn to some more chemically complex systems,
as exemplified by organometallic complexes. As a represen-
tative example, we have chosen the oxo-Mn(salen) system
(Fig. 10), an analogue of Jacobsen’s catalyst, considered by
Ivanic et al. using complete active space self-consistent field
(CASSCF)90,91 and a number of subsequent studies including
a recent DMRG-CASSCF study.51 We also consider Fe()-
porphine, the prototype for biological metalloporphyrins
(Fig. 10). Both these molecules are too large to compute
all-electron, full basis, DMRG calculations converged to the
FCI limit. We thus restrict ourselves here to active-space
DMRG calculations. In more realistic studies, such active-
space calculations would be augmented by a further more
approximate dynamical correlation treatment using perturba-
tion theory,8,92,93 configuration interaction,55,94 or canonical
transformation theory.38

We first consider oxo-Mn(salen). This molecule is used as
a simple model for Jacobsen’s epoxidation catalyst.95,96 The
ordering of the lowest spin states is considered important as
different reaction paths have been posited depending on the
spin state.97 In our DMRG calculations, we used the 6-31G(d)
basis set81,98,99 and computed the restricted open-shell Hartree-
Fock (ROHF) orbitals for the triplet state in the C1 point group
symmetry. Further, the active space was defined by ROHF
molecular orbitals with the following dominant atomic orbital
characters: (1) five Mn 3d orbitals, (2) 2pz of the equatorial
C, N and O atoms, giving 10 π orbitals, (3) 2px and 2py of the
equatorial O and N atoms for the Mn-N and Mn-Oσ bonds, (4)
2px, 2py and 2pz of the axial Cl atoms, (5) an axial O 2pz, and
combination of the axial O 2px, 2py orbitals, responsible for
the Mn-O σ and π bonds. The doubly, singly, and unoccupied
orbitals were then separately split-localized, and we carried
out DMRG(-CI) calculations in this active-space using up to
M = 2000 and GA ordered orbitals. (To keep the benchmarks
simple and reproducible we do not consider DMRG-CASSCF
calculations here.) The results are shown in Table VII. We
find that with only 24 orbitals, the active space energy can be
converged to tens of microHartrees with a modest M = 2000,
a rather modest calculation with this number of orbitals. In
this active space, we find that the singlet is lowest in energy,
with a very small singlet-triplet energy gap of 0.6 mEh. This
is reminiscent of the nearly degenerate ground state picture
found in previous theoretical works,51,97 although a quantita-
tive ordering requires augmentation by dynamic correlation.

We next discuss the Fe()-porphine system. This is another
complex where the correct spin-ordering of the states remains
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TABLE VII. DMRG energies (E + 2251 in Eh) and gaps for oxo-Mn(salen)
using a (32e, 24o) active space and 6-31g(d) basis.

Singlet Triplet

M DW Energy DW Energy

500 1.33 × 10−5 −0.304 421 1.46 × 10−5 −0.303 777
1000 4.51 × 10−6 −0.304 648 5.20 × 10−6 −0.304 045
2000 1.19 × 10−6 −0.304 712 1.40 × 10−6 −0.304 128

somewhat uncertain.92,100,101 Here, we have considered a large
active space, consisting of all Fe 3d and 4d orbitals (the
additional 4d shell gives the important double-shell corre-
lations) and the full set of ligand σ and π orbitals. In the
D2h symmetry, we started from the quintet ROHF orbitals
at the triplet geometry described by Groenhof et al.102 with
the cc-pVDZ basis set.103–105 We classified orbitals by their
dominant atomic or bond character and defined an active space
of (44e, 44o), containing molecular orbitals with the following
character: (1) Fe 3d and 4d orbitals (10 orbitals), (2) 2pz

orbitals of C and N atoms giving 24 π orbitals, (3) σ bonds
between Fe 4px, 4py, and N 2px and 2py orbitals (10 orbitals).
Finally, all orbitals were split-localized and reordered using
the genetic algorithm.

Table VIII presents the energies obtained using the reverse
schedule. The corresponding extrapolations are shown in
Fig. 11. We see that although convergence is not rapid in this
very large active space, it is still possible to compute all the
electronic states to within about 1.5 mEh of the estimated exact
result at M = 4000. The difficulty of the calculation is similar
to that of the all-electron Cr2 calculation, which correlated
48 electrons in 40 orbitals. Within this active space, we find
that the energy order is triplet < quintet < singlet. The largest
calculations (in C1 symmetry due to split localization) with
M = 4000, e.g., for the singlet state, took 15 h per sweep
with 40 cores, and are representative of expensive active space
DMRG calculations.

Many interesting organometallic complexes involve mul-
tiple open shell transition metal species. What are the prospects
of extending DMRG calculations to such systems? The largest
DMRG calculations to date involve 4 open shell transition
metal centers with bridging ligands (such as in the Mn4Ca
cluster of the oxygen evolving complex in Ref. 52, or the
[4Fe-4S] biological redox cofactor in Ref. 53). While such
systems are at the frontier of DMRG calculations today, as
Ref. 53 shows, calculations with M up to 7500, together with

FIG. 11. Extrapolation of the triplet and quintet ground-states of Fe()-
porphine in an (44e, 44o) active space.

extrapolation, yield energies accurate to about 1 mEh, within
chemical accuracy.

IV. CONCLUSIONS

In this work, we presented an overview of the theory and
practice of the ab-initio density matrix renormalization group.
In modern implementations, such as in the B code, the ab-
initio DMRG is implemented in a black-box manner so that it
can be used in a fashion similar to other quantum chemistry
methods. The user needs only to specify the desired target
number of renormalized states, and the choice of active space
and orbitals. With these specifications, all other aspects of
the DMRG calculation, such as orbital ordering, perturbative
noise, sweep schedule, convergence thresholds, and extrapola-
tions, can be handled automatically by the program.

We have examined the behaviour of the DMRG from
the user perspective in a variety of different molecular set-
tings: arenes, diatomics, polyatomics, and organometallics. We
summarize our recommendations thus, which are as follows:

• For most systems, it is important to balance spatial and
energy locality in the orbitals by using split-localized
orbitals.

TABLE VIII. DMRG energies (E + 2244 in Eh) for Fe()-porphine, (44e, 44o) active space, quintet and triplet,
using GA ordering and cc-pVDZ basis.

Singlet Triplet Quintet

M DW E (Eh) DW E (Eh) DW E (Eh)

1000 1.18 × 10−4 −0.833 592 1.11 × 10−4 −0.891 395 1.05 × 10−4 −0.871 543
2000 6.42 × 10−5 −0.836 259 5.62 × 10−5 −0.893 772 4.90 × 10−5 −0.873 551
3000 4.18 × 10−5 −0.837 218 3.61 × 10−5 −0.894 605 3.17 × 10−5 −0.874 250
4000 2.60 × 10−5 −0.837 683 2.42 × 10−5 −0.895 003 1.95 × 10−5 −0.874 581
Extrapolated −0.839 108 −0.896 092 −0.875 330
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• Fiedler vector orbital orderings (default in the B
code) perform well.

• For large molecules, we can reason about the number
of renormalized states M required to achieve a given
accuracy in terms of the effective “width” of the system.

• For dynamic correlation, M scales roughly linearly with
the number of virtuals (basis size) for fixed accuracy.

• All-electron basis calculations with nelecnorb of around
2000 (e.g., 20 electrons in 100 orbitals, or 40 electrons
in 50 orbitals), converged to chemical accuracy or bet-
ter and without symmetry, can be considered acces-
sible with cluster computational resources with 50 or so
computational cores, with sufficient memory and disk.
(Of course, larger calculations are possible with more
resources!)

We have focused here on relatively simple benchmarks,
but of course, many more applications of the DMRG to
different systems can be envisaged. We have not explicitly
discussed here, for example, excited states, or large polymetal-
lic bioinorganic clusters, although these have been significant
targets of study with the DMRG in the literature.42,50,52,53 With
the simple recommendations above, we believe such systems
can now be studied not only by the specialist, but by the general
user.
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