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Opening Remarks

This document was written for the benefits of Engineering students, Elec-
trical Engineering students in particular, who are curious about physics and
would like to know more about it, whether from sheer intellectual desire
or because one’s awareness that physics is the key to our understanding of
the world around us. Of course, anybody who is interested and has some
college background may find this material useful. In the future, I hope to
write more documents of the same kind. I chose tensors as a first topic for
two reasons. First, tensors appear everywhere in physics, including classi-
cal mechanics, relativistic mechanics, electrodynamics, particle physics, and
more. Second, tensor theory, at the most elementary level, requires only
linear algebra and some calculus as prerequisites. Proceeding a small step
further, tensor theory requires background in multivariate calculus. For a
deeper understanding, knowledge of manifolds and some point-set topology
is required. Accordingly, we divide the material into three chapters. The
first chapter discusses constant tensors and constant linear transformations.
Tensors and transformations are inseparable. To put it succinctly, tensors are
geometrical objects over vector spaces, whose coordinates obey certain laws
of transformation under change of basis. Vectors are simple and well-known
examples of tensors, but there is much more to tensor theory than vectors.
The second chapter discusses tensor fields and curvilinear coordinates. It is
this chapter that provides the foundations for tensor applications in physics.
The third chapter extends tensor theory to spaces other than vector spaces,
namely manifolds. This chapter is more advanced than the first two, but all
necessary mathematics is included and no additional formal mathematical
background is required beyond what is required for the second chapter.

I have used the coordinate approach to tensors, as opposed to the formal
geometrical approach. Although this approach is a bit old fashioned, I still
find it the easier to comprehend on first learning, especially if the learner is
not a student of mathematics or physics.

All vector spaces discussed in this document are over the field R of real
numbers. We will not mention this every time but assume it implicitly.

I would appreciate feedback, comments, corrections, and criticisms. Please
e-mail to boaz@ee.technion.ac.il.
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Chapter 1

Constant Tensors and Constant
Linear Transformations

1.1 Plane Vectors

Let us begin with the simplest possible setup: that of plane vectors. We
think of a plane vector as an arrow having direction and length, as shown in
Figure 1.1.

The length of a physical vector must have physical units; for example: dis-
tance is measured in meter, velocity in meter/second, force in Newton, elec-
tric field in Volt/meter, and so on. The length of a ”mathematical vector” is
a pure number. Length is absolute, but direction must be measured relative
to some (possibly arbitrarily chosen) reference direction, and has units of ra-
dians (or, less conveniently, degrees). Direction is usually assumed positive
in counterclockwise rotation from the reference direction.

Vectors, by definition, are free to move parallel to themselves anywhere in
the plane and they remain invariant under such moves (such a move is called
translation).

Vectors are abstract objects, but they may be manipulated numerically and
algebraically by expressing them in bases. Recall that a basis in a plane is
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Figure 1.1: A plane vector having length and direction

a pair of non-zero and non-collinear vectors (e1, e2). When drawing a basis,
it is customary to translate e1 and e2 until their tails touch, as is shown in
Figure 1.2.

Figure 1.2: A basis in the plane

The basis depicted in Figure 1.2 happens to be orthonormal ; that is, the two
vectors are perpendicular and both have unity length. However, a basis need
not be orthonormal. Figure 1.3 shows another basis (ẽ1, ẽ2), whose vectors
are neither perpendicular nor having equal length.

Let x be an arbitrary plane vector and let (e1, e2) be some basis in the plane.
Then x can be expressed in a unique manner as a linear combination of the
basis vectors; that is,

x = e1x
1 + e2x

2 (1.1)

The two real numbers (x1, x2) are called the coordinates of x in the basis

3



Figure 1.3: Another basis in the plane

(e1, e2). The following are worth noting:

1. Vectors are set in bold font whereas coordinates are set in italic font.

2. The basis vectors are numbered by subscripts whereas the coordinates
are numbered by superscripts. This distinction will be important later.

3. In products such as e1x1 we place the vector on the left and the scalar
on the right. In most linear algebra books the two are reversed — the
scalar is on the left of the vector. The reason for our convention will
become clear later, but for now it should be kept in mind.

Recalling notations from vector-matrix algebra, we may express (1.1) as

x =
�
e1 e2

� � x1

x2

�
(1.2)

For now we will use row vectors to store basis vectors and column vectors to
store coordinates. Later we will abandon expressions such as (1.2) in favor
of more compact and more general notations.

1.2 Transformation of Bases

Consider two bases (e1, e2), which we will henceforth call the old basis, and
(ẽ1, ẽ2), which we will call the new basis. See, for example, Figure 1.4, in
which we have brought the two bases to a common origin.

Since (e1, e2) is a basis, each of the vectors (ẽ1, ẽ2) can be uniquely expressed
as a linear combination of (e1, e2), similarly to (1.1):

ẽ1 = e1S
1
1 + e2S

2
1

ẽ2 = e1S
1
2 + e2S

2
2

(1.3)
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Figure 1.4: Two bases in the plane

Equation (1.3) is the basis transformation formula from (e1, e2) to (ẽ1, ẽ2).
The 4-parameter object

�
S
j
i , 1 ≤ i, j ≤ 2

�
is called the direct transformation

from the old basis to the new basis. We may also write (1.3) in vector-matrix
notation:

�
ẽ1 ẽ2

�
=

�
e1 e2

� � S1
1 S1

2

S2
1 S2

2

�
=

�
e1 e2

�
S (1.4)

The matrix S is the direct transformation matrix from the old basis to the
new basis. This matrix is uniquely defined by the two bases. Note that
the rows of S appear as superscripts and the columns appear as subscripts;
remember this convention for later.

A special case occurs when the new basis is identical with the new basis. In
this case, the transformation matrix becomes the identity matrix I, where
I ii = 1 and I

j
i = 0 for i �= j.

Since (ẽ1, ẽ2) is a basis, each of the vectors (e1, e2) may be expressed as
a linear combination of (ẽ1, ẽ2). Hence the transformation S is perforce
invertible and we can write

�
e1 e2

�
=

�
ẽ1 ẽ2

� � S1
1 S1

2

S2
1 S2

2

�−1

=
�
ẽ1 ẽ2

� � T 1
1 T 1

2

T 2
1 T 2

2

�

=
�
ẽ1 ẽ2

�
T

(1.5)
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where T = S−1 or, equivalently, ST = TS = I. The object
�
T

j
i , 1 ≤ i, j ≤ 2

�

is the inverse transformation and T is the inverse transformation matrix.

In summary, with each pair of bases there are associated two transformations.
Once we agree which of the two bases is labeled old and which is labeled new,
there is a unique direct transformation (from the old to the new) and a unique
inverse transformation (from the new to the old). The two transformations
are the inverses of each other.

1.3 Coordinate Transformation of Vectors

Equation (1.2) expresses a vector x in terms of coordinates relative to a given
basis (e1, e2). If a second basis (ẽ1, ẽ2) is given, then x may be expressed
relative to this basis using a similar formula

x = ẽ1x̃
1 + ẽ2x̃

2 =
�
ẽ1 ẽ2

� � x̃1

x̃2

�
(1.6)

The coordinates (x̃1, x̃2) differ from (x1, x2), but the vector x is the same.
The situation is depicted in Figure 1.5. The vector x is shown in red. The
basis (e1, e2) and its associated coordinates (x1, x2) are shown in black; the
basis (ẽ1, ẽ2) and its associated coordinates (x̃1, x̃2) are shown in blue.

We now pose the following question: how are the coordinates (x̃1, x̃2) related
to (x1, x2)? To answer this question, recall the transformation formulas be-
tween the two bases and perform the following calculation:

�
ẽ1 ẽ2

� � x̃1

x̃2

�
=

�
e1 e2

�
S

�
x̃1

x̃2

�
= x =

�
e1 e2

� � x1

x2

�
(1.7)

Since (1.7) must hold identically for an arbitrary vector x, we are led to
conclude that

S

�
x̃1

x̃2

�
=

�
x1

x2

�
(1.8)

Or, equivalently, �
x̃1

x̃2

�
= S

−1

�
x1

x2

�
= T

�
x1

x2

�
(1.9)
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Figure 1.5: A vector in two bases

We have thus arrived at a somewhat surprising conclusion: the coordinates

of a vector when passing from an old basis to a new basis are transformed via

the inverse of the transformation from the old basis to the new.

As an example, the direct transformation between the bases in Figure 1.4 is

S =

�
1 0.5

0.25 1

�

The inverse transformation is

T = 0.875

�
1 −0.5

−0.25 1

�

Examination of Figure 1.4 confirms this result, at least qualitatively.

The result obtained in the section is important and should be memorized:
When a basis is transformed using a direct transformation, the coordinates
of an arbitrary vector are transformed using the inverse transformation. For
this reasons, vectors are said to be contravariant (”they vary in a contrary
manner”, in a way of speaking).
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1.4 Generalization to Higher-Dimensional Vec-
tor Spaces

We assume that you have studied a course a linear algebra; therefore you are
familiar with general (abstract) finite-dimensional vector spaces. In particu-
lar, an n-dimensional vector space possesses a set of n linearly independent
vectors, but no set of n + 1 linearly independent vectors. A basis for an
n-dimensional vector space V is any ordered set of linearly independent vec-
tors (e1, e2, . . . , en). An arbitrary vector x in V can be expressed as a linear
combination of the basis vectors:

x =
n�

i=1

eix
i (1.10)

The real numbers in (1.10) are called linear coordinates. We will refer to them
simply as coordinates, until we need to distinguish them from curvilinear
coordinates in Chapter 2. Note again our preferred convention of writing
the vector on the left of the scalar. If a second basis (ẽ1, ẽ2, . . . , ẽn) is given,
there exist unique transformations S and T such that

ẽi =
n�

j=1

ejS
j
i , ei =

n�

j=1

ẽjT
j
i , T = S

−1 (1.11)

The coordinates of x in the new basis are related to those in the old basis
according to the transformation law

x̃
i =

n�

j=1

T
i
jx

j (1.12)

Equation (1.12) is derived in exactly the same way as (1.9). Thus, vectors in
an n-dimensional space are contravariant.

Note that the rows of S appear as superscripts and the columns appear as
subscripts. This convention is important and should be kept in mind.

We remark that orthonormality of the bases is nowhere required or even
mentioned. Moreover, we have not even defined the concept of vectors being
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orthogonal or normal, although you may know these definitions from previ-
ous studies; we will return to this topic later. All that is needed here are
the concepts of linear dependence/independence, finite dimension, basis, and
transformation of bases.

1.5 Interlude: Implicit Summation Notation

Looking at the equations derived in the preceding section, we observe the
frequent use of the summation symbol

�n
j=1. When it comes to tensors, the

equations will contain more and more summations and will become cum-
bersome and potentially confusing. Albert Einstein (yes, the Einstein) has
noted that, when the range of summation is understood from the context (as
is usually the case), the appearance of the summation symbol is redundant.
Einstein thus proposed to eliminate the summation symbol and the summa-
tion range, and assume that the reader will mentally add them. This has
come to be known as Einstein’s notation, or implicit summation notation.
Thus, equations (1.10), (1.11), (1.12) can be written as

x = ejx
j
, ẽi = ejS

j
i , ei = ẽjT

j
i , x̃

i = T
i
jx

j
, x

i = S
i
jx̃

j (1.13)

Einstein’s notation rules can be summarized as follows:

1. Whenever the same index appears twice in an expression, once as a
superscript and once as a subscript, summation over the range of that
index is implied.

2. The range of summation is to be understood from the context; in case
of doubt, the summation symbol should appear explicitly.

3. It is illegal for a summation index to appear more than twice in an
expression, once as a superscript and once as a subscript.

4. The index used in implicit summation is arbitrary and may be replaced
by any other index that is not already in use. For example, j in (1.13)
may be replaced by k with no change in the meaning of the expressions.
Such indices are called dummy or bound.
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5. Indices other than dummy indices may appear any number of times
and are free, in the same sense as common algebraic variables. For
example, i in (1.13) is a free index. A free index may be replaced by
any other index that is not already in use, provided that replacement
is consistent throughout the equation. For example, replacing all i’s by
m’s in (1.13) will not change the meaning.

6. The last rule is not in common use and we include it ad-hoc here, for
a reason to be explained soon: Attempt to place the symbol carrying
the summation index as subscript on the left of the symbol carrying
the summation index as superscript. For example, write aijx

j or xja
j
i ,

but avoid xjaij or a
j
ixj.

Einstein’s notation takes some getting used to, but then it becomes natural
and convenient. As an example, let us use it for multiplying two matrices. Let
aij and bkm stand for the square matrices A and B, and recall that superscripts

denote row indices and subscripts denote column indices. Then cik = aijb
j
k

stands for the product C = AB, and dij = bika
k
j stands the product D = BA.

You may write dij = akj b
i
k and this will also be a legal expression for D,

but the untrained reader may interpret this as C. Rule 6 helps avoiding
such potential confusion because the order of terms in Einstein’s notation
then agrees with the order of operands in matrix multiplication. Sometimes,
however, we must abandon rule 6 because other factors take precedence. For
example, rule 6 cannot be used in the expression a

ij
k b

k
mj.

To conclude this interlude, we introduce the Kronecker delta symbol, defined
as

δ
i
j =

�
1, i = j

0, i �= j
(1.14)

The Kronecker delta is useful in many circumstances. Often it is used as
a function of two integer variables. On other occasions it stands for the
identity matrix I. In connection with Einstein’s notation it may be used as
a coordinate selector, in the following sense:

δ
i
jx

j = x
i (1.15)

It may be useful to contemplate equation (1.15) for a minute or so and be sure
its meaning is understood. We will encounter further uses of the Kronecker
delta later.
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1.6 Covectors

Let V be an n-dimensional space and (e1, e2, . . . , en) a basis for V . As
explained in Appendix A, to V there corresponds a dual space V∗ and to
(e1, e2, . . . , en) there corresponds a dual basis (f1, f2, . . . , fn). The members
of V∗ are called dual vectors or covectors. A covector y can be expressed
as a linear combination of the basis members y = yif i; note the use of im-
plicit summation and that superscripts and subscripts are used in an opposite
manner to their use in vectors.

Let S be the change-of-basis transformation from the basis (e1, e2, . . . , en)
to the basis (ẽ1, ẽ2, . . . , ẽn). What is the corresponding transformation from
the dual basis (f1, f2, . . . , fn) to the dual basis (f̃11 , f̃

2, . . . , f̃n)? To answer this
question, recall the definition of the members of a dual basis as ”coordinate
selectors” to find

f̃ i(x̃) = x̃
i = T

i
jx

j = T
i
j f

j(x) (1.16)

Since this equality holds for all x ∈ V , necessarily

f̃ i = T
i
j f

j (1.17)

We conclude that the members of the dual basis are transformed by change of
basis using the inverse transformation T . It follows, as in the case of vectors,
that the coordinates of covectors are transformed by change of basis using
the direct transformation S:

ỹi = yjS
j
i (1.18)

So, in summary, covectors behave opposite to the behavior of vectors under
change of basis. Vector bases are transformed using S and vector coordinates
are transformed using T . Covector bases are transformed using T and cov-
ector coordinates are transformed using S. Consequently, covectors are said
to be covariant whereas vectors, as we recall, are contravariant.

Let us exemplify covectors and their covariant behavior by introducing func-
tions of vectors. Consider a function f(x) which assigns to every vector a
scalar value y = f(x). Note that we are dealing with plane vectors again. The
gradient of f(x) consists of the two partial derivatives (∂f/∂x1, ∂f/∂x2). In
math (or physics) courses you probably learned that the gradient of a func-
tion is a vector. Let us examine the behavior of the gradient under a change
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of basis. We want to express the partial derivatives of f(x) with respect to
the coordinates of the new basis. Using the chain rule for partial derivatives
we obtain

∂f

∂x̃1
=

∂f

∂x1

∂x1

∂x̃1
+

∂f

∂x2

∂x2

∂x̃1

∂f

∂x̃2
=

∂f

∂x1

∂x1

∂x̃2
+

∂f

∂x2

∂x2

∂x̃2

(1.19)

Or, in Einstein’s notation:

∂f

∂x̃i
=

∂f

∂xj

∂xj

∂x̃i
(1.20)

But from (1.13) we know that

x
j = S

j
i x̃

i
⇒

∂xj

∂x̃i
= S

j
i (1.21)

If we try to substitute (1.21) in (1.20) we will find that things do not quite
work well, because the index j will appear twice as a superscript, once in
∂xj and once in S

j
i . Therefore, such substitution will result in an expression

that does not conform to Einstein’s notation. To remedy this problem, we
introduce a new notational device for the partial derivatives, as follows:

∇kf =
∂f

∂xk
, �∇kf =

∂f

∂x̃k
(1.22)

Then we can combine (1.20), (1.21), and (1.22) to find

�∇if = (∇jf)S
j
i (1.23)

It is now evident that ∇if cannot be regarded as vector, but as a covector,
because it is transformed under a change of basis using the direct transfor-
mation, rather than the inverse transformation. We may further generalize
and remove the function f , leaving only ∇i. The “covector” ∇i is, in fact,
a covariant operator. It has no numeric value on its own, but when applied
to a scalar-valued function of a vector, it produces a covector. ∇i is the
gradient operator, expressed in coordinates relative to a given basis. The
gradient operator is also called del or nabla. The preceding discussion ap-
plies to finite-dimensional vector spaces of any dimension. You are probably
familiar with its use in classical physics, in the 3-dimensional physical space.

12



1.7 Linear Operators on Vector Spaces

Having covered vectors and covectors, and their laws of transformation under
change of basis, we are now ready to introduce new geometric objects. A
linear operator on an n-dimensional vector space V is a function f : V → V

which is additive and homogeneous. We thus require that

f(x+ y) = f(x) + f(y), f(ax) = af(x) (1.24)

A linear operator acts on the coordinates of a vector in a linear way; namely,
each coordinate of the result is a linear combination of the coordinates of the
argument. So, if y = f(x), then

y
i = f

i
jx

j (1.25)

Remark: Although the notation f
j
i resembles the notations Sj

i , T
j
i used for

the direct and inverse basis transformations, there is subtle but important
difference in our interpretation of these notations. The objects S

j
i , T

j
i are

nothing to us but square arrays of real numbers and their definitions depend
on a specific choice of bases, so they both depend on two bases (the old
and the new). By contrast, we interpret f j

i as a basis-independent geometric
object, whose numerical representation depends on a single chosen basis.

Let us explore the transformation law for f j
i when changing from a basis ei

to a basis ẽi. We find from the contravariance of xi and yi that

ỹ
k = T

k
i y

i = T
k
i f

i
jx

j = T
k
i f

i
jS

j
mx̃

m (1.26)

Hence we conclude that, in order for the relation (1.25) to hold in the new
basis, we must have

f̃
k
m = T

k
i f

i
jS

j
m (1.27)

Expression (1.27) is the transformation law for linear operators. As we see,
the transformation involves both the direct and the inverse transformations.
Therefore a linear operator is contravariant in one index and covariant in
the second index. The transformation (1.27) can also be expressed in matrix
form as �F = TFS = S−1FS, which is the way it is presented in linear
algebra.
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1.8 Tensors

Vectors, covectors, and linear operators are all special cases of tensors. We
will not attempt to define tensors in abstract terms, but settle for a coordinate-
based definition, as follows.

A tensor of type (or valency) (r, s) over an n-dimensional vector space is an
object consisting of nr+s coordinates, denoted by the generic symbol ai1...irj1...js ,
and obeying the following change-of-basis transformation law:

ã
i1...ir
j1...js = T

i1
k1
. . . T

ir
kr
a
k1...kr
m1...ms

S
m1
j1 . . . S

ms
js (1.28)

Let us spend some time discussing this equation. According to Einstein’s
summation notation, summation must be performed r + s times, using the
indices k1 . . . kr, m1 . . .ms. At what order should these summations be per-
formed? The answer is: it does not matter — any order would yield the
same result. To see this, apply the distributive and commutative laws of real
numbers, open all parentheses in (1.28) (you don’t see the parentheses, but
they are there!), and think of (1.28) as a flat multiple sum

ã
i1...ir
j1...js =

n�

k1=1

. . .

n�

kr=1

n�

m1=1

. . .

n�

ms=1

T
i1
k1
. . . T

ir
kr
a
k1...kr
m1...ms

S
m1
j1 . . . S

ms
js (1.29)

The coordinates i1 . . . ir are the contravariant coordinates and the coordi-
nates j1 . . . js are the covariant coordinates, in an obvious generalization of
the terminology used for vectors and covectors. You should remember that
contravariant coordinates appear as superscripts and are transformed using
T ; covariant coordinates appear as subscripts and are transformed using S.

We know from linear algebra that a vector is an abstract object, which should
be distinguished from its coordinate representation. Whereas the coordinates
depend on the choice of basis, the vector itself is invariant. The same applies
to tensors. Tensors are abstract objects and what we see in (1.28) is only a
law of transformation of the coordinates of the tensor, while the tensor itself
is invariant.

One way to think of a tensor is as storage (say a computer memory) having
capacity of nr+s addresses, each address holding a real number. Think of
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the address as an integer represented in radix n and call an n-radix digit
”enit” (derived from ”bit”). Then k1 . . . krm1 . . .ms may be thought of as
an address consisting of r + s enits. However, the r leftmost enits and the
s rightmost enits are used differently in specifying the address: the former
are used as superscripts and the latter as subscripts. Thus k1 . . . kr is the
contravariant part of the address and m1 . . .ms is the is the covariant part
of the address. The contents of the storage, which is to say the coordinates,
depend on the basis. Under change of basis, the transformation law (1.28)
applies.

Looking back at what we presented in the preceding sections, we now realize
that a contravariant vector is in fact a (1, 0)-tensor and a covariant vector is
a (0, 1)-tensor. A linear operator on a vector space is a (1, 1)-tensor. A scalar
can be regarded as a (0, 0)-tensor, since n0 = 1; therefore a (0, 0)-tensor has
a single address and stores a single value.

1.9 Operations on Tensors

Having defined the general concept of tensor over an n-dimensional vector
space, let us now introduce the basic arithmetic operations involving tensors.

1.9.1 Addition

Two tensors of the same type can be added term-by-term. The expression

c
i1...ir
j1...js = a

i1...ir
j1...js + b

i1...ir
j1...js (1.30)

means that each coordinate on the left hand holds the sum of the correspond-
ing coordinates on the right side. We can write tensor addition symbolically
as c = a + b. Tensor addition is obviously commutative. Furthermore, it is
straightforward to verify that the change-of-basis transformation law holds
for c, hence c is indeed a tensor.

Remarks:

1. Tensors of different ranks cannot be added.
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2. The tensor 0 can be defined as a tensor of any rank whose coordinates
are all 0. Therefore, 0 is not a uniquely defined tensor, but if we accept
this vague definition, then a+ 0 = 0 + a = a holds for any tensor a.

1.9.2 Multiplication by a scalar

Each of the coordinates of a tensor can be multiplied by a given scalar to
yield a new tensor of the same type; this is expressed as follows:

c
i1...ir
j1...js = xa

i1...ir
j1...js (1.31)

We can write tensor multiplication by a scalar symbolically as c = xa. It is
straightforward to verify that the change-of-basis transformation law holds
for c, hence c is indeed a tensor. It is also easy to check that

x(a+ b) = xa+ xb, (x+ y)a = xa+ ya, (xy)a = x(ya) = y(xa) (1.32)

1.9.3 The Tensor Product

Let a be an (r, s)-tensor and b a (p, q)-tensor. We write the coordinates of
the first tensor as a

i1...ir
j1...js and those of the second tensor as b

ir+1...ir+p

js+1...js+q
. Note

that all indices are distinct within and across tensors. The tensor product
c = a⊗ b is defined as the (r + p, s+ q)-tensor having the coordinates

c
i1...irir+1...ir+p

j1...jsjs+1...js+q
= a

i1...ir
j1...js b

ir+1...ir+p

js+1...js+q
(1.33)

Let us elaborate more on this definition. Recall the storage interpretation of
tensors, explained in Sec. 1.8. The tensor c is allocated nr+p+s+q addresses.
The r+p contravariant enits of the address i1 . . . irir+1 . . . ir+p are subdivided
into r leftmost enits and p rightmost enits. Similarly, the s+q covariant enits
of the address j1 . . . jsjs+1 . . . js+q are subdivided into s leftmost enits and q

rightmost enits. The rule for filling the addresses of c with contents is as
follows. Access the number in a having the address from the contravariant
r-part and covariant s-part and call it x. Access the number in b having
the address from the contravariant p-part and covariant q-part and call it y.
Then the corresponding value of the c address is xy.
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That the tensor product is indeed a tensor is almost self-evident and is left to
the reader as an exercise. Simply write the change-of-basis transformation
to each factor, examine the resulting expression and compare it with the
change-of-basis transformation needed for c to be a tensor.

The coordinates of the tensor product a⊗ b comprise all possible products of
coordinates of a and coordinates of b. Tensor product is not commutative;
that is, a ⊗ b �= b ⊗ a. The reason is that, although all possible products
of coordinates of the two tensors appear in both products, they appear at
different locations (or different addresses, if you wish). Let us exemplify this
in the case where both tensors are (1, 0), say ai and bk. Let cik = aibk and
dki = bkai. Let g and h denote specific enits such that g �= h; for example,
g = 1, h = 2. Let u = ag, v = ah, x = bg, y = bh (these are specific values,
not general variables!) Then cgh = uy, but dgh = xv, so cgh �= dgh in general.

The tensor product is bilinear, in the following sense:

(xa+yb)⊗ c = x(a⊗ c)+y(b⊗ c), c⊗ (xa+yb) = x(c⊗a)+y(c⊗ b) (1.34)

We can extend the tensor product to any finite number of tensors in an
obvious manner. If {a(i), 1 ≤ i ≤ m} are tensors, then

a(1)⊗ a(2)⊗ . . .⊗ a(m)

denotes their tensor product. This tensor product is multilinear in the fol-
lowing sense: For every k we have

a(1)⊗ . . . [xa(k) + yb]⊗ . . . a(m) =

x[a(1)⊗ . . . a(k)⊗ . . . a(m)] + y[a(1)⊗ . . . b⊗ . . . a(m)]
(1.35)

1.9.4 Contraction

Let a be an (r, s)-tensor. Choose the contravariant index at any position,
say the i-th position and rename it by a new symbol, say k. Next choose a
covariant index at any position, say the j-th position and rename it by the
same symbol k. Let

b
g1...gi−1gi+1...gr
h1...hj−1hj+1...hs

= a
g1...gi−1kgi+1...gr
h1...hj−1khj+1...hs

(1.36)
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Note how the index k disappears through the implied summation and the
resulting tensor has type (r − 1, s − 1). The operation (1.36) is called con-

traction. For a general (r, s)-tensor there are rs possible contractions, one
for each pair of contravariant and covariant indices.

To see that (1.36) indeed defines a tensor, consider first a simple case of
a (1, 1) tensor a

g
h. Then agg is the trace of a. Applying a change-of-basis

transformation to a and then computing the trace gives

T
m
g a

g
hS

h
m = a

g
hδ

h
g = a

g
g (1.37)

Hence the trace is invariant under change of basis. Now replace a
g
h by a

general tensor and repeat (1.37) for a chosen pair of indices to find

T
k
gia

g1...gi−1gigi+1...gr
h1...hj−1hjhj+1...hs

S
hj

k = a
g1...gi−1gigi+1...gr
h1...hj−1gihj+1...hs

= b
g1...gi−1gi+1...gr
h1...hj−1hj+1...hs

(1.38)

Now, applying the transformations associated with the remaining indices
would complete the change-of-basis transformation for (1.36), resulting in
b̃
g1...gi−1gi+1...gr
h1...hj−1hj+1...hs

as required.

In view of (1.37), contraction is a generalized trace operation. Often, implied
summation can be viewed as outer product followed by contraction. Con-
sider, for example, the following operation between a covector and a vector:

c = aib
i (1.39)

The result of (1.39) is a scalar, called the scalar product of aj and bi. If
we form the outer product dij = ajb

i and then contract the upper and lower
indexes of dij, we obtain the scalar product (1.39). It follows immediately
that scalar product is invariant under change of basis. The scalar product
has important applications in quantum mechanics, as well as in other fields,
but is less general than the inner product, to be introduced soon.

1.10 Tensor Spaces as Vector Spaces; New
Notations

Consider the set T (r, s) of all (r, s)-tensors, including the zero tensor 0.
Equipped with the addition operation of two tensors and the multiplication
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operation of a scalar by a tensor, this set becomes a vector space of dimension
nr+s. Let (e1, . . . , en) be a basis for V and (f1, . . . , fn) a basis for V∗. Then all
tensor products ei1⊗. . .⊗eir⊗f j1⊗. . .⊗f js , whose number is nr+s, constitute a
basis for T (r, s). To save space, we will henceforth use the abridged notation
ei1 . . . eirf

j1 . . . f js for the basis tensors (i.e., the ⊗ operation between the
basis vectors is implied).

We can now express an (r, s)-tensor in a way similar to vectors:

a = a
i1...ir
j1...jsei1 . . . eirf

j1 . . . f js (1.40)

Expression (1.40) is to be understood, as usual, to imply summation over all
indices. This expression is a formal, unambiguous way to write a tensor.

Expression (1.40) brings out a problem that is both fundamental and nota-
tional. We implicitly assumed that, when writing a basis tensor

ei1 . . . eirf
j1 . . . f js

we place the contravariant vectors first, followed by the covariant vectors.
But why not use the reverse order? Moreover, why not mix the two sets?
Consider, for example, the space T (2, 1). Are the basis vectors eiejfk, or
perhaps fkeiej or even eifkej? Since a tensor product is not commutative,
all three possibilities are different and all three are equally valid. It follows
that T (2, 1) is not a well-defined object and can stand for three different
tensor spaces (although the three are isomorphic). In general, there are�
r+s
r

�
different spaces T (r, s), corresponding to the different ways of mixing

covariant and contravariant basis vectors. We can always distinguish between
the different possibilities if we replace the generic T (r, s) by a specific product
involving V and V∗ in the required order. For example, in the case of T (2, 1),
we may use one of the following three notations:

V ⊗ V ⊗ V
∗
, V ⊗ V

∗
⊗ V , V

∗
⊗ V ⊗ V

However, this works only for specific r and s, and a specific order of con-
travariance/covariance.

The full notation (1.40) disambiguates the tensor; for example, in the case
of (2, 1)-tensors, we understand a

ij
k eiejf

k, aijk f
keiej, and a

ij
k eif

kej as being
different. But what about the simplified coordinate notation a

ij
k that we have
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used until now? In fact, many authors distinguish between a
ij
k, a

ij
k , and a

i j
k .

The coordinates of general tensors are often written as ai1...irj1...js when the
contravariant basis vectors are meant to come first. Authors who use such
notations may also use S

i
j for transformation matrices. Another common

notation is Λµ
µ� for the direct transformation matrix and Λµ�

µ for its inverse.
Here the same symbol Λ is used for both transformations and one must pay
attention to the location of primes to distinguish between the two transfor-
mations. Such notations quickly become awkward and difficult to follow1.
We have chosen to adopt a pragmatic approach. We will continue to use
a
i1...ir
j1...js whenever the distinction between the

�
r+s
r

�
possibilities is unimpor-

tant; such was the case until now. In the future, we will adopt the notation
a
i1...ir

j1...js and its mixed variations only when distinction is significant and
ambiguity may arise otherwise.

1.11 Inner Products, The Gram Matrix, and
Metric Tensors

The material in section is extremely important, albeit not difficult. Be sure
to understand it fully and review several times if necessary.

1.11.1 Inner Products

Little progress can be made in the application of tensors to physics problems
without imposing additional structure on the underlying vector space. The
defining axioms of vector space include no operations that act on vectors
and produce scalars. Here we introduce one such function, arguably the
most important one: the inner product. Let u and v be vectors in a vector
space V and denote by u · v a function acting on u and v and producing a
scalar a = u · v, such that the following property holds:

1
And also a nightmare to typeset.
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1. Bilinearity:
(au1 + bu2) · v = a(u1 · v) + b(u2 · v)

u · (av1 + bu2) = a(u · v1) + b(u · v2)

for all u, u1, u2, v, v1, v2 ∈ V and a, b ∈ R.
Such a function is called an inner product on the space V . If, in addition,
the following property holds:

2. Symmetry:
u · v = v · u

for all u, v ∈ V , then the inner product is called symmetric.

If, furthermore, the following property holds:

3. Nondegeneracy:

u · x = 0 for all u ∈ V ⇒ x = 0

then the inner product is called nondegenerate.

A vector space equipped with an inner product is called an inner product

space. We will only consider symmetric nondegenerate inner products, with-
out mentioning this explicitly every time.

When we substitute u = v in the inner product, the resulting scalar-valued
function u · u of the vector u is called the quadratic form induced by the
inner product. A quadratic form satisfying u · u > 0 for all u �= 0 is called
positive. An inner product space whose associated quadratic form is positive
is called Euclidean.

An inner product space admits the concept of orthogonality. Vectors u and v
are orthogonal if u·v = 0. The notation u ⊥ v is used to signify orthogonality
of two vectors. If the space is Euclidean, then the concept of length is also
defined. The length (or Euclidean norm) of u is the nonnegative scalar
�u� =

√
u · u.

A basis (e1, e2, . . . , en) in an n-dimensional inner product space is orthogonal
if ei ⊥ ej for all i �= j. If the space is Euclidean, a basis is orthonormal if
it is orthogonal and, additionally, �ei� = 1 for all i. Every inner product
space possesses an orthogonal basis and every Euclidean space possesses an
orthonormal basis. These are well known results in linear algebra and we
will not prove them here.
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1.11.2 The Gram Matrix

Let us express the inner product in some basis (e1, e2, . . . , en). Let u = eiui

and v = eivi be some vectors. Then, using the bilinearity of the inner
product, we find that

u · v = (ei · ej)u
i
v
j (1.41)

The entity {ei · ej, 1 ≤ i, j ≤ n}, consisting of n2 numbers, is usually con-
sidered as an n × n matrix in linear algebra, and is called the Gram matrix

of the basis. Let us denote this matrix by G. By symmetry of the inner
product, G is symmetric. As we now prove, this matrix is nonsingular.

Theorem 1. The Gram matrix G is nonsingular.

Proof. Let us assume that there exists a vector x such that

(ei · ej)x
j = (ei · x) = 0.

Since this holds for all i, x is orthogonal to every member of the basis. It
follows that x is orthogonal to every vector in the space. But then it follows
from the nondegeneracy of the inner product that x = 0. Since the only
vector in the null space of G is the zero vector, G is nonsingular.

We now examine the behavior of G under change of basis. Consider a new
basis (ẽ1, . . . , ẽn), related to the old basis (e1, . . . , en)through the transfor-
mation S. Then,

ẽi · ẽj = (ekS
k
i ) · (emS

m
j ) = (ek · em)S

k
i S

m
j (1.42)

Or, in matrix form,
�G = S

�
GS (1.43)

where S � is the transpose of S. Matrices G and �G related by (1.43) with
nonsingular S are called congruent. Thus a change of basis of a vector space
provides a congruence relation between their corresponding Gram matrices.

The celebrated Sylvester law of inertia asserts the following:

Theorem 2 (Sylvester). Every real symmetric matrix G is congruent to a

diagonal matrix Λ whose entries have values +1, −1, or 0. The matrix Λ is

unique for all matrices congruent to G (up to the ordering of the diagonal

entries of Λ).
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If n is the dimension of G then, by Sylvester’s theorem, n can be expressed
as n = n+ + n− + n0, according to the numbers of +1, −1, and 0 along the
diagonal of Λ. The triplet (n+, n−, n0) is called the signature ofG. Sylvester’s
theorem tells us that the signature is invariant under congruence relation. If
G is nonsingular, as in our case, then necessarily n0 = 0 and n = n+ + n−.
If G is positive, then n− = n0 = 0 and n = n+. This happens if and only if
the space is Euclidean.

1.11.3 The Metric Tensor

Examination of (1.42) reveals that (ek ·em) is transformed like a (0, 2)-tensor
under change of basis. Defining gij = ei · ej, we have

u · v = giju
i
v
j (1.44)

The (0, 2)-tensor gij is called the metric tensor of the inner product space.
Like all tensors, it is a geometric object, invariant under change-of-basis
transformations. By Sylvester’s theorem, there exists a basis which makes
the metric diagonal and reveals the signature of the space. This signature
is uniquely defined by the definition of the inner product. It immediately
follows from (1.44) that the inner product is invariant under change of basis.
This is not surprising, since the definition of inner product does not depend
on a basis.

Since, by our assumption, G is nonsingular, it possesses an inverse G−1. The
entries of G−1 may be viewed as the coordinates of a (2, 0)-tensor, called the
dual metric tensor, and usually denoted by gij. It follows immediately that

gjkg
ki = δ

i
j (1.45)

We may summarize the preceding discussion by the following theorem:

Theorem 3. For every finite-dimensional inner product space there exists a

unique symmetric nonsingular (0, 2)-tensor gij such that u · v = giju
ivj for

any pair of vectors u and v. Conversely, if gij is a symmetric nonsingular

(0, 2)-tensor on a finite-dimensional vector space, then an inner product u ·v
is uniquely defined such that u · v = giju

ivj for any pair of vectors u and v.
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If the vector space is Euclidean and the basis is orthonormal, then the coor-
dinates of the metric tensor in this basis are, by definition, gij = δij, where δij
is defined in a similar manner to the Kronecker delta δij. In this case the inner
product is simply given by u · v =

�n
i=1 u

ivi. This is the inner-product ex-
pression usually encountered in linear algebra courses. Our discussion makes
it clear that this expression holds only when the space is Euclidean and the
basis is orthonormal.

1.11.4 Example: The Minkowski Space

We will now provide an example of non-Euclidean inner product space, known
as the Minkowski space. This is a 4-dimensional inner product vector space
possessing an orthogonal basis (e0, e1, e2, e3) and a metric tensor whose co-
ordinates in this orthogonal basis are

gij =






−1, i = j = 0
1, i = j = 1, 2, 3
0, i �= j

(1.46)

The metric of this space has signature n+ = 3, n− = 1. Some authors2 use
the negative of (1.46) as the definition of Minkowski space, in which case
n+ = 1, n− = 3.

The Minkowski space is clearly non-Euclidean; indeed, this space underlies
relativity theory, so it is the space in which our universe exists! It is common,
in relativity theory, to number the dimensions starting at 0 (rather than 1).
The index 0 is associated with ct, time multiplied by the speed of light. The
remaining indices are associated with the usual space coordinates x, y, z.
However, relativity theory convention for the coordinates is (x0, x1, x2, x3),
in agreement with tensor notation (be careful not to confuse contravariant
indices with powers!)

Let x be a vector in the Minkowski space, expressed in the time-space basis
of the space. Then we have

x · x = −(x0)2 +
3�

i=1

(xi)
2

(1.47)

2
This inconsistency has plagued relativity theory for a century and continues to do so.
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Clearly, x · x is not always nonnegative because the inner product of the
Minkowski space is not positive. The following terminology is in use, de-
pending on the sign of x · x:

x · x






< 0 : timelike

= 0 : lightlike

> 0 : spacelike

There is much more to tell about relativity theory, but this is not the place
to do so.

1.12 Lowering and Raising of Tensors

Let ai1...irj1...js be the coordinates of the (r, s)-tensor a in some basis and gij be

the metric tensor in this basis. Let us form the tensor product gpqa
i1...ir
j1...js . This

tensor has type (r, s+2). Now choose one of the contravariant coordinates of
a, say ik. Replace ik by q and perform contraction with respect to q. Then
q will disappear and we will be left with a tensor of type (r − 1, s+ 1)

b
i1...ik−1ik+1...ir
pj1...js = gpqa

i1...ik−1qik+1...ir
j1...js (1.48)

This operation is called lowering. Lowering acts do decrease the contravari-
ance valency by 1 and increase the covariant valency by 1. There are r

possible lowerings, depending on the choice of k. Note that the new covari-
ant index of the result, p in (1.48), is placed in the first position. If different
placement is necessary, some ad-hoc notation must be used.

Raising is the dual of lowering. We start with the dual metric tensor gpq and
form the tensor product gpqa

i1...ir
j1...js . We choose an index jk, replace jk by q

and perform contraction with respect to q, obtaining

c
pi1...ir
j1...jk−1jk+1...js

= g
pq
a
i1...ir
j1...jk−1qjk+1...js

(1.49)

This operation is called raising. Raising acts to increase the contravariance
valency by 1 and decrease the covariant valency by 1, so the resulting tensor
has type (r + 1, s − 1). There are s possible raisinings, depending on the
choice of k. Note that the new contravariant index of the result, p in (1.49),

25



is placed in the first position. If different placement is necessary, some ad-hoc
notation must be used.

A common use of lowering and raising is in moving between vectors and
covectors. If vi is a vector in some basis, we define its corresponding covector
vi through the relationships

vi = gikv
k
, v

i = g
ik
vk (1.50)

These relationships establish a natural isomorphism between the given vector
space V and its dual space of covectors V∗.

1.13 The Levi-Civita Symbol and Related Top-
ics

1.13.1 Permutations and Parity

A permutation of the integers (12 . . . n) is simply a rearrangement of this set
of integers in a different order, say (i1i2 . . . in). As you surely know, there
are n! different permutations of n integers.

Suppose we want to undo the permutation (i1i2 . . . in) by some mechanical
procedure (e.g., a procedure which may be programmed and executed by a
computer). One way of doing this is as follows. Look for the number 1 among
(i1i2 . . . in). If i1 = 1, do nothing; otherwise if ij = 1, interchange ij and i1.
Such an operation is called transposition and in this case it will bring 1 to
the first position and will move i1 to where the 1 was. Next repeat for the
number 2. If i2 = 2, do nothing; otherwise if ij = 2, interchange ij and i2.
Repeat the same procedure until all numbers from 1 to n have been moved
to their natural locations.

The total number of transpositions in the preceding procedure determines
the parity of the permutation (i1i2 . . . in). If the number is even, the parity
is even; if the number is odd, the parity is odd.
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1.13.2 The Levi-Civita Symbol

The Levi-Civita Symbol �i1i2...in is a function of n indices, each taking values
from 1 to n. It is therefore fully defined by nn values, one for each choice of
indices. The definition of the Levi-Civita symbol is as follows.

�i1i2...in =






1, i1i2 . . . in is an even permutation of 12 . . . n

−1, i1i2 . . . in is an odd permutation of 12 . . . n

0, i1i2 . . . in is not a permutation of 12 . . . n

(1.51)

As we see, �i1i2...in is 1 in n!/2 cases out of nn, is −1 in n!/2 cases, and is 0
in all other cases.

Let A be an n×n matrix. Using the Levi-Civita symbol, the determinant of
A can be expressed as

detA = �i1i2...inA
i1
1 A

i2
2 . . . A

in
n (1.52)

with implied summation over all indices. We are used to seeing the deter-
minant definition as a sum of n! terms whereas (1.52) contains nn terms.
However, only n! of these are nonzero, and each nonzero term is equal to
a product of n elements of A taken from all rows and all columns, with
positive or negative sign depending on the parity of the corresponding row
permutation relative to the order of columns. Thus (1.52) is nothing but the
definition of a determinant.

1.13.3 The Volume Tensor/Pseudotensor

Although the Levi-Civita symbol is written in tensor notation, we refrained
from calling it so. And, indeed, let us check the behavior of the Levi-Civita
symbol under change of basis and see if it transformed like a tensor. If
�i1i2...in were a tensor, it would have to be an (0, n)-tensor. As such, its
transformation law would have to be

�̃j1j2...jn = �i1i2...inS
i1
j1S

i2
j2 . . . S

in
jn (1.53)

However, comparing the right side of (1.53) with (1.52), we see that it is
equal to detS if j1j2 . . . jn is an even permutation of i1i2 . . . in, to −(detS) if
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it is an odd permutation, and to 0 if it is not a permutation at all. It follows
that

�̃j1j2...jn = (detS)�j1j2...jn (1.54)

The expression (1.54) indicates why �i1i2...in cannot be a tensor. If it where,
the values of its coordinates would be in the set {1,−1, 0} in some preferred
basis and would have different values in all other bases. But, in defining
�i1i2...in we have not used any preferred basis, so we must assume that its
values are in the set {1,−1, 0} in any basis. Expression (1.54) contradicts
this and hence �i1i2...in is not a tensor.

Let us try correcting the problem described above by a small modification.
It follows from (1.43) that the determinant of the Gram matrix undergoes
the following change under the transformation S:

det �G = (detS)2(detG) (1.55)

Note that detGmay be positive or negative3, but the sign of detG is invariant
under change of basis, because (detS)2 is positive. Let us thus define a new
object:

ωi1i2...in =
�
| detG|�i1i2...in (1.56)

The quantity under the square root on the right side of (1.56) is the absolute
value of the determinant of G. Combining (1.53)–(1.56), we see that ωi1i2...in

is transformed as follows:

ω̃j1j2...jn = ±ωi1i2...inS
i1
j1S

i2
j2 . . . S

in
jn (1.57)

where the sign on the right side of (1.57) is the same as the sign of detS.

The conclusion from (1.57) is that ωi1i2...in is “almost” a tensor, except for
possible sign change. As long as all transformations S in the context of the
application are guaranteed to have positive determinant, ωi1i2...in is a tensor.
In the general case, we refer to ωi1i2...in is as a pseudotensor. We warn,
however, that this terminology is not standard.

The quantity
�

| detG| is equal to the volume of the parallelepiped formed by
the basis vectors in the case of a 3-dimensional Euclidean space. Therefore,
we call ωi1i2...in the volume pseudotensor, or the volume tensor in the special
case of positive detS. Again, this name is not standard.

3
For example, detG is positive in Euclidean spaces but is negative in the Minkowski

space.
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1.14 Symmetry and Antisymmetry

In the following discussion, aj1j2...js is a (0, s)-tensor, but can also be a symbol
such as the Levi-Civita symbol or a pseudotensor such as the volume tensor.

We say that aj1j2...js is symmetric with respect to a pair of indices p and q if

aj1...p...q...js = aj1...q...p...js (1.58)

We say that aj1j2...js is antisymmetric with respect to a pair of indices p and
q if

aj1...p...q...js = −aj1...q...p...js (1.59)

We note that each of (1.58) and (1.59) involves transposition of p and q; thus,
symmetry and antisymmetry are defined by the behavior of the coordinates
under transpositions.

A tensor (or symbol or pseudotensor) is called completely symmetric if it
exhibits symmetry under all possible transpositions; it is called completely

antisymmetric if it exhibits antisymmetry under all possible transpositions.
Sometimes the word “completely” is omitted but we keep it for clarity.

The Levi-Civita symbol provides an example of a completely antisymmetric
symbol, and the same is true for the volume pseudotensor. It holds for any
completely antisymmetric tensor that aj1...p...p...js = 0. In other words, a
completely antisymmetric tensor may have nonzero coordinates only when
all indices are different.

A tensor aj1j2...js is completely symmetric if and only if

ak1k2...ks = aj1j2...js

for any permutation k1k2 . . . ks. The proof of this statement is as follows. If
aj1j2...js is completely symmetric and k1k2 . . . ks is a permutation of j1j2 . . . js
then, as we saw, this permutation can be decomposed into a sequence of
transpositions. Since symmetry holds at each step, it holds for the entire
permutation. Conversely, if aj1j2...js is invariant under any permutation of its
indices, then it is invariant under all transpositions as a special case and is
therefore symmetric.
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A tensor aj1j2...js is completely antisymmetric if and only if

ak1k2...ks = ±aj1j2...js

where the sign is positive for any even permutation k1k2 . . . ks and is negative
for any odd permutation. The proof is similar to the preceding proof for the
symmetric case.

The symmetric part of a tensor aj1j2...js with respect to a pair of indices p

and q is defined by

aj1...(p|...|q)...js = 0.5(aj1...p...q...js + aj1...q...p...js) (1.60)

The antisymmetric part of a tensor aj1j2...js with respect to a pair of indices
p and q is defined by

aj1...[p|...|q]...js = 0.5(aj1...p...q...js − aj1...q...p...js) (1.61)

This notation is nonstandard and different authors use different notations.
The bar lines are used to isolate the indices of the transposition from the
intervening indices. If p and q are adjacent indices, the bar lines are omitted.
For example, (pq) appears in the symmetric part and [pq] appears in the
antisymmetric part if p and q are adjacent.

The tensor aj1...p...q...js is the sum of its symmetric and antisymmetric parts:

aj1...p...q...js = aj1...(p|...|q)...js + aj1...[p|...|q]...js (1.62)

This follows from (1.60) and (1.61) in an obvious manner.

Complete symmetrization and complete antisymmetrization are also of im-
portance. We will use verbal definitions, which are simple, whereas the math-
ematical formulas are somewhat awkward. The complete symmetrization of
aj1j2...js , denoted by a(j1j2...js), is defined as follows. We form all s! permu-
tations of indices ak1k2...ks and compute their sum. We then divide by s!.
The complete antisymmetrization of aj1j2...js , denoted by a[j1j2...js], is defined
as follows. We form all s! permutations of indices ak1k2...ks and compute
their alternating sum. By “alternating” we mean that even permutations
are added and odd permutations subtracted. We then divide by s!. It is easy
to prove that a(j1j2...js) is completely symmetric and a[j1j2...js] is completely
antisymmetric.
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Partial symmetrizations and antisymmetrizations are also useful in certain
applications. Their definitions are easy to understand and we discuss them
only briefly. We may select any subset of j1j2 . . . js and perform complete
symmetrization or antisymmetrization using this subset and leaving the re-
maining indices intact. If the subset of indices is consecutive, the notation
is self explanatory. For example, if aijkm is a tensor, then ai(jkm) is partial
symmetrization with respect to jkm and a[ijk]m is partial antisymmetrization
with respect to ijk. To compute ai(jkm), we add all aiuvw, where uvw is a
permutation of jkm, and divide by 6. To compute a[ijk]m, we compute the
alternating sum of all auvwm, where uvw is a permutation of ijk, and divide
by 6.

Partial symmetrizations and antisymmetrizations for non-consecutive subsets
of indices are computed in the same way as for consecutive subsets; their
notations become awkward and will not be discussed here.

The preceding material carries over without change to contravariant tensors
ai1i2...ir . In the case of mixed tensors, one has to be careful. In most ap-
plications, either the covariant coordinates or the contravariant coordinates
are manipulated, but not both at the same time. Under this limitation, the
preceding definitions and properties are applicable in the same way.

We finally remark that antisymmetrizations are of great importance in rela-
tivity theory whereas symmetrizations are seldom used.

1.15 Summary

In this chapter we introduced tensors in the simplest setting—that of common
vector spaces. Using this approach enabled us to stay within the realm
of linear algebra, with very little need for calculus. Even in this simple
framework, there is a need for understanding dual vectors (or covectors) and
dual bases. Once this difficulty is overcome, the road is clear for tensors
of any rank. Be defining tensors as storage for coordinates, we were able
(hopefully) to gain immediate intuition as to their laws of transformation
under change of basis. We learned that a general tensor possesses a number of
covariant coordinates and a number of contravariant coordinates. The former
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transform under the direct change-of-basis matrix and the latter transform
under its inverse.

The elementary operations on tensors include common vector operations (ad-
dition and multiplication by a scalar) as well as operations that are unique
to tensors. Among the latter, the most important is the tensor product. The
second is contraction. By combining tensor products and contractions we
can form almost any algebraic tensor operation of interest.

Vector spaces may be equipped with an inner product. We considered inner
products that are symmetric and nondegenerate, but not necessarily positive.
An inner product space permits the definition of the important Gram matrix
of a basis. The Gram matrix leads naturally to the metric tensor and to the
operations of raising and lowering.

The remaining sections of this chapter deal with somewhat more advanced
subjects—the Levi-Civita symbol, the volume pseudotensor, and symmetriza-
tion and antisymmetrization of tensors. These may be skipped on first read-
ing, but in the long run they are important.

We define vector spaces to be flat, because all geometric objects are fixed,
although their coordinates vary depending on the basis. Applications in
physics, as well as many branches of mathematics, require more complex ob-
jects, in particular ones which involve functions and calculus. The remaining
chapters deal with tensors in more general settings and, in particular, intro-
duce tensor calculus and some special tensors of importance.
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Chapter 2

Tensor Fields and Tensor
Calculus

2.1 Tensor Fields

In this chapter we will consider tensors that vary from point to point in space.
We therefore change our viewpoint on the underlying vector space V . Rather
than an abstract space, we will think of V as a real physical space, which can
be the usual 3-dimensional Euclidean Newtonian space or the 4-dimensional
Minkowski space. The former is associated with classical physics whereas the
latter constitutes the framework for relativistic physics. To V we attach a
fixed origin and a reference basis (e1, e2, . . . , en). Each point in V has a radius
vector r with respect to the origin. The coordinates of r can be expressed as
linear coordinates in terms of the reference basis, as we learned in Chapter 1,
say (x1, x2, . . . , xn). However, they can also be expressed in other ways, rather
than through bases. For example, you are probably familiar with cylindrical
and spherical coordinates in a 3-dimensional space. We may express a radius
vector in cylindrical coordinates as r(ρ,ϕ, z) or in spherical coordinates as
r(r, θ,ϕ). In both cases the arguments are not linear coordinates relative to
any basis. These are special cases of curvilinear coordinates, which we will
study in great detail in the sequel.
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To each point in the space V we will assign a tensor a(r). These tensors have
the same rank (r, s) throughout the space; they are geometrical objects over
the space V by their very definition. Initially we define their coordinates
relative to the reference basis and later consider change of basis. Thus,
a
i1...ir
j1...js(r) denotes the coordinates of a space-dependent tensor with respect

to the reference basis (e1, e2, . . . , en). Such an object is called a tensor field

over V .

The simplest way to think of ai1...irj1...js(r) is as a collection of nr+s functions
of r. However, at every fixed r, the values of the functions must obey the
change-of-basis transformation laws defined in Chapter 1. Specifically, the
covariant coordinates must transform according to the direct transformation
and the contravariant coordinates must transform according to the inverse
transformation. Additionally, regarded as functions of r, ai1...irj1...js(r) are usually
assumed to satisfy certain continuity and differentiability conditions, to be
discussed later.

2.2 The Gradient Operator in Linear Coor-
dinates

We have already met the gradient operator ∇k in Sec. 1.6, applied to a scalar
field and expressed as a covariant operator in linear coordinates. We wish
to generalize the gradient operator to tensor fields. As long as we restrict
ourselves to linear coordinates, this is not difficult. Let ai1...irj1...js(r) be a tensor
field. Upon expressing the radius vector r in terms of the reference basis (i.e.
r = eixi), the tensor ai1...irj1...js(r) becomes a function of the coordinates xi. We
may now differentiate the tensor with respect to a particular coordinate xp:

∇pa
i1...ir
j1...js(r) = a

i1...ir
j1...js;p(r) =

∂a
i1···ir
j1...js(r)

∂xp
(2.1)

There are several novelties in equation (2.1) that we should note. First, the
right side expresses the fact that each component of the tensor, contravari-
ant and covariant, is differentiated separately and each provides n partial
derivatives, one for each p. Second, the result depends of the choice of ba-
sis, since the partial derivatives are with respect to the coordinates in the
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basis. Third, the resulting object is a tensor field of type (r, s + 1), with an
additional covariant component; this fact is far from being obvious and must
be proved. Fourth, (2.1) introduces a new notation, with the new covariant
component appearing as the last one and separated by a semicolon. Several
different notations are used in the literature but we will adhere to this one.

Before we can discuss whether ∇pa
i1...ir
j1...js(r) is a tensor, we must clarify what

being a tensor means in this case. Two possibilities must be considered. In
the first, we may change the coordinates of the tensor a

i1...ir
j1...js(r) to a new

basis, thereby yielding ã
i1...ir
j1...js(r), but continue differentiating with respect to

xp. In the second, we may change the coordinates of ai1...irj1...js(r) to ã
i1...ir
j1...js(r)

and differentiate with respect to the new coordinates x̃p. Whereas both
definitions are plausible, we adopt the latter one and define

�∇pa
i1...ir
j1...js(r) = ã

i1...ir
j1...js;p(r) =

∂ã
i1...ir
j1...js(r)

∂x̃p
(2.2)

Now, that the definition of ∇p is clear, let us prove

Theorem 4. ∇p, as defined in (2.1) and (2.2), is a tensor.

Proof. The change-of-basis transformation of ai1...irj1...js(r) gives

ã
i1...ir
j1...js(r) = T

i1
k1
. . . T

ir
kr
a
k1...kr
m1...ms

(r)Sm1
j1 . . . S

ms
js (2.3)

Next we differentiate (2.3) with respect to some coordinate x̃p. In doing
so, we must remember that (2.3) is, in fact, a multiple sum, so we must
differentiate each term and then perform the sum. However, in doing so,
only a

i1...ir
j1...js(r) is differentiated because the matrices S and T are constant.

Therefore,
∂ã

i1...ir
j1...js(r)

∂x̃p
= T

i1
k1
. . . T

ir
kr

ak1...krm1...ms
(r)

∂x̃p
S
m1
j1 . . . S

ms
js (2.4)

Now, using the chain rule for partial differentiation of ai1...irj1...js(r) on the right
side of (2.4), we find that

ak1...krm1...ms
(r)

∂x̃p
=

ak1...krm1...ms
(r)

∂xq

∂xq

∂x̃p
=

ak1...krm1...ms
(r)

∂xq
S
q
p (2.5)
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with implied summation over q on the right side of (2.5). Substitution of
(2.5) in (2.4) gives

∂ã
i1...ir
j1...js(r)

∂x̃p
= T

i1
k1
. . . T

ir
kr

ak1...krm1...ms
(r)

∂xq
S
m1
j1 . . . S

ms
js S

q
p (2.6)

In our new notation, equation (2.6) reads

ã
i1...ir
j1...js;p(r) = T

i1
k1
. . . T

ir
kr
a
k1...kr
m1...ms;q(r)S

m1
j1 . . . S

ms
js S

q
p (2.7)

This is precisely the change-of-basis formula for an (r, s + 1)-tensor, as was
claimed.

2.3 Curvilinear Coordinates

Let us assume that we are given n functions of the coordinates of the ref-
erence basis, to be denoted by yi(x1, . . . , xn), 1 ≤ i ≤ n. These functions
are assumed to be continuous and to possess continuous partial derivatives
on a certain region in the space1. Additionally, they are assumed to be
invertible, and the inverse functions xi(y1, . . . , yn), 1 ≤ i ≤ n are also as-
sumed to be continuous and to possess continuous partial derivatives on the
same region. Such functions yi(x1, . . . , xn) are called curvilinear coordinates.
“Curvi” implies nonlinearity, and ”linear” implies that the functions can be
locally linearized in the vicinity of each point r, as we shall see soon.

Consider the partial derivatives of the radius vector r with respect to the
curvilinear coordinates. We define

Ei =
∂r

∂yi
=

∂

∂yi

�
ejx

j
�
= ej

�
∂xj

∂yi

�
(2.8)

This derivation is correct because ej are fixed vectors; hence their derivatives
are identically zero. The n2 partial derivatives ∂xj/∂yi form a square matrix

1
Technically, this region must be an open set, but you may ignore this if you are not

familiar with the notion of an open set. In the next chapter we will be more precise about

this point.
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called the Jacobian matrix. This matrix is nonsingular since yi(x1, . . . , xn),
1 ≤ i ≤ n are invertible. Let us denote

S
j
i =

∂xj

∂yi
, T

m
k =

∂ym

∂xk
(2.9)

Then
T

m
j S

j
i = δ

m
i , S

i
mT

m
k = δ

i
k (2.10)

The vectors (E1, . . . ,En) are called the tangent vectors of the curvilinear
coordinates at the point r. The vector space spanned by the tangent vector
is called the tangent space at the point r. The tangent space varies from
point to point, unless all functions yi(x1, . . . , xn) are linear. The space is
n-dimensional in general, unless one (or more) of Ei is zero2.

To distinguish such a basis from an ordinary fixed basis, we use uppercase
bold letters for the basis members. If r + dr is a point close to r, then the
differential vector dr can be conveniently expressed in terms of the local basis
as dr = Eidy

i. We note that dr is also called the line element.

Equation (2.8) can be written as

Ei = ejS
j
i , ek = EmT

m
k (2.11)

Expressions (2.11) have the same form as an ordinary change-of-basis trans-
formation as can be seen by comparing them with (1.13). We should keep in
mind, however, that (2.11) is local at each r whereas (1.13) is global on the
space.

2.4 The Affine Connections

When each of the tangent vectors Ei is differentiated with respect to each
curvilinear component yj, we obtain n2 new vectors ∂Ei/∂y

j. Each such

2
If some of the Ei are zero at an isolated point, we may define the tangent space at that

point by continuity. However, if this happens on an interval, we have a case of irreparable

degeneracy of the tangent space.
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vector may be expressed in terms of the local basis (E1, . . . ,En). Doing so
yields n2 linear expressions

∂Ei

∂yj
= EkΓ

k
ij (2.12)

where implicit summation over k is understood as usual. The n3 coefficients
Γk
ij in (2.12) are called the affine connections or the Christoffel symbols of the

second kind. Although the notation Γk
ij may imply that the affine connections

constitute a tensor, this is in fact not the case.

At this point it becomes convenient to use a notation commonly used in
multivariate calculus: whenever we differentiate a function f(y1, . . . , yn) with
respect to yp, we write f,p = ∂f/∂yp for the derivative. The function f may
have other indices. For example, (2.12) can be written as

Ei,j = EkΓ
k
ij (2.13)

In general, an index following a comma will denote partial derivative with
respect to the corresponding y coordinate. Second derivatives will contain
two indices after the comma, etc. Note that partial derivatives with respect
to xp will be denoted explicitly as ∂f/∂xp, to avoid ambiguity.

2.4.1 Formulas for the Affine Connections

We now derive several explicit formulas for the affine connections, which will
be useful later. First, differentiation of (2.11) and substitution in (2.12) gives

Ei,j =
�
ekS

k
i

�
,j
= ekS

k
i,j = EmΓ

m
ij = ekS

k
mΓ

m
ij (2.14)

Since (e1, e2, . . . , en) is a basis, the expansion of any vector in terms of this
basis is unique. It hence follows from (2.14) that

S
k
i.j = S

k
mΓ

m
ij (2.15)

We may now apply the inverse transformation to (2.15), to find

T
p
kS

k
i,j = T

p
kS

k
mΓ

m
ij = δ

p
mΓ

m
ij = Γp

ij (2.16)
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We thus obtain the first explicit formula for the affine connections:

Γp
ij = T

p
kS

k
i,j = T

p
kx

k
,ij (2.17)

We therefore deduce that the affine connections are symmetric in their lower
indices.

A second formula for the affine connections is derived as follows. Upon
differentiating (2.10), we get

(T p
kS

k
i ),j = T

p
k,jS

k
i + T

p
kS

k
i,j = 0 ⇒ T

p
kS

k
i,j = −T

p
k,jS

k
i (2.18)

Substitution of (2.18) in (2.17) gives

Γp
ij = −T

p
k,jS

k
i (2.19)

The third explicit formula expresses the affine connections in terms of the
metric tensor gij = Ei · Ej associated with the basis (E1, . . . ,En):

Γk
ij = 0.5gkm(gmi,j + gmj,i − gij,m) (2.20)

We prove (2.20) by direct calculation, as follows:

gmi,j = (Em · Ei).j = Em,j · Ei + Em · Ei,j

=
�
EpΓ

p
mj

�
· Ei + Em ·

�
EpΓ

p
ij

�
= gpiΓ

p
mj + gmpΓ

p
ij

(2.21)

In the same way we find for the two other terms

gmj,i = gpjΓ
p
mi + gmpΓ

p
ji, gij,m = gpjΓ

p
im + gipΓ

p
jm (2.22)

Substitution of (2.21) and (2.22) in (2.20) and using the symmetry of the
affine connection and the metric tensor with respect to the lower indices, we
find

0.5gkm
�
gpiΓ

p
mj + gmpΓ

p
ij + gpjΓ

p
mi + gmpΓ

p
ji − gpjΓ

p
im − gipΓ

p
jm

�

= g
km

gmpΓ
p
ij = δ

k
pΓ

p
ij = Γk

ij

(2.23)

Hence the proof is complete.
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2.4.2 Example

We illustrate the derivation of the affine connections for a two-dimensional
vector space with Cartesian coordinates (x, y) and curvilinear polar coordi-
nates (r,ϕ). related by

x = r cosϕ, y = r sinϕ

This transformation is invertible at all points, except r = 0. The Jacobian
matrix and its inverse are

S =

�
cosϕ −r sinϕ
sinϕ r cosϕ

�
, T =

�
cosϕ sinϕ

−r−1 sinϕ r−1 cosϕ

�

The partial derivatives of the Jacobian matrix are

S,r =

�
0 − sinϕ
0 cosϕ

�
, S,ϕ =

�
− sinϕ −r cosϕ
cosϕ −r sinϕ

�

Multiplying these matrices by T gives

TS,r =

�
0 0
0 r−1

�
, T S,ϕ =

�
0 −r

r−1 0

�

Finally,

Γr
rr = 0, Γr

rϕ = Γr
ϕr = 0, Γr

ϕϕ = −r, Γϕ
rr = 0, Γϕ

rϕ = Γϕ
ϕr = r

−1
, Γϕ

ϕϕ = 0

2.5 Differentiation of Tensor Fields in Curvi-
linear Coordinates

We now turn our attention to the problem of differentiating tensor fields in
curvilinear coordinates, which differentiation generalizes the tensor deriva-
tive a

i1...ir
j1...js;p(r) introduced in Sec. 2.2. In the following we omit the explicit

dependence on r for simplicity, but we keep in mind that r may be expressed
in terms of either the linear coordinates xi or the curvilinear coordinates yi,
depending on the context; cf. Sec. 2.3.
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For the purpose of the material on tensor fields in curvilinear coordinates,
we will use the following convention henceforth. Tensor coordinates relative
to the reference basis will continue to be denoted by lower case letters. For
tensors in curvilinear coordinates we will use upper case letters, but without
the tilde. Thus, if ak1...krm1...ms

are the coordinates of the tensor a in the reference
basis ei, expressed as functions of the linear coordinates xi, then Ak1...kr

m1...ms
will

denote the coordinates of the same tensor in the tangent basis Ei, expressed
as functions of the curvilinear coordinates yi. This convention will facilitate
convenient visual identification of tensors in curvilinear coordinates, which
tensors are heavily used in subsequent material.

Recall (2.7), which was shown to hold for change of basis in linear coordinates.
Let us require that (2.7) hold in curvilinear coordinates as well; that is,

A
i1...ir
j1...js;p = T

i1
k1
. . . T

ir
kr
a
k1...kr
m1...ms;qS

m1
j1 . . . S

ms
js S

q
p (2.24)

where S, T are the transformations (2.9). We wish to derive an expression for
A

i1...ir
j1...js;p which will make (2.24) valid. In order to simplify the derivation and

make it more transparent we will start with the special case of a (1, 1)-tensor.
In this case we know that

a
k
m = S

k
i A

i
jT

j
m (2.25)

Therefore,
a
k
m,p = S

k
i,pA

i
jT

j
m + S

k
i A

i
j,pT

j
m + S

k
i A

i
jT

j
m,p (2.26)

Substitute (2.15) and (2.18):

∂akm

∂xq

∂xq

∂yp
=

∂akm

∂xq
S
q
p = S

k
hΓ

h
ipA

i
jT

j
m + S

k
i A

i
j,pT

j
m − S

k
i A

i
jΓ

j
hpT

h
m (2.27)

This is the same as

T
i
k

∂akm

∂xq
S
m
j S

q
p = Γi

hpA
h
j + A

i
j,p − A

i
hΓ

h
jp (2.28)

or
T

i
ka

k
m;qS

m
j S

q
p = A

i
j,p + Γi

hpA
h
j − A

i
hΓ

h
jp (2.29)

Finally, comparing the left side of (2.29) with the right side of (2.24), we find
that

A
i
j;p = A

i
j,p + Γi

hpA
h
j − A

i
hΓ

h
jp (2.30)
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Expression (2.30) is called the covariant derivative of the (1,1)-tensor Ai
j

in curvilinear coordinates. As we saw, Ai
j;p is a (1,2)-tensor, related to the

(1,2)-tensor akm;q via the change-of-basis formula (2.24).

We now have two kinds of derivatives in curvilinear coordinates: the conven-
tional derivative, denoted by X,p (where X stands for any object depending
on yi), and the covariant derivative X;p, defined only for tensors X. The lat-
ter is equal to the former plus additional terms; these are called the affinities.

The covariant derivative of a general tensor in curvilinear coordinates is de-
rived in a similar manner, yielding the expression

A
i1...ir
j1...js;p = A

i1...ir
j1...js,p +

r�

u=1

Γiu
hup

A
i1...iu−1huiu+1...ir
j1...js −

s�

u=1

A
i1...ir
j1...ju−1huju+1...js

Γhu
jup

(2.31)
The special cases of the covariant derivatives of vectors and covectors are
worthwhile writing explicitly:

A
i
;p = A

i
,p + Γi

hpA
h
, Aj;p = Aj,p − AhΓ

h
jp (2.32)

The metric tensor gij has the following useful property:

Theorem 5. The covariant derivative of gij is identically zero; that is,

gij;p = 0

.
Proof. It follows as a special case of (2.31) that

gij;p = gij,p − gkjΓ
k
ip − gikΓ

k
jp (2.33)

Now substitute the affine connections expression (2.20) in (2.33), then carry
out all cancelations, ending up in 0, as claimed.

Let T ij be a symmetric (2, 0)-tensor. The covariant divergence of T ij is
defined as

∇;iT
ij = T

ij
;i = T

ij
,i + Γi

kiT
kj + Γj

ikT
ik (2.34)

The covariant divergence is a contravariant vector whose free index is j in
this definition. The covariant divergence is important in physics applications
because it is typically associated with conservation laws.
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2.6 The Second Covariant Derivative

We continue our discussion of the preceding section by differentiating tensor
fields in curvilinear coordinates a second time. However, we do not discuss
the general case but limit ourselves to the second covariant derivative of a
(contravariant) vector. The general case can be derived using the procedure
derived below, but the special case we consider is sufficient for drawing some
interesting conclusions.

The second covariant derivative of Ai, denoted by Ai
;pq, is the first covariant

derivative of Ai
;p. This is, in turn, a (1, 1)-tensor; therefore its first covariant

derivative can be found from (2.30):

A
i
;pq = (Ai

;p),q + Γi
hqA

h
;p − A

i
;hΓ

h
pq (2.35)

Let us expand each of the first two terms on the right side of (2.35) (but not
the third, for reasons to be seen later), using Ai

;p from (2.32):

(Ai
;p),q = (Ai

,p + Γi
hpA

h),q = A
i
,pq + Γi

hp,qA
h + Γi

hpA
h
,q (2.36)

Γi
hqA

h
;p = Γi

hqA
h
,p + Γi

hqΓ
h
kpA

k (2.37)

Substitution of (2.36) and (2.37) in (2.35) gives

A
i
;pq = A

i
,pq + Γi

hp,qA
h + Γi

hpA
h
,q + Γi

hqA
h
,p + Γi

hqΓ
h
kpA

k
− A

i
;hΓ

h
pq (2.38)

Expression (2.38) provides the desired result for the second covariant deriva-
tive of a vector in curvilinear coordinates. In the next section we will continue
to explore this result.

2.7 The Riemann Curvature Tensor

As we know from multivariate calculus, second derivatives possess the sym-
metry X,pq = X,qp if the second derivatives exist and are continuous. Let us
explore if this property holds for second covariant derivatives. To find out,
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let us compute Ai
;pq−Ai

;qp and check whether the difference is identically zero.
Using (2.38) and canceling terms that are equal due to symmetries gives

A
i
;pq − A

i
;qp = Γi

hp,qA
h + Γi

kqΓ
k
hpA

h
− Γi

hq,pA
h
− Γi

kpΓ
k
hqA

h

= (Γi
hp,q + Γi

kqΓ
k
hp − Γi

hq,p − Γi
kpΓ

k
hq)A

h
(2.39)

Let us introduce a new symbol:

R
i
hqp = Γi

hp,q + Γi
kqΓ

k
hp − Γi

hq,p − Γi
kpΓ

k
hq (2.40)

Equation (2.39) then becomes

A
i
;pq − A

i
;qp = R

i
hqpA

h (2.41)

An immediate consequence of this result is that the second covariant deriva-
tive is not symmetric in general, except when Ri

hqp is identically zero. Later
we will see when this happens.

Theorem 6. Ri
hqp is a tensor.

Proof. The left side of (2.41) is a difference of tensors and is therefore a
tensor. Denoting this tensor temporarily as δAi

pq, we have that δAi
pq =

Ri
hqpA

h, where both δAi
pq and Ah are tensors. In this equality, Ah is arbitrary,

Ri
hqp is given, and δAi

pq is the resulting tensor. Now make a change-of-basis
transformation. If Ri

hqp is a tensor, then the corresponding equality in the

new basis will be δ �Ai
pq = �Ri

hqp
�Ah, where all tildes denote the new basis

coordinates of the tensors. If Ri
hqp is not a tensor, then the corresponding

equality in the new basis will be δ �Ai
pq = �Ri

hqp
�Ah, where �Ri

hqp is an unknown
array of numbers. Therefore, in the latter case,

( �Ri
hqp −

�Ri
hqp) �Ah = 0

Since this equality holds for all �Ah it holds, in particular, for �Ak = 1 and
�Ah = 0, h �= k. It therefore follows that

�Ri
kqp −

�Ri
kqp = 0

Finally, this holds for all i, k, p, q, so �Ri
kqp = �Ri

kqp and it follows that Ri
hqp is

a tensor.
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The tensor Ri
hqp is called the Riemann curvature tensor. The Riemann cur-

vature tensor plays a central role in differential geometry and the theory of
manifolds, as well as in applications of these theories. Here we do not pro-
vide enough material on these subjects to really appreciate the importance of
the Riemann tensor. We will settle for discussing some of its mathematical
properties and then present some tensor related to the Riemann tensor.

The first thing to note is that Ri
hqp depend only on the affine connections Γk

ij.
These, in turn, depend only on the metric gij, as seen from (2.20). It follows
that The Riemann tensor depends only on the metric. We should remember,
however, that in curvilinear coordinates the metric varies from point to point
and the Riemann tensor varies with it. Only when the curvilinear coordinates
are linear is the metric constant. In this case the affine connections are
identically zero and so is the Riemann tensor.

The Riemann tensor is antisymmetric in the indices q and p; that is,

R
i
hqp = −R

i
hpq (2.42)

This follows directly from the definition (2.40).

The Riemann tensor satisfies the so-called First Bianchi identity :

R
i
hqp +R

i
qph +R

i
phq = 0 (2.43)

This identity also follows by substitution of (2.40) and performing the can-
celations. Note that the lower indices of the three terms in (2.43) are cyclic
permutations of one another.

Other symmetries of the Riemann tensor are more subtle; to make them
explicit, we introduce the purely covariant Riemann tensor, obtained by low-
ering the contravariant index of Ri

hqp:

Rihqp = gijR
j
hqp (2.44)

The covariant Riemann tensor possesses the symmetries

Rihqp = −Rihpq = −Rhiqp = Rqpih (2.45)

The first equality in (2.45) follows from the corresponding anti-symmetry of
(2.42). The other two are established in Appendix B.
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2.8 Some Special Tensors

The space-geometry tensors of general relativity are, in a figure of speech,
children of the Riemann tensor. The Ricci3 tensor and the Einstein tensor,
in particular, are derived from the Riemann tensor as we will now present.

The Ricci tensor is the result of contracting the contravariant and last co-
variant indices of the Riemann tensor:

Rij = R
k
ijk (2.46)

The Ricci tensor is symmetric, as results from the following chain of equali-
ties:

Rij = R
k
ijk = g

ku
Ruijk = g

ku
Rjkui = g

ku
Rkjiu = R

u
jiu = Rji (2.47)

In (2.47) we used the symmetries and anti-symmetries of the covariant Rie-
mann tensor, given in (2.44). Be sure to understand which symmetry is used
at each step of (2.47).

The curvature scalar is the full contraction of the Ricci tensor:

R = g
ij
Rij (2.48)

The Einstein tensor is defined by

Eij = Rij − 0.5gijR (2.49)

Einstein’s tensor is symmetric, since both Rij and gij are symmetric. Ein-
stein’s tensor can also be expressed in mixed and contravariant forms:

E
i
j = R

i
j − 0.5δijR, E

ij = R
ij
− 0.5gijR (2.50)

3
Gregorio Ricci-Curbastro and Tullio Levi-Civita developed tensor theory in the late

19th century, following in the footsteps of Gauss and Riemann. Levi-Civita helped Ein-

stein understand tensors, thereby facilitating Einstein’s development of general relativity.

Two Jews—one a brilliant mathematician and the other greatest physicist ever—in an

increasingly hostile and antisemitic Europe.
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2.9 Summary

In this section we extended tensor theory from constant tensors in constant
bases to tensor fields; that is, tensors that vary from point to point in space.
The space itself is still a vector space with an inner product (positive or not);
therefore tensors can still be expressed relative to a fixed (reference) basis.
However, they may also be expressed relative to bases that vary from point
to point. We introduced the concept of curvilinear coordinates, which may
be global on the entire space or local to a subset of the space.

Calculus demands the ability to differentiate functions. We distinguished
between two kinds of derivatives: the usual partial derivative, as defined in
calculus; and the covariant derivative. The latter has an important property
not shared by the former—it is a bona-fide tensor and therefore transforms
properly under change of basis.

The definition of covariant derivative relies on the extension of the concept of
metric to local bases on curvilinear coordinates, and on the affine connections.
A second covariant derivative can also be defined. It turns out that the
second covariant derivative, unlike a usual second partial derivative, depends
on the order of the coordinates with respect to which we differentiate; in
other words, it is not commutative. An important consequence of this lack
of commutativity is the ability to define the curvature tensor. This tensor,
also called the Riemann tensor, leads to the Ricci tensor and to the Einstein
tensor; the latter plays a fundamental role in general relativity.
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Chapter 3

Tensors on Manifolds

3.1 Introduction

The space Rn is one of mathematics’ greatest success stories: it is at the
same time the star of linear algebra, geometry, and analysis. What makes
Rn such a fertile ground for mathematical theories? I am not sure whether
there is an official answer, but I suspect that if there is one, it is: Pythagoras’
theorem; or, more accurately, the n-dimensional generalization thereof:

d
2 =

n�

i=1

(xi)2 (3.1)

where d is the hypotenuse and xi the sides of an n-dimensional triangle. This
being said, there is more to mathematics than Euclidean spaces. To mention
but one of many examples, consider the the surface of a sphere. It follows
immediately from (3.1) that the surface of a sphere is just the set of all points
of constant distance d from the origin. But, although the surface of a sphere
is intimately related to the Euclidean space in which it is embedded, it does
not at all look like a Euclidean space of any dimension.

The surface of a sphere is an example of a smooth topological manifold. We
can loosely define such an object as a set patched up from subsets, each of
which is “like” a Euclidean space. “Like” in this description means that each
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patch can be mapped in a one-to-one way to a patch of a Euclidean space
such that the map and its inverse are continuous. Let us exemplify this
informal description by considering the surface of a sphere in R3 centered at
the origin and having radius d = 1. Denote the surface of the sphere by S

and the three cartesian coordinates by (x, y, z). Then the two sets

O1 = {(x, y, z) ∈ S, z �= 1} and O2 = {(x, y, z) ∈ S, z �= −1}

together cover S. Note that these sets considerably overlap; the first contains
all points of S except the north pole and the second contains all points but
the south pole. Let (u, v) be cartesian coordinates on R2 and define

u =
2x

1− z
, v =

2y

1− z

These functions, called the stereographic projection, map O1 onto R2 contin-
uously. The inverse functions

z =
0.25(u2 + v2)− 1

0.25(u2 + v2) + 1
, x = 0.5u(1− z), y = 0.5v(1− z)

are continuous on R2 onto O1. In a similar way O2 can be mapped onto R2;
simply replace 1− z by 1 + z in the above. The surface of a sphere in three
dimensions as therefore a two-dimensional manifold.

This chapter extends tensor calculus from curvilinear coordinates in Eu-
clidean spaces to tensor fields on manifolds. This chapter uses a higher
level of abstraction and requires greater mathematical maturity on part of
the reader beyond what was needed in Chapter 2. Learning the material in
this chapter may thus be considerably more difficult than the material in the
preceding chapters. On the other hand, tensors on manifolds are essential for
understanding general relativity, which is why this chapter is included here.

The mathematical background presented in Section 3.2 contains several parts.
Sets and functions should be part of the education of all engineering students.
Hopefully, this material will not be new to you. The Euclidean space Rn is
usually studied in the course of multivariate calculus, but its topological
properties, as presented here, are not always emphasized. Introducing the
topological properties of Rn provides us with an opportunity to introduce
general topological spaces, at the most elementary level. The minimal nec-
essary background on continuity and homeomorphism is then introduced.
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Section 3.3 introduces manifolds. This is the most challenging section; read-
ing and re-reading will probably be needed by most students. By comparison,
the remaining sections should be easier. Section 3.4, on tensors and tensor
fields, is a relatively straightforward extension of the material in Chapter 2.
Sections 3.5, 3.6, and 3.7 on curves, curvature and geodesics are optional,
and rely mostly on standard multivariate calculus.

3.2 Mathematical Background

3.2.1 Sets and Functions

Recall the definition of smooth manifold as a ...

We assume that you know the concept of an abstract set, at least at the
intuitive level. We remind that the notation x ∈ A means that x belongs to
the set A or, equivalently, that x is a member of the set A. We also say that
A contains x. The notation x /∈ A means that x does not belong to A.

If A is a set and B is another set such that, for all x ∈ B it holds true that
x ∈ A, then B is a subset of A, denoted as B ⊆ A. We also say that B is

included in A and that A includes B. For two sets A and B, the notation
A\B stands for the set of all x ∈ A and x /∈ B. We sometime call this set
(informally) “A minus B”. If, as a special case, B ⊆ A, then A\B is called
the complement of B in A.

The union A∪B of sets A and B is the set of all x such that x ∈ A or x ∈ B

or both. The intersection A ∩ B of A and B is the set of all x such that
x ∈ A and x ∈ B. If there is no such x, the two sets are said to be disjoint

and the intersection is the empty set ∅.

Unions and intersections are not limited to two sets, or even to a finite
collection of sets. If I is an arbitrary set—finite, countably infinite, or even
uncountably infinite—we may assign to each member i ∈ I a set Ai, thus
obtaining a collection {Ai, i ∈ I}. Then the union

�
i∈I Ai is the set of all x

such that x ∈ Ai for some i ∈ I and the intersection
�

i∈I Ai is the set of all
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x such that x ∈ Ai for all i ∈ I.

A function f from a domain X to a codomain Y , denoted f :X → Y , ia a set
of ordered pairs (x, y) where x is present in exactly one pair for each x ∈ X.
On the other hand, any y ∈ Y may appear once, or multiple times, or none
at all. We commonly write y = f(x) to denote that (x, y) belongs to f ; with
this notation, the pair (x, f(x)) is trivially in f .

A function is called injective (or one-to-one) if each y ∈ Y appears at one
pair (x, y) at most; equivalently, f(x1) �= f(x2), unless x1 = x2. A function
is called surjective (or onto) if each y ∈ Y appears at least in one pair (x, y);
equivalently, for every y ∈ Y there exists x ∈ X such that y = f(x). A
function is called bijective (or one-one correspondence) if each y ∈ Y appears
in exactly one pair. Clearly, a function is bijective if and only if it is both
injective and surjective.

The range of a function is the subset of all y ∈ Y for which y = f(x) for
some x ∈ X. The range of a surjective function is therefore identical with
its codomain. Every function becomes surjective if we redefine its codomain
as its range. On the other hand, a function that is not injective cannot be
made injective in a similar manner.

If f :X → Y is a bijective function, its inverse f−1 is defined as follows. First,
the domain of f−1 is the codomain of f and vice versa; that is, f−1 :Y → X.
Second, f−1 consists of all pairs (y, x) corresponding to the pairs (x, y) of f ;
equivalently, f−1(f(x)) = x for all x ∈ X.

Let A be a subset of the domain X of a function. Then the image of A,
denoted f [A], is the subset of Y consisting of all points y ∈ Y such that
y = f(x) for some x ∈ A. It is clear from the definition that f [X] is identical
with the range of the function.

Let B be a subset of the codomain of a function. Then the inverse image of
B, denoted f−1[B], is the subset of X consisting of all points x ∈ X such that
y = f(x) for some y ∈ B. It is clear from the definition that f−1[Y ] = X.

The image and inverse image satisfy the following union and intersection
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properties:

f [A ∪B] = f [A] ∪ f [B] (3.2a)

f [A ∩B] ⊆ f [A] ∩ f [B] (3.2b)

f
−1[A ∪B] = f

−1[A] ∪ f
−1[B] (3.2c)

f
−1[A ∩B] = f

−1[A] ∩ f
−1[B] (3.2d)

However, if f is injective, then (3.2b) changes to

f [A ∩ B] = f [A] ∩ f [B] (3.3)

Let X, Y , and Z be three sets and let f :X → Y and g :Y → Z. Then the
composition g ◦ f :X → Z is the set of all pairs (x, z) such that, for some
y ∈ Y , y = f(x) and z = g(y). We may omit y and write z = g(f(x))
to denote g ◦ f when applied to x. It is obvious that, in the definition of
composition, the domain of g can be restricted to the range f [X] of f without
affecting the composition.

3.2.2 The Topological Structure of Rn

The space Rn consists of all n-tuples of real numbers (x1, . . . , xn). Each
such n-tuple is denoted as a vector, for example x. Points and vectors are
synonymous in Rn. The numbers xi are called the coordinates of x.

A distance function is defined for all pairs of vectors:

|x− y| =

� n�

i=1

(xi
− y

i)2
�1/2

(3.4)

The distance functions has three fundamental properties:

D1 The distance is zero if x = y and positive if x �= y.

D2 The distance is symmetric in x and y.

D3 The distance satisfies the triangle inequality for all x, y, z:

|x− y| ≤ |x− z|+ |z− x| (3.5)
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Let x0 be a point in Rn and d a positive number. The set

B(x0, d) = {y : |x0 − y| < d} (3.6)

is called an open ball centered at x0 and having radius d.

A subset O of Rn is open if it is a union (finite, countable, or uncountable)
of open balls. Open sets have three fundamental properties, as follows.

T1 The empty set ∅ and Rn are open sets.

T2 The union of any number of open sets (finite, countable, or uncountable)
is an open set.

T3 The intersection of two open sets is an open set.

Property T1 is true because of the following. By convention, an empty union
is empty. Thus

�
i∈∅ Oi = ∅; therefore ∅ is open. The entire space Rn is open

because it is the union of all open balls.

Property T2 is almost self evident. Given any collection of open sets, then
each is a union of open balls, thus their union is a union of unions of open
balls, which is itself a union of open balls, which is open.

Property T3 is more difficult to prove. We break the proof into three steps,
as follows.

Step One. Consider the intersection of two open balls, say

A = B(x1, d1) ∩B(x2, d2)

Let y be a point in A. We aim to find an open ballB(y, ε) such that B(y, ε) ⊆
B(x1, d1) and B(y, ε) ⊆ B(x2, d2). It will then follow that B(y, ε) ⊆ A.
Define

ε1 = d1 − |y − x1|, ε2 = d2 − |y − x2|, ε = min{ε1, ε2}

Since y ∈ B(x1, d1), it follows that ε1 > 0. Similarly, ε2 > 0. Therefore
ε > 0 and hence B(y, ε) is indeed an open ball. Let us now show that
B(y, ε) ⊆ B(x1, d1). If z ∈ B(y, ε); then

|z− y| < ε1 = d1 − |y − x1|
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so by the triangle inequality

|z− x1| ≤ |z− y|+ |y − x1| < d1 − |y − x1|+ |y − x1| = d1

This proves that z ∈ B(x1, d1). Since z is an arbitrary point in B(y, ε),
it follows that B(y, ε) ⊆ B(x1, d1). In the same we show that B(y, ε) ⊆

B(x2, d2) and conclude that B(y, ε) ⊆ A.

Step Two. So far we proved that, given a point y in the intersection A of two
open balls, there exists an open ball B(y, ε) that contains y and is included
in A. The union

�
y∈A B(y, ε) therefore both includes and is included in A,

so it is equal to A. It follows that A is an open set1.

Step Three. To complete the proof, consider two open sets O1, O2. Each is
a union of open balls and hence U1 ∩ U2 is the union of all intersections of
the open balls comprising O1 with those comprising O2 (this follows from De
Morgan’s distributive laws for unions and intersections of sets). As we have
just shown, each such intersection is an open set; therefore U1∩U2 is an open
set and the proof is complete.

Generalization. The intersection of a finite number of open sets is open. This
follows from T3 using induction on the number of sets.

3.2.3 General Topological Spaces

Borrowing from definitions stated in the preceding subsection, we now define
a topological space as a set S, equipped with a collection T of subsets of S,
such that axioms T1, T2 and T3 are satisfied. The member sets of T are
the open sets of the topology.

The space Rn, together with the collection of all open sets, is an example of
a topological space. It is called the usual topology on Rn. This, in fact, was
the model on which general topology was founded.

1
If you have not seen this kind of mathematical proof, you must be surprised and

hopefully amazed. This is the power of infinity in action. It is Georg Cantor’s theory of

infinity that revolutionized mathematics; the revolution in physics followed only shortly

after.
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Two simple examples of topological spaces are:

• Any set S with T = {∅, S}. This topology has only two open sets and
is called the indiscrete topology on S.

• Any set S with T containing all subsets of S. This is called the discrete
topology on S.

Many more examples can be given, but since our aim is not to teach topology
for its own sake, we will not provide more examples.

We call a set C closed if its complement S\C is open. It follows easily from
this definition that ∅ and S are closed, that an arbitrary intersection of closed
sets is closed, and that the union of two closed sets is closed. In the usual
topology on Rn, the closed ball

C(x0, d) = {y : |x0 − y| ≤ d} (3.7)

is closed. For a proof, note that the union of all open balls in Rn which are
disjoint from C(x0, d) is open and is equal to Rn\C(x0, d)

If x is a point and O is an open set containing x, then O is said to be an open

neighborhood of x. If x is a point and N is a set containing x (not necessarily
open), then N is a neighborhood of x if there exists an open neighborhood
O of x such that O ⊆ N . Thus, a neighborhood of x is any set including an
open neighborhood of x.

3.2.4 More on Rn

The usual topology on Rn has many interesting properties that arise fre-
quently in advanced calculus on Rn. We will mention some of them here;
most are not essential to understanding of the material in this chapter but
are good to know for completeness.

Hausdorff If x1 and x2 are two different points, then there exist open
neighborhoods O1 and O2 of x1 and x2 such that O1 ∩ O2 = ∅. A
topological space having this property is called a Hausdorff space

2. To

2
Named after Felix Hausdorff, one of the founders of the abstract theory of topological

spaces.
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prove the Hausdorff property for Rn, let d = |x1 − x2| and then let
O1 = B(x1, d/3), O2 = B(x2, d/3). It is straightforward to prove that
O1 ∩O2 = ∅.

Separability A subset A of a topological space is dense if every open set
contains a point of A. A topological space is separable if it contains
a countable dense set. It is well known that the rational numbers are
dense in R (we will not prove this here). It then follows that the points
x whose coordinates are rational are dense in Rn. The set of rational
numbers is known to be countable. It then follows that the set of n-
tuples of rational numbers is countable. Therefore, Rn equipped with
the usual topology is separable.

Second Countability A base for a topology is a collection B of open sets
such that every open set is a union of members of B. The definition of
the usual topology on Rn automatically makes the collection of all open
balls a base for the topology. A topological space is second countable if
it has a countable base [first countable is another property, which we
will not discuss here]. The collection B of all open balls whose centers
have rational coordinates and whose radii are rational is a countable
base for usual topology on Rn. Here is a sketch of the proof. Given an
open set O, take all points x of O having rational coordinates. For each
x, take all open balls B(x, r) with rational r such that B(x, r) ⊆ O.
Then

�
x,r B(x, r) = O.

All these definitions are applicable to any topological space, not just to Rn.

3.2.5 Continuity and Homeomorphisms

A function on a topological space X to a topological space Y is continuous
at a point x if, for any open neighborhood V of f(x), there is an open
neighborhood U of x such that f [U ] ⊆ V . Compare this definition with
the usual conventional “epsilon-delta” definition for functions on and to R
and you will see that the “epsilon-delta” definition follows from the general
definition, when applied to the usual topology on R.

A function is continuous on an open set O ⊆ X if it is continuous at all points
of O. In particular, a function is continuous on X if it is continuous at all
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points of X. The following theorem is of interest: A function is continuous
on X if and only if, for any open set V in Y , the inverse image U = f−1[V ]
is an open set in X. The proof is a simple exercise which you may want to
carry out, to test your understanding of images, inverse images, and open
sets.

Let X and Y be two topological spaces and assume that there exists a bijec-
tive function f on X onto Y such that both f and f−1 are continuous. Then
the two spaces are homeomorphic and f is called homeomorphism. You may
think of two spaces as being homeomorphic if they are made of infinitely
flexible rubber and one can be obtained from the other by arbitrary stretch-
ing, squeezing, or bending, but no tearing or punching holes. The two spaces
“look the same” in the sense that an arbitrary set O in X is open if and only
if f [O] is open in Y .

Let X and Y be two topological spaces. Let x be a point in X and assume
that there exist an open neighborhood Ox of x and an injective function fx

on Ox onto fx[Ox] ⊆ Y such that fx is continuous at all points of Ox and
f−1
x is continuous at all points of fx[Ox]. Assume further that this condition
holds for all points x ∈ X (note that Ox and fx exist for each x individually
and not globally). Then Y is locally homeomorphic to X.

Let us now proceed to functions f :Rn → Rm. We will occasionally refer
to such functions as numerical. A numerical function is continuous if it is
continuous with respect to the usual topology, as defined above. Equivalently,
f is continuous if for every x ∈ Rn and every open ball By containing y =
f(x), there exists an open ball Bx containing x such that f [Bx] ⊆ By.

We assume you are familiar with the concept of differentiability, as taught in
calculus courses. A function is of class Ck if all its partial derivatives up to
order k exist and are continuous. A function is C∞ if it is of class Ck for all
k. A function of class C∞ is also called smooth, and we will henceforth use
“smooth” consistently for C∞. A function is is analytic if it can be expressed
as an infinite power series about each point and the power series converges
absolutely in an open neighborhood of the point. An analytic function is
always smooth, but not conversely.
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3.3 Manifolds

3.3.1 Definition of a Manifold

A smooth topological manifold of dimension n is a set M satisfying the fol-
lowing axioms:

M1 M is a topological space whose topology is Hausdorff and second count-
able.

M2 There is a fixed collection of open sets O = {Oi, i ∈ I} on M that covers
M ; that is,

�
i∈I Oi = M .

M3 For each Oi ∈ O there is an injective function ψi :Oi → Rn such that
ψi, when its range is restricted to ψi[Oi], is a homeomorphism between
Oi and ψi[Oi]. The pair (Oi,ψi) is called a chart and the collection of
all charts is called an atlas.

M4 Two charts (Oi,ψi) and (Oj,ψi) are said to be compatible if either Oi ∩

Oj = ∅ or Oi ∩ Oj = U �= ∅ and the function ψi ◦ ψ
−1
j :ψj[U ] → ψi[U ]

is smooth. Then every pair of charts in the atlas is compatible.

M5 The atlas is maximal in the following sense: If (O,ψ) is a chart that is
compatible with every chart (Oi,ψi) in the atlas, then (O,ψ) is in the
atlas.

The following comments should clarify this definition.

1. Imposing a topology on M is the first step in establishing similarity
between the local structure of M and that of Rn, since we aim to
use the usual topology on Rn as a “reference” topology. The Hausdorff
and second countability requirements are technical and will not be used
here. Nonetheless, they are needed to establish some deeper aspects of
theory, outside our scope.

2. The number of sets in O needed in most applications of the theory is
finite and fairly small. For example, two charts are sufficient to cover
the surface of a two-dimensional sphere, as we explained in Section 3.1.
Nonetheless, axiom M5, which is included for technical reasons, ex-
pands O beyond necessity
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3. It follows from axiom M3 that ψi[Oi] is open in Rn.

4. It is the dimension n of Rn in axiomM3 that makes us call the manifold
n-dimensional.

5. A chart is also called a coordinate system. Given a chart (O,ψ), the set
O is called the chart set and the function ψ is called the chart function.

6. Note that the set U in axiom M4 is open, being an intersection of
open sets. Therefore, and since homeomorphisms carry open sets to
open sets, ψi[U ] and ψj[U ] are open in Rn.

7. Pay attention to the construction in axiom M4. The idea is to be
able to work with smooth functions on subsets of Rn into Rn. Since
the points of M are not numerical (M is an abstract set rather than
a concrete numerical set), we must find a way to “go through” M .
The function ψi ◦ ψ

−1
j answers this need. Since ψ

−1
j :ψj[U ] → U and

ψi :U → ψi[U ], the composition is indeed on ψj[U ] into ψi[U ], both of
which are open subsets of Rn.

8. Axiom M5 serves to make the definition of a manifold unique, since
otherwise we could choose many different atlases satisfying axioms M2
through M4. This is a matter of convenience rather than necessity,
since it eliminates the need to explicitly state which atlas we are refer-
ring to when working with a manifold.

3.3.2 Smooth Functions on Manifolds

We want to be able to define a smooth function on a manifold M to Rm,
where m may be equal to or different from n. Since M is not numerical, we
cannot do this directly using definitions from calculus. However, we may use
the same device used in axiom M4. Let f :M → Rm be a function satisfying
the following requirement:

MF1 For every (Oi,ψi) in the atlas, the function f ◦ ψ
−1
i :Rn → Rm is smooth.

Then f is defined to be smooth. Note that a single (Oi,ψi) makes f ◦ψ−1
i “go

through” Oi only and hence is not sufficient to characterize f on the entire
manifold. However, since MF1 holds for very chart in the atlas, f is, in fact,
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characterized on M in its entirety. Analytic and Ck functions on manifolds
to Rm can be defined similarly.

A particular class of smooth functions is given by the coordinate functions
of a manifold. These are defined as follows. First define the functions

ξk :Rn
→ R, ξk(x) = x

k (3.8)

The function ξk selects the kth coordinate of a vector. This is clearly a
smooth function. It now follows from M4 and MF1 that the composition
ξk ◦ ψi :Oi → R is smooth for all i and all k. The functions (ξ1◦ψi, . . . , ξn◦ψi)
are the coordinate functions of the chart (Oi,ψi). Of course, the different
charts of the atlas have different sets of coordinate functions.

3.3.3 Derivatives on Manifolds

We want to define derivatives of functions on manifolds. Again, we cannot
use calculus directly since a general manifold is abstract and its points are not
numerical. Nonetheless, we can define a differentiation operator by imposing
the fundamental properties of a derivative on such an operator, namely lin-
earity and the rule of differentiation of a product. We will now explain this
idea in precise terms.

Let M be a smooth manifold and let F be the set of all smooth functions
f :M → R, as defined in the preceding subsection. Note that the target
space here is the real line R rather than a general Euclidean space. Let f

and g be two functions in F . Then αf + βg clearly belongs to F for any
two real numbers α and β. It is, perhaps, less obvious that fg also belongs
to F . Note that fg denotes pointwise multiplication; that is, the value of fg
at p ∈ M is equal to f(p)g(p). Once this is understood, it is easy to verify
that fg is smooth by recalling MF1 and the fact that the product of two
numerical smooth functions is a smooth function.

Now let p be a fixed point in M and define an operator dp :F → R to be a
derivative operator at p if the following axioms hold:

MD1 Linearity:

dp(αf +βg) = αdp(f)+βdp(g) for all f, g ∈ F and all real α, β (3.9)
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MD2 Product rule:

dp(fg) = fdp(g) + gdp(f) for all f, g ∈ F (3.10)

We emphasize again that f , g, dp(f), and dp(g) in (3.9), (3.10) are understood
to be evaluated at p, therefore they are all real numbers.

As an example of the preceding definition, let us prove that the derivative of
a constant function is zero. Suppose that f(p) = c �= 0 for all p ∈ M . Let
us compute dp(f 2) it two ways, once from (3.9) and once from (3.10). Using
(3.9) with f(p) = c gives

dp(f
2) = dp(cf) = cdp(f)

On the other hand, using (3.10) with f(p) = c gives

dp(f
2) = 2cdp(f)

These two equalities agree only if dp(f) = 0.

3.3.4 Directional Derivatives Along Cartesian Coordi-
nates

Let us continue to explore ways of differentiation related to smooth func-
tions on manifolds. As before, let p ∈ M be a fixed point, f ∈ F a given
function, and (Op,ψp) a fixed chart such that p ∈ Op. By the definition of a
smooth function on a manifold, the function f ◦ ψ−1

p :ψp[O] → R is smooth
on an open subset of Rn to R. For such a function, the conventional partial
derivatives with respect to the cartesian coordinates xk in Rn:

∂

∂xk
(f ◦ ψ

−1
p )

are well defined as functions on an open subset of Rn to R.

Now comes a point that calls for special attention. Let us substitute f(p)
for f and ψ(p) for ψ in the partial derivatives. Doing so will result in a real
number. Now let us repeat for all functions f ∈ F . This will result in an
operator ∂/∂xk|p :F → R. Moreover, being a bona-fide partial derivative, it
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satisfies (3.9) and (3.10) automatically. Therefore, ∂/∂xk|p is a derivative
operator on M , as defined in the preceding subsection.

The operators (∂/∂xk|p, 1 ≤ k ≤ n) are called the directional derivatives

along the coordinates. They will play an important role in the remainder of
this chapter.

3.3.5 Tangent Vectors and Tangent Spaces

The definition of an abstract derivative operator MD1, MD2 leaves room
for many different derivative operators on the same manifold. Given any two
derivative operators dp,1 and dp,2, we can define their linear sum:

(α1dp,1 + α2dp,2)(f) = α1dp,1(f) + α2dp,2(f) (3.11)

Showing that (3.11) satisfies (3.9) and (3.10) is straightforward. Also, we
may define the zero operator as one that assigns the value 0 to any function
f . Therefore, the collection of all derivative operators at a point p, as defined
by MD1 and MD2, is a vector space. We denote this space by Dp and call
it the tangent space of the manifold at p. The elements of Dp, namely the
derivative operators, are called tangent vectors.

The main property of the the tangent space of a manifold at a point is given
by the following theorem

Theorem 7. The tangent space Dp is n-dimensional and the directional

derivatives (∂/∂xk|p, 1 ≤ k ≤ n) constitute a basis for the space.

We will prove only one part, namely that the directional derivatives are inde-
pendent. The other part, that every derivative operator d can be expressed
as a linear sum of the directional derivatives, will be omitted3. Assume that

v
k ∂

∂xk

���
p
= 0

3
Although I strive to include, or at list provide hints for, proofs of all claims in this

document, I decided to make an exception here. The omitted proof is rather long and

technical. Perhaps I will add it in the future.

62



for some n numbers vk. Then, by the definition of the directional derivatives,

v
k ∂

∂xk
(f ◦ ψ

−1)
���
p
= 0

This equality cannot hold identically for all smooth functions at a specific
point p, unless all vk are zero.

We can now compare the present construction of tangent spaces to that in
Chapter 2. Recall the definition (2.8) of tangent vectors as partial derivatives
of the position vector r with respect to the curvilinear coordinates. In Chap-
ter 2 we started with a fixed n-dimensional vector space, and all constructions
were in this space. In particular, the tangent vectors and the tangent space
were concrete objects, defined via numerical coordinates. Here we defined a
tangent vector as an abstract operator on an abstract space, and imposed
certain properties in order to make the collection of tangent vectors a lin-
ear space. The abstract construction led eventually to numerically defined
basis—that of ∂/∂xk|p, the directional derivatives along the coordinates. We
will call this basis the coordinates basis for short.

At this point, the road is open to the development of tensor theory on mani-
folds, parallel to tensor theory on curvilinear coordinates. This endeavor will
be taken up in the next section.

3.4 Tensors and Tensor Fields on Manifolds

Before we start developing the material in this section, we make a comment
on notations. In Chapter 2 we made a distinction between lowercase sym-
bols, which were defined on the fixed underlying vector space, and uppercase
symbols, which were defined on local tangent bases. Now we have no un-
derlying vector space and all objects are on manifolds. Therefore there will
be no need for distinction and we will mix lowercase and uppercase symbols
as we find convenient. Also, there are no curvilinear coordinates here, only
cartesian coordinates on open sets of Rn that are locally homeomorphic to
the charts of the manifold. Therefore, we will use mostly the letter x for
coordinates, unless convenience calls for a different letter.

63



3.4.1 Coordinate Transformations

Suppose that a point p ∈ M belongs to two charts (O,ψ) and ( �O, �ψ). The
definition of tangent vectors and tangent spaces is independent of the chart,
so there is only one tangent space at p; moreover, a specific tangent vector at
p is uniquely defined, independently of the chart. However, the two different
charts have different bases (∂/∂x1, . . . , ∂/∂xn) and (∂/∂x̃1, . . . , ∂/∂x̃n) at p.
These bases are related by the usual chain rule

∂

∂x̃i
=

∂

∂xj

∂xj

∂x̃i
,

∂

∂xi
=

∂

∂x̃j

∂x̃j

∂xi
(3.12)

where the partial derivatives are defined on the numerical function ψ ◦ �ψ−1

and its inverse, and are understood to be evaluated at p.

If v is a tangent vector at p, then v can be expressed in terms of its coordi-
nates in the two bases:

v = v
i ∂

∂xi
= ṽ

j ∂

∂x̃j
(3.13)

from which we deduce the change-of-basis transformation rules

v
i =

∂xi

∂x̃j
ṽ
j
, ṽ

i =
∂x̃i

∂xj
v
j (3.14)

Comparing these formulas with (1.11) and (1.12), we see that with

S
i
j =

∂xi

∂x̃j
, T

i
j =

∂x̃i

∂xj
(3.15)

the transformation rules for vectors on manifolds become identical to the
transformation rules for conventional vectors on an n-dimensional space. We
should bear in mind, however, the essential difference between the two: (1.11)
and (1.12) apply globally on the underlying space, whereas (3.14) holds for a
given point of the manifold. Consequently, the matrices Si

j and T i
j vary from

point to point, as they do in the case of curvilinear coordinates.

3.4.2 Cotangent Spaces

We have denoted by Dp the tangent space at p. As we learned in Chapter 1,
we can assign to Dp a dual space D∗

p, as defined in Appendix A. This space is
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called the cotangent space at p and we will refer to its elements as covectors or
dual vectors, as in Chapter 1. A common notation for the covectors compris-
ing the dual basis is (dx1, dx2, . . . dxn). The change-of-basis transformation
for dual bases is

dx̃
i =

∂x̃i

∂xj
dx

j
, dx

i =
∂xi

∂x̃j
dx̃

j (3.16)

and the change-of-basis rules for the coordinates of a covector w are

wi = w̃j
∂x̃j

∂xi
, w̃i = wj

∂xj

∂x̃i
(3.17)

3.4.3 Vector Fields

A vector field d on a manifold is a collection {dp : p ∈ M} of derivative
operators; that is, an assignment of a tangent vector to each point in the
manifold.

We want to construct a meaningful definition of smoothness of a vector
field. We recall that, for each p, dp(f) ∈ R. Therefore, for a fixed f ,
{dp(f) : p ∈ M} defines a function df :M → R. Pay attention to the reversal
of roles of subscripts: dp is a function on F → R for a fixed p and we denote
its value on f ∈ F by dp(f). On the other hand, df is a function on M → R
and we denote its value on p ∈ M by df (p). This notation takes some time
to get used to, but it is important, so the time is well spent.

We can now define the notion of a smooth vector field. A vector field d is
smooth if df is smooth on M for every smooth function f on M .

Recall the definition of coordinate bases:

∂

∂xk

���
p
=

�
∂

∂xk
(f ◦ ψ

−1
p )

���
p
: f ∈ F

�
(3.18)

As before, we can interchange the roles of p and f :

∂

∂xk

���
f
=

�
∂

∂xk
(f ◦ ψ

−1
p )

���
f
: p ∈ Op

�
(3.19)

Note that (3.19) can be defined only on the chart set Op corresponding to
the chart function ψp. The numerical functions ∂(f ◦ψ−1

p )/∂xk are obviously
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smooth on ψp. When we move to a different chart, we must differentiate
with respect to the new coordinates, so all we can say is that the vector field
∂/∂xk can be defined on each chart separately and is smooth on each chart.

It is now easy to conclude that, since the fields of coordinate bases are smooth,
a general vector field v is smooth if and only if its coordinates vk (which are
functions M → R) are smooth on every chart.

3.4.4 Tensors and Tensor Fields

We will construct tensors in the same way we did in Chapter 1, which is
essentially a definition based on numerical coordinates in a selected basis,
together with rules of transformation under change of basis. We define an
(r, s)-tensor field as a collection of nr+s smooth functions on M , denoted as
a
i1...ir
j1...js and obeying the transformation law

ã
i1...ir
j1...js =

∂x̃i1

∂xk1
. . .

∂x̃ir

∂xkr
a
k1...kr
m1...ms

∂xm1

∂x̃j1
. . .

∂x̃ms

∂xjs
(3.20)

Compare this definition with (1.28) and you will see that the two are essen-
tially identical, except for the difference in interpretation. Whereas (1.28)
defines constant tensors over a vector space, (3.20) defines a tensor field over
a manifold. The adjectives “covariant” and “contravariant” are used here in
the same way as for constant tensors.

We can use ordinary partial differentiation on tensor fields:

a
i1...ir
j1...js,p =

∂a
i1...ir
j1...js

∂xp
(3.21)

The result is not a tensor field, however, since it does not satisfy the trans-
formation law (3.20). To obtain a derivative tensor field, we will need the
covariant derivative, as we saw in Chapter 2 and as we will see again later in
this chapter.

The special case of a (1, 0)-tensor field gives rise to a vector field, as defined
in Subsection 3.4.3. The special case of a (0, 1)-tensor field gives rise to a
covector field.
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3.4.5 The Metric Tensor

A metric tensor on a manifold M is a smooth (0, 2)-tensor field gij satisfying
the following axioms

MM1 gij is symmetric.

MM2 gij is nondegenerate, as defined in Section 1.11.

MM3 The signature Λ of gij, as defined in Theorem 2 (Sylvester’s theorem
of inertia) is constant on the entire manifold.

These three axioms allow us to write gij as

gij = S
k
i S

m
j Λkm (3.22)

where S is a nonsingular matrix and Λ is diagonal with a constant pattern
of ±1’s along the diagonal. Both gij and S vary from point to point on the
manifold, but Λ does not.

The inverse, or dual, metric tensor gij is given by

g
ij = T

i
kT

j
mΛ

km (3.23)

where T is the inverse of S; that is, T i
kS

k
j = Si

kT
k
j = δij. It is easy to verify

that, since Λ is its own inverse,

gjkg
ki = g

ik
gkj = δ

i
j (3.24)

The metric tensor can be expressed in full form, including its basis covectors,
as in (1.40),

ds
2 = gijdx

i
dx

j (3.25)

The notation ds2, although it is merely symbolic and should not be un-
derstood as the square of a real number, is called the (square of the) line

element.

The transformation law of the metric tensor under change of basis is the
same as any (0, 2)-tensor:

g̃ij =
∂xp

∂x̃i

∂xq

∂x̃j
gpq =

�
∂xp

∂x̃i
S
k
p

��
∂xq

∂x̃j
S
m
q

�
Λkm (3.26)
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3.4.6 Interlude: A Device

A simple device, which we now introduce, will enable us to save many pages
of definitions and derivations. Let us conjure up an n-dimensional inner
product space V , together with a basis (e1, . . . , en) whose Gram matrix is

ek · em = Λkm (3.27)

Now, as we did in Chapter 2, let us define a local basis at each point of the
manifold:

Ei = S
k
i ek (3.28)

We then find that

Ei · Ej = S
k
i S

m
j (ek · em) = S

k
i S

m
j Λkm = gij (3.29)

We thus find ourselves in exactly the same framework as in Chapter 2. In-
stead of using the metric tensor directly, we may use the hypothetical bases
(e1, . . . , en) and (E1, . . . ,En) and base all definitions and derivations on prop-
erties of these bases.

We emphasize that this device is possible only because of axiom MM3 of the
metric tensor. The constancy of Λ facilitates the use of a fixed inner product
space with a fixed signature for the entire manifold. It should also be clear
that V and the bases ei an Ei are not part of the definition of a manifold.
They are artificial devices, introduced only for their technical usefulness, as
we will see in the next subsection.

3.4.7 (Almost) All Work Done

Once the device employed in the preceding subsection is understood, all the
material in Chapter 2 from Section 2.4 onwards applies to tensors on man-
ifolds, with no changes. In particular, affine connections, covariant deriva-
tives, and the special tensors, are defined and used as in Chapter 2. All you
need to remember is that:

• The coordinates xk on some chart (O,ψ) take the place of the curvi-
linear coordinates yk.
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• We have not dealt with the difficulty of patching charts and thereby
facilitating working on the manifold as a whole. Although such patch-
ing can be made rigorous, it is quite technical and is outside the scope
of this document. Here we must keep in mind that a single fixed chart
is assumed, although this can be any chart in the atlas.

The “almost” in the title of this subsection implies that we are not quite
finished yet. Additional material, both interesting and important, is provided
in the next section.

3.5 Curves and Parallel Transport

A smooth curve on a manifold M is a smooth function γ :R → M , or, in
some cases, from a closed interval in R to M . Smoothness is defined in a
natural way, namely, by requiring that f ◦ γ :R → R be smooth for all f ∈ F .
Expressing the curve explicitly as γ(t), we may visualize the curve as a line
lying in M and progressing as t increases. If γ is injective, the curve does
not cross or touch itself at any point.

The tangent vector at a point p(t) on the curve is defined as

τ(f) =
d(f ◦ γ)

dt
(3.30)

for every f ∈ F . This definition makes τ(f) is a derivative operator; that is,
a member of Dp, hence a vector at p.

The tangent vector can be expressed in terms of the coordinates basis:

τ =
dxk

dt

∂

∂xk
= τ

k ∂

∂xk
(3.31)

where τ k = dxk/dt are the coordinates of the tangent vector in the coordi-
nates basis. Note that xk(t) are the coordinates of the curve in the coordi-
nates basis.

Let γ(t) be a curve and τ k(t) its tangent vector. Let vi(t) be a function
R → D; that is, a collection of vectors defined on all points of the curve.
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Then vi(t) is parallel transported on the curve if

τ
k(t)vi;k(t) = 0 for all t and all i (3.32)

where, as we recall, vi;k is the covariant derivative of vi along the kth coordi-
nate. The left side of equation (3.32) is thus a contraction of a vector by a
mixed (1, 1)-tensor, resulting in a vector.

The definition (3.32) is, perhaps, not very illuminating and makes it hard
to understand what “parallel” means in this context. Let us therefore bring
(3.32) to a form that will make it more transparent. First, note that the
requirement that the left side of (3.32) be zero for all i translates to

τ
k(t)vi;k(t)Ei = 0 for all t (3.33)

Let us substitute for τ k(t), vi;k and Ei their definitions:

dxk

dt

�
∂vi

∂xk
+ Γi

kmv
m

�
S
p
i ep =

dxk

dt

�
∂vi

∂xk
S
p
i + Γi

kmS
p
i v

m

�
ep = 0 (3.34)

Next we substitute (2.15):

dxk

dt

�
∂vi

∂xk
S
p
i +

∂Sp
m

∂xk
v
m

�
ep =

dxk

dt

∂(viSp
i )

∂xk
ep = 0 (3.35)

We now observe that viSp
i = V p, where V p are the coordinates of the vector

v in the hypothetical reference vector space V . Therefore,

∂(V pep)

∂xk

dxk

dt
=

d(V pep)

dt
= 0 (3.36)

The conclusion from this derivation is: A parallel transported vector remains
unchanged—that is, remains parallel to itself—when viewed as an abstract
geometrical object in the hypothetical reference space V .

What have we learned from the preceding derivation? On the practical level,
certainly not much. On the intuitive level, we must exercise our imagination
and visualize the vector transported parallel to itself in some hypotherical
space along a curve that exists on a “real” manifold. Of course, both M and
V are ultimately abstract, but the former a defined mathematical object,
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whereas the latter is an artificial device. If this digression was not helpful,
you may simply disregard it.

Returning to the defining equation of parallel transport, we may write it as

dvi

dt
+ Γi

km

dxk

dt
v
m = 0 for all t and all i (3.37)

Assume that vi is known at point p on the curve and we assign t = 0 to
this point. Then (3.37) is a coupled set of n nonlinear differential equations
in the unknown functions vi(t). The functions dx(t)/dt are known, being
the derivatives of the curve’s coordinates. The affine connections are also
known, since they depend only on the metric. Since Γi

km and dx(t)/dt are
smooth functions, the differential equations have a unique solution, although
the solution may not be easy to find. It follows that knowledge of vi on
a single point uniquely defines the parallel transported vector vi(t) on the
entire curve. In view of the interpretation given above to the notion of parallel
transport, this conclusion should come at no surprise. You may think of the
curve as “moving under the feet of the vector” rather than the vector moving
along the curve.

3.6 Curvature

Let γ(t) be a curve on a manifold defined for 0 ≤ t ≤ 1 and such that
γ(0) = γ(1). Such a curve is called closed for an obvious reason. Let vk(0)
be a fixed vector at γ(0) and perform parallel transport on γ, as defined
by Equation (3.37). What would vk(1) be? You may think intuitively that
v(1) = v(0), since the vector is back to its initial point. If indeed you think
so, then your intuition have failed you this time. It is a surprising and
important fact that v(1) �= v(0) in general. This follows from the curvature
of the manifold, and we analyze this phenomenon in mathematical terms in
this section.

Let us consider a simple example first. Place an arrow at the North Pole
of the earth, tangent to the surface and pointing south in the direction of
the Greenwich meridian (longitude 0◦). Now begin to move south along the
meridian with the arrow pointing south all the time, until you hit the equator.
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At this point start moving east along the equator with the arrow continuing
pointing south. When you get to longitude 90◦ (you will be somewhere in the
Indian Ocean, but never mind that), start moving north along the meridian
with the arrow still pointing south. When you get to the north pole, the arrow
will be pointing south parallel to the 90◦ meridian, so it will be rotated 90◦

relative to the direction of the arrow when you started! Although we have
cheated slightly in this example (the curve in this example is not smooth,
having three corners), the general behavior is indeed true.

Let us now do the mathematics. We first need an auxiliary result, derived in
the next subsection. Then we will be ready for deriving the main result.

3.6.1 Preparation: The Area of a Closed Curve

We want to compute the area of a closed planar curve γ(t) surrounding
the origin, as shown in Figure 3.1. The curve is parameterized such that
γ(0) = γ(1).

Figure 3.1: The Area of a Closed Curve
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The area of the triangle spanning the angle between θ and θ + dθ is

dA = 0.5r2dθ (3.38)

Therefore, the total area enclosed by the curve is

A = 0.5

� 2π

0

r
2
dθ = 0.5

� 1

0

r
2(t)

dθ

dt
dt (3.39)

Let us convert to cartesian coordinates:

r
2 = x

2 + y
2

θ(t) = arctan
y

x

dθ

dt
=

1

x2 + y2

�
dy

dt
x−

dx

dt
y

� (3.40)

Now substitute in (3.39):

A = 0.5

� 1

0

�
dy

dt
x−

dx

dt
y

�
dt (3.41)

Next observe the following:

0.5

� 1

0

�
dy

dt
x+

dx

dt
y

�
dt = 0.5

� 1

0

d(xy)

dt
dt = 0.5[x(1)y(1)− x(0)y(0)] = 0

(3.42)
The last equality follows from the fact that the curve is closed. Finally,
adding and subtracting (3.41) and (3.42) gives

A =

� 1

0

dy(t)

dt
x(t)dt = −

� 1

0

dx(t)

dt
y(t)dt (3.43)

3.6.2 Approximate Solution of the Parallel Transport
Equations

Choose a point on the manifold having coordinates xk
0. Construct a closed

curve
x(t) = x0 + εγ(t) (3.44)
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such that γ(t) is a fixed curve and ε is a small scalar. You may visualize
the curve as a small loop surrounding x0. Our aim is to approximate the
parallel transport equations (3.37) to order ε2; that is, to neglect terms of
higher order in ε.

Beginning with x(t), we see from (3.44) that

dxk(t)

dt
= ε

dγk(t)

dt
(3.45)

Looking at (3.37), we see that, since (3.45) already contains a factor ε, we do
not need more than a first order expansion of Γi

km in ε. Since Γi
km depends on

ε only through its dependence on the coordinates, the first-order expansion
is

Γi
km[x(t)] = Γi

km[x0 + εγ(t)] ≈ Γi
km(x0) + εΓi

km,p(x0)γ
p(t) (3.46)

The third element in (3.37) is the unknown variable itself, which we expand
in a second-order series:

v
i(t) ≈ v

i
0 + εv

i
1(t) + ε

2
v
i
2(t)

dvi(t)

dt
≈ ε

dvi1(t)

dt
+ ε

2dv
i
2(t)

dt

(3.47)

We can now substitute (3.45), (3.46), (3.47) in (3.37):

ε
dvi1(t)

dt
+ ε

2dv
i
2(t)

dt

+ ε
dγk(t)

dt
[Γi

km(x0) + εΓi
km,p(x0)γ

p(t)][vm0 + εv
m
1 (t) + ε

2
v
m
2 (t)] ≈ 0

(3.48)

The first-order term in ε gives

dvi1(t)

dt
+

dγk(t)

dt
Γi
km(x0)v

m
0 = 0 (3.49)

This is easily integrated to yield

v
i
1(t) + γ

k(t)Γi
km(x0)v

m
0 = C (3.50)

Since γk(t) ← 0 must give vi1(t) ← vi0 by definition, the constant of integra-
tion C is zero. Therefore,

v
i
1(t) + γ

k(t)Γi
km(x0)v

m
0 = 0 (3.51)
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and thus
v
i
1(1)− v

i
1(0) = −[γk(1)− γ

k(0)]Γi
km(x0)v

m
0 = 0 (3.52)

We conclude that there is no first-order effect of parallel transport on a closed
curve.

Let us now proceed to the second-order term in ε. We again find from (3.48)

dvi2(t)

dt
+

dγk(t)

dt
[Γi

km(x0)v
m
1 (t) + Γi

km,p(x0)γ
p(t)vm0 ] = 0 (3.53)

We want to substitute (3.51) in (3.53). To facilitate this substitution, we
must first make several dummy index replacements in both (3.51) and (3.53),
after which (3.53) becomes

dvi2(t)

dt
+ [Γi

kj,�(x0)− Γi
km(x0)Γ

m
j�(x0)]v

j
0

dγk(t)

dt
γ
l(t) = 0 (3.54)

This differential equation can be integrated to give

v
i
2(1)− v

i
2(0) = −[Γi

kj,�(x0)− Γi
km(x0)Γ

m
j�(x0)]v

j
0

� 1

0

dγk(t)

dt
γ
l(t)dt

= [Γi
kj,�(x0)− Γi

km(x0)Γ
m
j�(x0)]v

j
0A

k�

(3.55)

The integral, which we denote by Ak�, is recognized to be the area of the
projection of the curve γ(t) on the plane k-�; cf. (3.43).

We can give (3.55) a more symmetrical form. First, since k and � are dummy
indices, we may interchange them, without affecting the result. Therefore,
(3.55) is equal to

v
i
2(1)− v

i
2(0) = [Γi

�j,k(x0)− Γi
�m(x0)Γ

m
jk(x0)]v

j
0A

�k (3.56)

However, A�k is easily seen to be antisymmetric, therefore

v
i
2(1)− v

i
2(0) = −[Γi

�j,k(x0)− Γi
�m(x0)Γ

m
jk(x0)]v

j
0A

k� (3.57)

Now add (3.55) and (3.57) and divide by 2 to obtain

v
i
2(1)− v

i
2(0) =

0.5[Γi
kj,�(x0) + Γi

�m(x0)Γ
m
jk(x0)− Γi

�j,k(x0)− Γi
km(x0)Γ

m
j�(x0)]v

j
0A

k�
(3.58)
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We now recall the definition of the Riemann curvature tensor (2.40) and
recognize the quantity in the brackets in (3.58) as Ri

k�j. Therefore, finally,

v
i(1)− v

i(0) ≈ 0.5ε2Ri
k�jA

k�
v
j
0 (3.59)

We arrived at the result promised in the beginning of this section and, at the
same time, established an interesting interpretation of the Riemann curvature
tensor. When a vector is parallel transported along an infinitesimal closed
curve in a manifold, there is a second-order, nonzero difference between the
vectors at the end of the curve and at the beginning of the curve. This
difference is proportional to the Riemann tensor at the central point of the
loop and also to the area of the loop, as expressed by ε2Ak�. Another way
of expressing this result is: When a given vector is parallel transported from
a point p to a point q on a manifold, the resulting vector is not uniquely
determined by the points p and q, but depends on the chosen path between
the points.

3.7 Geodesics and Line Length

3.7.1 Geodesics

A geodesic in a manifold is a curve having the property that its tangent vector
is parallel transported along the curve. Returning to (3.37), the differential
equation for the coordinates of a parallel transported vector, and substituting
the tangent vector in place of the transported vector, yields the equation

d2xi

dt
+ Γi

km

dxk

dt

dxm

dt
= 0 for all t and all i (3.60)

This is known as the geodesic equation. It is a set of n second-order, nonlinear,
coupled differential equations in the unknown functions xi(t), which are the
coordinates of the geodesic. One must remember that the affine connections
Γi
km are not constant coefficients but functions of the xi(t), because the affine

connections are not constant in general on a curved space.

Assuming that the metric gij is smooth on the manifold, the affine connec-
tions are smooth. Then, given xi(0) and dxi(0)/dt at point p on the manifold,
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the geodesic equation has a unique solution. This solution can be found ana-
lytically in very simple cases, or numerically when no analytic solution exists.

3.7.2 Length in a Euclidean Spaces

In an n-dimensional Euclidean space, the length of a curve γ(t) having carte-
sian coordinates xi(t), 0 ≤ t ≤ tf is given by the integral

S =

� tf

0

� n�

k=1

(dxk)2
�1/2

=

� tf

0

� n�

k=1

�
dxk(t)

dt

�2
�1/2

dt (3.61)

It is well known that the curve of shortest length between two points is a
straight line. By definition, a straight line has coordinates xi(t) = ai + bit,
where ai, bi are constants. We note that a straight line satisfies the geodesic
equation (3.60), because the affine connections are identically zero on a flat
space and d2xi(t)/dt2 = 0 for a straight line. So, the curve of shortest length
between two points on a Euclidean space satisfies the geodesic equation. We
wish to find out whether this result can be generalized to manifolds.

While we are still in a Euclidean space, let us introduce the concept of natural
parameterization. First define the partial length of a curve as

s(t) =

� t

0

� n�

k=1

�
dxk(u)

du

�2
�1/2

du (3.62)

We then make a variable change

t = t(s) (3.63)

and redefine the functions xi(s) and dxi(s) accordingly. We distinguish be-
tween functions of t and functions of s only by the argument in parentheses
and do not assign different symbols to the functions themselves. This is ob-
viously an abuse of notation, but is convenient and hopefully will not lead to
confusion. Note also that (3.64) requires the inversion of the function s(t).
This may be computationally difficult but we are ignoring such difficulties in
the present discussion.
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The parameterization xi(s) is called the natural parameterization of the
curve. With the natural parameterization, (3.62) becomes a triviality

� s

0

du = s (3.64)

3.7.3 Length in a Manifold

Suppose that the metric is known to be positive in a region of the manifold
or on the entire manifold; that is, gij ≥ 0. We can then define the length of
a curve by generalizing (3.61) to

S =

� tf

0

[gij(x
k(t))dxi(t)dxj(t)]1/2 =

� tf

0

�
gij(x

k(t))
dxi(t)

dt

dxj(t)

dt

�1/2
dt

(3.65)
Note that (3.66) cannot be proved and must be taken as a definition. A
similar definition can be made if the metric is known to be negative, by
simply replacing gij by −gij in the definition4. Note also that the metric
does not depend on t directly, but via its dependence on the coordinates
xi(t).

As in the case of Euclidean spaces, we may define the partial length

s(t) =

� t

0

�
gij(x

k(u))
dxi(u)

du

dxj(u)

du

�1/2
du (3.66)

Then we can define the natural parameterization in the same way as for
Euclidean spaces, via the variable change (3.64).

Let us now pose the following question: Given two points on the manifold,
what is the curve of minimum length connecting these points? A partial an-
swer is given as follows: The curve of minimum length satisfies the geodesic
equation, provided the curve is parameterized in the natural parameteriza-
tion. Note that this condition is necessary, but not sufficient, for the curve
to have minimum length.

The proof of the necessary condition is given in Appendix C; it is not difficult,
but somewhat lengthy and may be skipped.

4
This happens in relativity theory, in timelike regions of the space.
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Appendix A

Dual Vector Spaces

The subject of dual vector spaces is not usually covered in linear algebra
courses, but is necessary for tensors. We will therefore provide a brief intro-
duction to this subject in this appendix.

Let V be an n-dimensional vector space over R. A function f : V → R is
called a functional. A functional is linear if it satisfies the usual linearity
conditions, namely

f(x1 + x2) = f(x1) + f(x2), f(ax) = af(x) (A.1)

The zero functional maps every x ∈ V to the number 0; this functional is
obviously linear.

The sum of two linear functionals is a linear functional and the product of a
linear functional by a scalar is a linear functional. Sums of linear functionals
and products by scalars obey all the properties of vectors in a vector space.
The proofs of these statements are straightforward. Therefore, the set of
all linear functionals on V is a vector space, called the dual space of V and
denoted by V∗. The elements of V∗ are called dual vectors or covectors.

We will use bold font for dual vectors; usually there will be no confusion with
vectors, but in case of ambiguity will mention explicitly whether the symbol
stands for a vector or a dual vector. If y is a dual vector and x is a vector,
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we will denote
�y,x� = y(x)

Let (e1, . . . , en) be a basis for V . We aim to prove that V∗ is also an n-
dimensional vector space over R and find a basis for this space. Let x be
some vector in V and express x in terms of the basis, x =

�n
i=1 x

iei. Define
the functional f i in V∗ as follows:

�f i,x� = x
i (A.2)

Thus f i selects the i-th coordinate of x when x is expressed in terms of the
basis.

Theorem 8. The space V∗
is n-dimensional and the set (f1, . . . , fn) is a

basis for V∗
.

Proof. We first show that (f1, . . . , fn) are independent. Let g =
�n

i=1 aif
i

and assume that g is the zero functional for some (a1, . . . , an). Applying
g to any vector f , we must have �g,x� = 0. Thus

�n
i=1 aix

i = 0 for all
(x1, . . . , xn), which immediately implies ai = 0 for all i.

Next we show that every linear functional can be expressed as a linear com-
bination of (f1, . . . , fn). Let g ∈ V∗ and define the n scalars gi = �g, ei�. We
will prove that g is given by g =

�n
i=1 gif

i. For an arbitrary vector x,

�g,x� =

�
g,

n�

i=1

eix
i

�
=

n�

i=1

�g, ei�x
i =

n�

i=1

gix
i =

n�

i=1

gi�f
i
,x� (A.3)

Since this holds identically for all x, it follows that g =
�n

i=1 gif
i and the

proof is complete.

The basis (f1, . . . , fn) is called the dual basis of (e1, . . . , en). It is worthwhile
noting that

�f i, ej� = δ
i
j (A.4)

This is true because, when ej is expressed in terms of the basis (e1, . . . , en),
its j-th coordinate is 1 and all other coordinates are 0.
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Appendix B

Derivation of the Symmetries of
the Covariant Riemann Tensor

In this appendix we derive an expression for the covariant Riemann curvature
tensor, which makes the symmetries of this tensor transparent. First we
define the lowered affine connection by

Γijk = 0.5(gij,k + gik,j − gjk,i) (B.1)

Compare with (2.20); as we see, Γijk does not include the metric tensor factor
that appears in Γi

jk

The following identity is verified by direct substitution of (B.1) in the right
side:

gij,k = Γijk + Γjik (B.2)

To find the covariant Riemann tensor, we must compute each of the four
terms in (2.40) and lower the contravariant index. Let us begin with the first
term giuΓu

hp,q. We use the product rule for derivative and then substitute
(B.2) to find

giuΓ
u
hp,q = (giuΓ

u
hp),q − giu,qΓ

u
hp = Γihp,q − (Γiuq + Γuiq)Γ

u
hp (B.3)

The second term of (2.40) is simpler:

giuΓ
u
kqΓ

k
hp = ΓikqΓ

k
hp = ΓiuqΓ

u
hp (B.4)
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Adding (B.3) and (B.4) gives

giu(Γ
u
hp,q + Γu

kqΓ
k
hp) = Γihp,q − ΓuiqΓ

u
hp = Γihp,q − g

utΓuiqΓthp (B.5)

The sum of the third and fourth terms of (2.40) is obtained from (B.5) upon
interchanging p and q:

giu(Γ
u
hq,p + Γu

kpΓ
k
hq) = Γihq,p − g

utΓuipΓthq (B.6)

Since the indices u and t in (B.6) are dummy (they are summation indices)
and since gut is symmetric in u and t, we may interchange them and rewrite
(B.6) as

giu(Γ
u
hq,p + Γu

kpΓ
k
hq) = Γihq,p − g

utΓtipΓuhq (B.7)

Adding (B.5) and (B.7) gives the desired formula for Rihqp:

Rihqp = giuR
i
hqp = giu(Γ

u
hp,q + Γu

kqΓ
k
hp)− giu(Γ

u
hq,p + Γu

kpΓ
k
hq)

= (Γihp,q − Γihq,p) + g
ut(ΓtipΓuhq − ΓthpΓuiq)

(B.8)

It is easy to see that the second term on the right side of (B.8) is anti-
symmetric in i and u, and it remains to check the first term. We have

(Γihp,q − Γihq,p) = 0.5(gih,pq + gip,hq − ghp,iq)− 0.5(gih,qp + giq,hp − ghq,ip)

= 0.5(gip,hq − ghp,iq)− 0.5(giq,hp − ghq,ip)
(B.9)

The anti-symmetry of (Γihp,q−Γihq,p) in i and u is now obvious, so in summary

Rhiqp = −Rihqp (B.10)

The covariant Riemann tensor exhibits the symmetry

Rihqp = Rqpih (B.11)

This symmetry can also be read from (B.8) and (B.9).
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Appendix C

Proof that the Curve of
Minimum Length Satisfies the
Geodesic Equation

Let S be the length of the minimum-length curve, as expressed by mlength4.
Let us move from the curve x(t) of minimum length to a neighboring curve
x(t) + εy(t), where ε is a small real number and y(t) is smooth and satisfies
y(0) = y(tf ) = 0, but is otherwise arbitrary. We will derive an expression
for the length of the new curve. We emphasize that t is the argument of the
natural parameterization of the minimum-length curve, but not that of y(t)
in general.

The length that we wish to calculate is given by

� tf

0

[F (x(t) + εy(t), ẋ(t) + εẏ(t))]1/2dt (C.1)

The scalar function F will result from a (2, 2)-tensor F ij
pq upon performing

the contraction F
ij
ij . For the sake of clarity, let us keep the (2, 2)-tensor for

the time being. Also, to make the derivation easier to typeset and read, we
use the shorthand notation ẋi(t) = dxi(t)/dt. So, we define

F
ij
pq(x(t), ẋ(t)) = gpq(x(t))ẋ

i(t)ẋj(t) (C.2)
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and then

F
ij
pq(x(t) + εy(t), ẋ(t) + εẏ(t)) =

gpq(x(t) + εy(t))[ẋi(t) + εẏ
j(t)][ẋj(t) + εẏ

j(t)] =

F
ij
pq(x(t), ẋ(t)) + ε∆F

ij
pq(x(t), ẋ(t)) +O(ε2)

(C.3)

where ∆F ij
pq(x(t), ẋ(t)) is the linear term in ε and O(ε2) is a remainder term;

that is, a term bounded in magnitude by some multiple of ε2.

To compute an explicit expression for ∆F ij
pq(x(t), ẋ(t)), let us first approxi-

mate gpq up to first order in ε:

gpq(x(t) + εy(t)) = gpq(x(t)) + εgpq,k(x(t))y
k(t) +O(ε2) (C.4)

Therefore,

∆F
ij
pq(x(t), ẋ(t)) = gpq,k(x(t))y

k(t)ẋi(t)ẋj(t)

+ gpq(x(t))ẋ
i(t)ẏj(t) + gpq(x(t))ẋ

j(t)ẏi(t)
(C.5)

Consider the following identity:

d

dt
[gpq(x(t))ẋ

i(t)yj(t)] = gpq,�(x(t))ẋ
�(t)ẋi(t)yj(t)

+ gpq(x(t))ẍ
i(t)yj(t) + gpq(x(t))ẋ

i(t)ẏj(t)
(C.6)

from which we can write

gpq(x(t))ẋ
i(t)ẏj(t) =

d

dt
[gpq(x(t))ẋ

i(t)yj(t)]

− gpq,�(x(t))ẋ
�(t)ẋi(t)yj(t)− gpq(x(t))ẍ

i(t)yj(t)
(C.7)

and similarly

gpq(x(t))ẋ
j(t)ẏi(t) =

d

dt
[gpq(x(t))ẋ

j(t)yi(t)]

− gpq,�(x(t))ẋ
�(t)ẋj(t)yi(t)− gpq(x(t))ẍ

j(t)yi(t)
(C.8)

We can now substitute (C.7) and (C.7) in (C.5) and get

∆F
ij
pq(x(t), ẋ(t)) = gpq,k(x(t))y

k(t)ẋi(t)ẋj(t)

+
d

dt
[gpq(x(t))ẋ

i(t)yj(t)] +
d

dt
[gpq(x(t))ẋ

j(t)yi(t)]

− gpq,�(x(t))ẋ
�(t)ẋi(t)yj(t)− gpq,�(x(t))ẋ

�(t)ẋj(t)yi(t)

− gpq(x(t))ẍ
i(t)yj(t)− gpq(x(t))ẍ

j(t)yi(t)

(C.9)
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We are now in a position to perform the contraction from (2,2)-tensors to
scalars:

F (x(t), ẋ(t)) = gij(x(t))ẋ
i(t)ẋj(t) = 1 (C.10)

and

∆F (x(t), ẋ(t)) = gij,k(x(t))y
k(t)ẋi(t)ẋj(t)

+
d

dt
[gij(x(t))ẋ

i(t)yj(t)] +
d

dt
[gij(x(t))ẋ

j(t)yi(t)]

− gij,�(x(t))ẋ
�(t)ẋi(t)yj(t)− gij,�(x(t))ẋ

�(t)ẋj(t)yi(t)

− gij(x(t))ẍ
i(t)yj(t)− gij(x(t))ẍ

j(t)yi(t)

(C.11)

Taking advantage of the symmetry of gij and relabeling indices as necessary,
we find

∆F (x(t), ẋ(t)) = 2
d

dt
[gij(x(t))ẋ

i(t)yj(t)]

+ gij,k(x(t))y
k(t)ẋi(t)ẋj(t)− gik,j(x(t))ẋ

j(t)ẋi(t)yk(t)

− gkj,i(x(t))ẋ
i(t)ẋj(t)yk(t)− 2gik(x(t))ẍ

i(t)yk(t)

(C.12)

We now recall the formula (2.20) for the affine connection to express (C.12)
as

∆F (x(t), ẋ(t)) = 2
d

dt
[gij(x(t))ẋ

i(t)yj(t)]

− 2[gikẍ
i(t) + gk�Γ

�
ijẋ

i(t)ẋj(t)]yk(t)
(C.13)

Adding the zero-order term and the first-order term and approximating the
square-root up to first order gives

[F (x(t), ẋ(t)) + ε∆F (x(t), ẋ(t)) +O(ε2)]1/2 =

[1 + ε∆F (x(t), ẋ(t)) +O(ε2)]1/2 = 1 + 0.5ε∆F (x(t), ẋ(t)) +O(ε2)
(C.14)

where the number 1 results from the fact that we are using the natural
parameterization for the minimum-length solution.

We need one more simplifying result:

� tf

0

d

dt
[gij(x(t))ẋ

i(t)yj(t)]dt = gij(x(t))ẋ
i(t)yj(t)

���
tf

0
= 0 (C.15)
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which follows from the fact that yj(0) = yj(tf ) = 0.

We can now perform the integration:

� tf

0

[F (x(t), ẋ(t)) + ε∆F (x(t), ẋ(t)) +O(ε2)]1/2dt =

S − 2ε

� tf

0

[gikẍ
i(t) + gk�Γ

�
ijẋ

i(t)ẋj(t)]yk(t)dt+O(ε2)

(C.16)

Now, finally, comes the main point of the preceding derivation. For small
enough ε, only the first-order term determines whether the right side of
(C.16) is less than, equal to, or greater than S. Since we are free to choose
a positive or negative ε, we can force the first-order term to be positive or
negative, unless the integral is identically zero. It follows that a necessary
condition for S to be the minimum length is that

� tf

0

[gikẍ
i(t) + gk�Γ

�
ijẋ

i(t)ẋj(t)]yk(t)dt = 0 (C.17)

But, since yk(t) are arbitrary functions, the necessary condition is, in fact,

gikẍ
i(t) + gk�Γ

�
ijẋ

i(t)ẋj(t) = 0 (C.18)

It remains to bring (C.18) to the final desired form. Multiply by gmk to
obtain

g
mk

gikẍ
i(t) + g

mk
gk�Γ

�
ijẋ

i(t)ẋj(t) = 0 (C.19)

Now perform the contraction:

ẍ
m(t) + Γm

ij ẋ
i(t)ẋj(t) = 0 (C.20)

Finally, revert from the dot notation to the d/dt notation:

d2xm(t)

dt2
+ Γm

ij

dxi(t)

dt

dxj(t)

dt
= 0 (C.21)

Equation (C.21) is the geodesic equation.
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