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1Center for Quantum Information, Institute for Interdisciplinary Information
Sciences, Tsinghua University, Beijing 100084, P. R. China

2Department of Chemistry and Chemical Biology, Harvard University,
12 Oxford Street, Cambridge, MA 02138, USA

3NEC Laboratories America, 4 Independence Way, Princeton, NJ 08540, USA
4Department of Physics, Columbia University, 538 West 120th Street,

New York, NY 10027, USA
5Google, 340 Main St, Venice, CA 90291, USA

6Department of Physics, Harvard University, 17 Oxford Street,
Cambridge, MA 02138, USA

I. Introduction
A. Quantum Computational Complexity and Chemistry

1. An Exponential Wall for Many-Body Problems
2. Computational Complexity of Quantum Simulation

B. Basic Quantum Algorithms for Digital Quantum Simulation
1. Quantum Fourier Transform
2. Phase Estimation Algorithm

II. Digital Quantum Simulation
A. Overview
B. Simulation of Time Evolution

1. Suzuki–Trotter Formulas
2. First-Quantized Representation
3. Second-Quantized Representation
4. Open-System Dynamics

C. State Preparation
1. Preparing Ground States
2. Preparing Thermal States Using Quantum Metropolis
3. Preparing Thermal States with Perturbative Updates

Advances in Chemical Physics, Volume 154: Quantum Information and Computation for Chemistry,
First Edition. Edited by Sabre Kais.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

67



68 MAN-HONG YUNG ET AL.

D. Algorithmic Quantum Cooling
1. Basic Idea of the Quantum Cooling Method
2. Connection with Heat-Bath Algorithmic Cooling

III. Special Topics
A. Adiabatic Nondestructive Measurements
B. TDDFT and Quantum Simulation

IV. Conclusion and Outlook
References

I. INTRODUCTION

Controllable quantum systems provide unique opportunities for solving problems
in quantum chemistry and many-body physics that are intractable by classical
computers. This approach is called “quantum simulation,”1 and was pioneered by
Feynman [1]. There are two different approaches for quantum simulation: analog or
digital. In analog quantum simulation, dedicated physical systems are engineered
to emulate the behavior of other quantum systems. A classic example is the use of
atoms trapped in optical lattices to simulate the (Bose–)Hubbard model. Analog
simulators are therefore special-purposed machines. On the other hand, digital
simulation uses a universal quantum computer. Interestingly, a universal quantum
computer is also capable, in principle, of factoring arbitrary long numbers [2],
whereas a classical computer is not known to be able to perform the same task.
For a recent review, see, for example, Refs [3] and [4].

One key advantage of simulations with quantum computers over classical com-
puters is the huge Hilbert space available to faithfully represent quantum systems.
Moreover, quantum simulation avoids many problems encountered in classical
simulation. For example, many classical algorithms relying on Monte Carlo meth-
ods exhibit the so-called fermion sign problem that severely damages the perfor-
mance of the algorithm. In quantum simulation, this problem can be avoided by
either encoding the fully antisymmetrized wavefunction in the qubit states, or by
performing Jordan–Wigner transformations in the second quantized Hamiltonian
and turn it into a spin Hamiltonian as first suggested by Ortiz et al. [5]. The latter
case will often result in nonlocal interaction terms, but it can still be simulated
efficiently in a quantum computer.

The purpose of this chapter is to introduce the basic concepts of digital quantum
simulation and several recent developments achieved in our group. We note that
this is by no means a comprehensive review of the whole literature in quantum
simulation. We will selectively cover materials that we find most useful to convey

1 Unfortunately, the term “quantum simulation” in the community of computational physics refers to
numerical simulation of quantum systems using classical computers.
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an overall idea about the current status of quantum digital simulation. Several
review articles [6–9] and book chapters [10–13] already present a different em-
phasis. This review also contains some new material, including new descriptions
of the simulation in the first and second quantized representations. We also lay out
a new point of view for the perturbative update of thermal states from smaller to
bigger quantum systems, and a new bound for the change of a thermal state due
to a perturbation.

A. Quantum Computational Complexity and Chemistry

1. An Exponential Wall for Many-Body Problems

The theory of computational complexity studies the scaling of the resources neces-
sary to solve a given problem as a function of input size. Problems are considered
to be “easy,” or efficiently solvable, if the time (or number of steps) for solving the
problem scales as a polynomial of the input size n. For example, sorting a list of
n items will take at most O(n2) steps. On the other hand, problems are considered
“hard” if the scaling is exponential in n. This exponential scaling is essentially true
in the worst case for almost all many-body problems in physics and chemistry [14].
A concise discussion of this point is given by Kohn [15], where the exponential
scaling of the Hilbert space of many-electron problems is referred to as the “Van
Vleck catastrophe.” The argument presented is as follows: if for each molecule, the
accuracy to which one can approximate the state is (1 − ε) (under a suitable met-
ric), then for n nonoverlapping (and nonidentical) molecules, the approximation
worsens exponentially as (1 − ε)n. In the next section, we discuss the connection
of many-body problems with computational complexity further. A more compre-
hensive review of quantum computational complexity appears in [16].

2. Computational Complexity of Quantum Simulation

The study of the computational complexity of problems in quantum simula-
tion helps us better understand how quantum computers can surpass classical
computers. It has also spurred new developments in computational complexity.
For simplicity, computational complexity is often formulated using decision prob-
lems. A decision problem resolves if some condition is true or false (e.g., Is the
ground-state energy of the system below a certain critical value?). Although the
answer to decision problems is either “yes” or “no,” one can keep asking questions
in a binary search fashion. For instance, one could attempt to determine in this
way the ground-state energy to an arbitrarily high accuracy.

A complexity class contains a set of computational problems that share some
common properties about the computational resources required for solving them.
We briefly summarize a few important examples of complexity classes of decision
problems.
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a. P and NP Problems. The complexity class P contains all decision problems
that are solvable in a polynomial time with a classical computer (more precisely,
a deterministic Turing machine). Roughly speaking, solving a problem in a poly-
nomial time refers to the cases where the number of steps for solving the problem
scale as a polynomial power instead of exponentially. This approach is considered
“efficient” but, of course, exceptions are possible. For example, problems that
scale as O(n10000) may take very long time to finish, compared with ones that
scale exponentially as O(1.0001n).

Nevertheless, from a theoretical perspective, this division allows for consider-
able progress to be made without considering the minutiae of the specific system
or implementation. However from a practical standpoint, the order of the polyno-
mial may be very important; especially in chemistry where an algorithm is applied
to many molecules and many geometries. That said, the notion of polynomial
versus exponential makes sense when considering Moore’s “law”: the density of
transistors in classical computers doubles every 2 years.2 If the algorithm runs
in exponential time, one may be forced to wait several lifetimes in order for an
instance to become soluble due to better classical hardware.

Practically, many hard problems typically fall into the complexity class NP,
which contains decision problems whose “yes” instances can be efficiently verified
to be true with a classical computer given an appropriate “solution” or witness.
There is no doubt that P is a subclass of NP, that is,

P ⊂ NP (1)

As an example, finding the prime factors of an integer belongs to an NP problem;
once the factors are given, then it is easy to check the answer by performing a
multiplication. Interestingly, finding the ground-state energy of the Ising model

∑
(i,j)∈E

σi
zσ

j
z +

∑
i∈V

σi
z (2)

where (V, E) is a planar graph, is an NP-complete [17]. It implies that if a polyno-
mial algorithm for finding the ground-state energy is found, then all of the problems
in NP could be solved in polynomial time. In other words, it will imply P = NP,
a result considered highly unlikely. A rigorous proof or disproof of this statement
would constitute a significant breakthrough.3

2 The exponential growth in the computational density is expected to cease sometime this century,
highlighting the importance of new methods of computation such as quantum computation. The growth
in CPU clock speed has already ceased.
3 P versus NP is one of the Millennium Problems of the Clay Mathematics Institute [http://www
.claymath.org/millennium/P vs NP/].

http://www.claymath.org/millennium/P_vs_NP/
http://www.claymath.org/millennium/P_vs_NP/
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It is believed, but not known with certainty, that quantum computers are not
capable of solving all NP problems efficiently. Nevertheless, as already mentioned,
they can solve the integer-factoring problem efficiently. It is believed that the
complexity of integer factoring is intermediate between P and NP [2].

b. BQP and QMA Problems. The quantum analog of P and NP problems are,
respectively, the BQP (bounded-error quantum polynomial time) and QMA (quan-
tum Merlin Arthur) problems.4 BQP is the class of (decision) problems that are
solvable by a quantum computer in polynomial time. QMA is the class of (decision)
problems that can be verified by a quantum computer in polynomial time. Like
NP-problems, the QMA class covers many problems that are important to physics
and chemistry [18–20]. For example, the ground-state problem of Hamiltonians
involving local interaction terms is known to be QMA-complete [10,21]. For more
discussion on topics of computational complexity and quantum simulation, readers
may find the following references useful: [22–27].

The key point here is that so far it is not known whether quantum computers
can solve NP and QMA problems efficiently. In fact, many attempts (see, e.g.,
Refs [28–34]) show that exponential resources are required to solve problems in
these classes. Nevertheless, many problems in physics and chemistry do exhibit
symmetries and structures that we could exploit to construct efficient quantum
simulation algorithms. This is the main theme of the discussion in the rest of the
chapter.

B. Basic Quantum Algorithms for Digital Quantum Simulation

Digital quantum simulation cannot be easily understood without a detour into the
basics of quantum algorithms. Quantum algorithms are procedures for applying
elementary quantum logic gates to complete certain unitary transformations of
the input state. The quantum computer state is usually written in terms of qubits
(two-level systems). In the two-dimensional Hilbert space of a single qubit, we
label the upper and lower eigenstates of σz as |0〉 and |1〉. Note that the choice of
σz as the computational basis is arbitrary. This is called the computational basis
and the matrix representation of operators and states are written in this basis unless
otherwise stated. The unitary transformations of the qubits may be visualized using
quantum circuit diagrams introduced later to explain some of the more complex
quantum algorithms.

It is known that any unitary gate can be decomposed into some sets of univer-
sal quantum logic gates that contain single- and two-qubit operations [12]. The

4 More precisely, BQP is analogous to the classical complexity class BPP, which refers to problems
that can be solved with randomized algorithms in a classical computer in polynomial time, subject to
a bounded error probability.
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first gate of interest is the single-qubit Hadamard transformation defined (in the
computational basis) as

H = 1√
2

[
1 1

1 −1

]

The Hadamard gate transforms between the σz basis and the σx basis (|±〉 =
(|0〉 ± |1〉)/√2) and will be used throughout the chapter. A second gate of interest
is the CNOT (controlled not) gate, which is a nontrivial two-qubit gate. It leaves
one input qubit unchanged and acts with σx = |0〉〈1| + |1〉〈0| on the second qubit
when the first qubit is in the state |1〉. The first qubit is called the control, and the
NOT operation is applied coherently when the control qubit is in a superposition of
computational basis states. Symbolically, the gate is written as CNOT= |1〉〈1| ⊗
σx + |0〉〈0| ⊗ I. The Hadamard and CNOT gates are not universal for quantum
computation, and in fact quantum algorithms with only these gates can be simulated
efficiently classically as shown by the Knill–Gottesman theorem [12]. Therefore,
this gate set must be augmented by other single-qubit gates, which can always
be expressed by single-qubit rotations, Rx, Ry, and Rz where Rx is defined as
exp[−iσxθ/2] for real angle θ.

There are two elementary algorithms, namely, quantum Fourier transform
(QFT) and phase estimation algorithm (PEA), that play important roles in many
applications in quantum simulation. We turn our attention to them now.

1. Quantum Fourier Transform

Given a vector with N elements (x0, x1, . . . , xN−1), in classical computation, the
discrete Fourier transform outputs another vector of N numbers (y0, y1, . . . , yN−1)
through the following relation:

yk = 1√
N

N−1∑
j=0

xje
2πijk/N (3)

In quantum computation, for any given quantum state, |φ〉 = ∑N−1
x=0 φ (x) |x〉, the

goal of the quantum Fourier transform UQFT is to perform the following unitary
transformation:

UQFT |φ〉 =
N−1∑
k=0

φ̃ (k) |k〉 (4)

where φ̃ (k) = (1/
√

N)
∑N−1

x=0 φ (x)e2πixk/N is the Fourier-transform of the dis-
crete function φ (x) [compare with Eq. (3)]. Due to the linearity of UQFT, it is
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sufficient to consider the transformation of the basis vectors such that

UQFT |x〉 = 1√
N

N−1∑
k=0

e2πixk/N |k〉 (5)

For a system of n qubits, the number of gates required for such a transformation
is O(n2) [12]. For the classical case [see Eq. (3)], one will require O(n2n) gates
to complete the same transformation, for example, with fast Fourier transform
(FFT). This may seem to suggest that quantum computers are exponentially more
efficient in performing the task of discrete Fourier transformation. However, the
caveat is that one cannot directly compare QFT with the classical FFT. The reason
is that if we want to obtain a particular Fourier-transform coefficient, say φ̃ (k),
from the quantum state in Eq. (4), it would still require exponentially many steps
to extract the information (phase and amplitude), for example, through quantum
state tomography where many measurements are used to analyze the state [12].

Nevertheless, QFT is essential in many applications in digital quantum simula-
tion. As we shall see in Section II.B.2, it allows us to simulate the time dynamics
of particles efficiently by moving between the position and momentum represen-
tations. Another important application of the QFT is phase estimation, which is
discussed next.

2. Phase Estimation Algorithm

The phase estimation algorithm UPEA is an essential component for many
quantum algorithms for quantum simulation, as well as the celebrated factoring
algorithm [2]. Loosely speaking, the PEA can be considered as a realization of the
von Neumann measurement scheme (without the last projective measurement) in
the eigenvalue basis |ak〉 of any Hermitian observable A (e.g., Hamiltonian H).
More precisely, if we prepare a register of m ancilla qubits initialized in the state
|000...0〉, then for any given state |φ〉 = ∑

k ck |ak〉, we have

UPEA |φ〉 |000...0〉 ≈
∑

k

ck |ak〉 |Ak〉 (6)

where, for the moment, we assume that the Aks are the m-integer-digit
representations (i.e., Ak ∈ {0, 1, 2, . . . , 2m−1}) of the eigenvalues of A. The pro-
jective measurement cannot be implemented perfectly in general (hence, the ≈
symbol). We will see where the errors come from as we go through the details of
the algorithm.

Suppose that we are given an eigenstate |ak〉 of the Hermitian observable A.
The goal of PEA is to determine Ak, given that we are able to simulate a unitary
operator W where

W |ak〉 = e2πiφk |ak〉 (7)
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and φk ≡ Ak/2m. The first step of the PEA is to apply Hadamard gates to each of
the ancilla qubits. This results in an equal superposition of states

|S〉 ≡ 1√
2m

2m−1∑
x=0

|x〉 (8)

where x is a m-digit binary number. Then, taking each ancilla qubit j as a control
qubit, we apply the controlled-W2j−1 gate to the state |S〉 |ak〉; this effectively
performs the following operation:

|x〉 |ak〉 → |x〉 Wx |ak〉 (9)

Of course, from Eq. (7), the right-hand side gives only a phase factor, namely
exp (2πixφk). The resulting state is(

1√
2m

2m−1∑
x=0

e2πixφk |x〉
)

|ak〉 (10)

Comparing this state with that in Eq. (4), and assuming the special cases where the
phase angle φx can be expressed exactly by m binary digits, the application of the
inverse of the quantum Fourier transform UQFT will convert the state in Eq. (10)
into the following state

|Ak〉 |ak〉 (11)

Because the unitary operator UPEA is linear, the procedure applies to any initial
state. For this particular case, where Aks are integers, we have shown that PEA is
effectively a projective measurement as advertised in Eq. (6).

For the general case, where the Aks are real numbers, the corresponding φks will
have precision beyond 1/2m, which is the source of the errors in the expression of
Eq. (6). The overall error decreases when we increase the number of ancilla qubits
and perform several QFTs in parallel (we refer to Ref. [35] for a detailed error
analysis). More precisely, if we want to achieve a p-bit precision of φk with an
error less than ε, one will need more than m = p + log (2 + 1/2ε) ancilla qubits.
In general, implementing the operator Wk requires k times as many resources as
those needed for simulating W . Therefore, the scaling of the quantum gates of PEA
grows exponentially when we increase the precision p of the phase measurement.
This result is consistent with that of the general sampling theory in classical signal
processing, where the precision of the Fourier spectrum δω goes as the inverse of
the total time T sampled, that is, δω ∼ O(1/T ), because the cost of the quantum
simulation is proportional to T , and T grows exponentially with the number of
bits of precision.
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II. DIGITAL QUANTUM SIMULATION

A. Overview

Broadly speaking, the steps involved in carrying out a digital quantum simulation
consist of three parts: state preparation, time evolution, and measurement of ob-
servables. Measurement of Hermitian observables can be achieved via the phase
estimation method [36–38] described before. Other applications [39–44] or quan-
tities of physical interest such as the partition function [45,46], can be obtained
through variants of the methods employed in state preparation and time evolution,
and we will skip them in this review. Next, we give an overview of state prepa-
ration and simulation of time evolution. It turns out that many methods of state
preparation also depend on the time evolution itself. Therefore, we will first cover
the methods of time evolution before state preparation.

B. Simulation of Time Evolution

The simulation of the time evolution of quantum state |ψ〉 under Hamiltonian H

according to the Schrödingers equation (� = 1),

i
∂

∂t
|ψ〉 = H (t) |ψ〉 (12)

is one of the key applications of quantum computation. If, for example, the time-
evolution operator

U(t) = exp(−iHt) (13)

can be simulated efficiently, then the eigenvalues of H might be obtained through
the phase estimation algorithm.5 As mentioned in the introduction, Feynman [1]
investigated the possibility of simulating quantum systems using another quantum
system and conjectured that a class of universal quantum simulators evolved under
a Hamiltonian with local interactions. This conjecture was justified by Lloyd [47],
who argued that any Hamiltonian

H =
m∑

i=1

Hi (14)

which can be decomposed into m local terms {Hi} can be simulated efficiently by
a universal quantum computer. Each Hi term acts on at most k qubits (or quantum
subsystems). The key idea is based on the Trotter splitting or “trotterization” of

5 Moreover, it can also be exploited for quantum cooling (see Section II.D).
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all noncommuting operators,

e−iHt ≈
(
e−iH1t/ne−iH2t/n · · · e−iHmt/n

)n

(15)

where the approximation can be made arbitrarily tight by refining the time-slicing
(i.e., increasing n).

There exist higher-order approximations (Suzuki–Trotter formulas) that reduce
the error even further. For instance, the second-order approximation is given by

e−iHt ≈
((

e−ih1
�t
2 · · · e−ihN−1

�t
2

)
e−ihN�t

(
e−ihN−1

�t
2 · · · e−ih1

�t
2

)) t
�t

+O(t(�t)2) (16)

A quantum circuit on n qubits, which approximates U(τ), with error at most ε, is
efficient if the number of one- and two-qubit gates involved is polynomial in the
scaling of the problem (i.e., poly(n, τ, 1/ε) with τ = t/||H ||).

1. Suzuki–Trotter Formulas

We now briefly review the use of Suzuki–Trotter formulas in quantum simulation
for time-independent sparse Hamiltonians, providing an introduction to the quan-
tum simulation literature. Continuing the work of Lloyd [47], works by Aharonov
and Ta-Shma [48] and Childs [49] show that black-box sparse Hamiltonians are
too efficiently simulatable. Sparsity here means that the number of elements per
row is bounded by some polynomial of n, while the dimension of the Hilbert space
is D = 2n. It is also required that each matrix element can be retrieved efficiently.
Ref. [48] used a coloring scheme to decompose the Hamiltonian into a sum of
2 × 2 block diagonal matrices. This coloring scheme has been updated in several
references [50–52]. The coloring scheme and black-box simulation will not be
discussed further.

Berry et al. [50] were the first to approach the general problem of simulating
noncommuting Hamiltonians by using higher order Suzuki–Trotter formulas. Pa-
pageorgiou and Zhang [53] returned to this issue and their contributions will be
discussed later. The important results of Berry et al. [50] are the following:

1. The use of higher order Trotter-Suzuki decompositions to bound the number
of noncommuting exponentials, Nexp, necessary to carry out a simulation for
some amount of time t

2. A proof of a no-go theorem for sublinear black-box simulation

3. Improvements upon the coloring scheme of Refs [48] and [49] for black-box
simulation of sparse Hamiltonians.

The simulations in this chapter are concerned with the first two results and they
will be explained in more detail after describing the Suzuki–Trotter formulas.
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Suzuki has studied and extended the Trotter formula essentially continuously
since 1990 and this work was reviewed in Ref. [54]. The recursive formulas in-
troduced by Suzuki define a fractal pattern where a combination of forward and
backward propagation leads to an improved approximation of the desired exponen-
tial. Suzuki defines higher-order Trotter formulas in a recursive way. Beginning
with the split operator formula, eAx/2eBxeAx/2, for m operators, the following
series of equations were derived

S2(x) =
(

m∏
k=1

ehkx

) (
1∏

k=m

ehkx

)
(17)

S4(x) = S2(z2x)2S2((1 − 4z2)x)S2(z2x)2 (18)
...

...

S2k(x) = Sk(zkx)2Sk((1 − 4zk)x)Sk(zkx)2 (19)

The values of the constants {zj} are selected so that S2j is correct through 2jth

order and it can be shown [54] that zi = (4 − 41/(2i−1))−1. With m noncom-
muting Hamiltonians, the first-order approximation takes m = Nexp, and for the
split operator formula, S2, the number of exponentials is 2m − 1. In general,
2(m − 1)5k−1 + 1 exponentials are used for the S2k approximant.

For the kth order Suzuki–Trotter, with m Hamiltonians in the sum, and error
tolerance given by ε, Berry et al. [50] give a bound on the number of exponentials
by bounding each order of the Suzuki–Trotter formula. Papageorgiou and Zhang
[53] presented an improvement by noting that the relative ratio of Hamiltonian
norms is also important. The main idea is that if some of the Hamiltonians have
small weight, then their exponentials can be effectively ignored.

The optimal order of Trotter decomposition, k∗, is determined by selecting
the best compromise between time-step length and a decomposition using more
exponentials. In Berry et al. [50], this was worked out for unstructured sparse
Hamiltonians Nexp ≥ ||H ||t. The lower bound on the generic cost of simulating
an evolution was by contradiction, and relied on the lower bounds to quantum
mechanical problems based on the polynomial method [55]. This bound could be
violated given sublinear simulation time. In a departure from the methods discussed
so far, Childs [56] used a quantum walk-based approach to push the scaling closer
to linear in the reweighed time and Raesi et al. [57] looked at designing quantum
circuits for quantum simulation.

For problems in chemistry, it is more natural to represent Hamiltonians in
terms of first- and second-quantized forms. In the following, we will describe how
to exploit the special structure of molecular Hamiltonians to simulate the time
dynamics in quantum computers.
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2. First-Quantized Representation

In the first-quantized form, the nonrelativistic molecular Hamiltonians H decom-
poses in a kinetic T and potential V terms, that is,

H = T + V (20)

The kinetic term includes the contribution from the nuclei and electrons separately,

T = −
∑

i

�
2

2Mi

∇2
i −

∑
j

�
2

2me

∇2
j (21)

where Mi is the mass of the nucleus i and me is the electron mass. The potential
energy term comprises of the Coulomb interaction among the nuclei, among the
electrons, and between the nuclei and electrons. Explicitly

V (r, R) = e2

4πε0

∑
i<j

ZiZj∣∣Ri − Rj

∣∣ + e2

4πε0

∑
i<j

1∣∣ri − rj

∣∣ − e2

4πε0

∑
i,j

Zi∣∣Ri − rj

∣∣
(22)

where e is the electric charge and Zi is the charge of nuclei i. The coordinates
of nuclei i and electron j are denoted by Ri and rj . We will use the notation
r = (r1, r2, r3, . . .) (and similarly for R). We also ignore the spin degrees of
freedom, which can be incorporated easily.

The general wave function can be represented in the position basis as

|�〉 =
∑
r,R

� (r, R) |r1r2r3 · · ·〉 |R1R2R3 · · ·〉 (23)

where each electronic or nuclear coordinate is represented on its own grid over
m qubits resulting in a total of Bm qubits to represent the state of B particles.
Note that the grid encoded in m qubits has 2m points. The complex wave function
� (r, R) in addition to being properly normalized must also be antisymmetrized
(or symmetrized for Bosons). Abrams and Lloyd [58] and Ward et al. [59] consider
the necessary antisymmetrization process for fermions in first quantization.

To simulate the dynamics [6,60,61], we note that although the kinetic and
potential terms do not commute with each other, both can be represented as diago-
nal operators in momentum and position basis, respectively. By using the quantum
Fourier transform UQFT, it is natural to decompose the time evolution as

e−iHt ≈
(
U

†
QFTe−iTt/nUQFTe−iVt/n

)n

(24)

In fact, this method is known as the split-operator method [62,63]. Higher-order
Suzuki–Trotter formulas can also be applied, as described earlier. This method
was applied to quantum computing in a number of works [6,60,61,64–66].
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In the context of quantum computing, it remains to find a method to induce a
coordinate-dependent phase factor such that

|r1r2r3 · · ·〉 |R1R2R3 · · ·〉 → e−iV (r,R)δt |r1r2r3 · · ·〉 |R1R2R3 · · ·〉 (25)

where δt ≡ t/n, and similarly for the kinetic term in the Fourier basis. An efficient
method6 is implicitly described in the book by Kitaev et al. [10] (pp. 131–135),
which was further developed and adapted to the chemistry context by Kassal et al.
[61]. We sketch the idea here for completeness. First, we will assume that the po-
tential energy term is rescaled to become dimensionless, and projected into a range
of integer values such that 0 ≤ V (r, R) ≤ 2m − 1, where m should be sufficiently
large to allow appropriate resolution of V (r, R) in the integer representation.
Next, we define a more compact notation |r, R〉 ≡ |r1r2r3...〉 |R1R2R3...〉, and an
algorithmic operation A to be performed in the position basis

A |r, R〉 |s〉 → |r, R〉 |s ⊕ V (r, R)〉 (26)

where |s〉, s = 1, 2, 3, . . . , is a quantum state of m ancilla qubits, and ⊕ is addition
modulo 2m. Suppose now that the ancilla qubits are initialized in the following
state:

|q〉 ≡ 1√
M

M−1∑
s=0

e2πis/M |s〉 (27)

where M ≡ 2m. This state is the Fourier transform of |1〉. Then the desired phase
generating operation described in Eq. (25) can be achieved using controlled σz

rotations after applying A to the state |r, R〉 |q〉. A similar procedure is applied to
the kinetic term to complete the Trotter cycle.

An alternative approach to implement the controlled-phase operation described
in Eq. (25) is the following: first include a register of qubits initialized as |0〉. Then
in a similar (but not identical) way as that described in Eq. (26), we define the
operation

Ã |r, R〉 |0〉 → |r, R〉 |V (r, R) δt〉 (28)

where we used 0 ⊕ V (r, R) δt = V (r, R) δt. The state |V (r, R) δt〉 is the binary
representation {x1x2x3 . . . xm} defined through the following equality,

V (r, R) δt ≡ 2π × 0.x1x2x3 . . . xm = 2π

m∑
k=1

xk

2k
(29)

6 An alternative method was proposed by Benenti and Strini [66], but it scales exponentially with the
number qubits.
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Now, we can decompose the overall phase as follows,

e−iV (r,R)δt = e−i2πx1/2e−i2πx2/22 · · · e−i2πxm/2m

(30)

This decomposition can be achieved through the application of m local phase
gates Rk ≡ |0〉 〈0| + exp

(−2πi/2k
) |1〉 〈1| for each ancilla qubit. This approach

requires the ancilla to be uncomputed (i.e., the inverse of the operation in Eq. (28))
in the last step.

3. Second-Quantized Representation

The first-quantization method is universally applicable to any molecule. The short-
coming is that it does not take into account the physical symmetrization properties
of the underlying quantum system. When a suitable set of basis functions is em-
ployed, the size of the problem can be significantly reduced. It is known as the
second-quantization approach in quantum chemistry, which can be extended for
quantum simulation.

Most studies on quantum simulation based on first quantization methods use
grids to represent wave functions, while works employing second quantization
methods generally use atomic or molecular orbitals as a basis set for the wave
functions. We will take the latter approach here. Nevertheless, the choice of basis
is not the key difference between the first and second quantization. Indeed, a
basis set of delta functions (or approximations to delta functions) could be used to
represent a grid within second quantization. On the other hand, the storage of the
same wave function is different in second and first quantization. For example, a
two-particle wave function with the first particle at site i and the second at site j, is
represented as |coordi〉|coordj〉 in first quantization, and as |0 · · · 1i · · · 1j · · · 00〉
in second quantization.

The starting point of the second-quantization approach [67–70] is the
Born-Oppenheimer approximation, where the nuclear coordinates R are taken
to be classical variables. This allows us to focus on the electronic structure prob-
lem. Ignoring the nuclear kinetic and the nuclear–nuclear interaction terms, the
molecular Hamiltonian in Eq. (20) can be expressed as

H =
∑
pq

hpqa
†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†qaras (31)

where the fermionic creation operator a
†
p creates an electron in the p mode from the

vacuum, that is, a†p |vac〉 = |p〉. Denote χp(r) as the single-particle wave function
corresponding to mode p.7 Then, the explicit form for the single-electron integrals

7 Here, r refers to the coordinates of one particular electron.
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is given by

hpq ≡ −
∫

drχ∗
p (r)

(
�

2

2me

∇2 + e2

4πε0

∑
i

Zi

|Ri − r|

)
χq (r) (32)

and the electron–electron Coulomb interaction term is,

hpqrs ≡ e2

4πε0

∫
dr1dr2

χ∗
p (r1) χ∗

q (r2) χr (r2) χs (r1)

|r1 − r2| (33)

These integrals have to be precalculated with classical computers before encoding
them into the quantum algorithms. If we keep k single-particle orbitals, then there
are O(k4) terms. More details of the formalism of second-quantized electronic
structure theory in the Born-Oppenheimer approximation can be found in Ref.
[71].

To simulate time dynamics in a quantum computer, we can apply the same
Trotterization idea described earlier [see Eq. (15)], and simulate separately the
terms

exp(−ihpqa
†
paqδt) and exp(−ihpqrsa

†
pa†qarasδt) (34)

Because the simulation of every single exponential term in a quantum computer
is costly, due to error-correction overheads as discussed in Ref. [72], one simplifi-
cation we can make is to group the terms of single-particle terms into two particle
terms. This is possible for electronic problems with a fixed number N of electrons.
Consider any N-fermionic state, then the identity operator IN is equivalent to a
summation of the following single-body number operators,

(1/N)
∑

s

a†sas ⇔ IN (35)

which means that we can write

a†paq = 1

N − 1

∑
s

a†pa†sasaq (36)

The last equation is a sum of two-electron terms, and can be absorbed into the pre-
computed values of hpqrs. Now, denoting the new values as h̃pqrs, the Hamiltonian
H reduces to

H = 1

2

∑
pqrs

h̃pqrsa
†
pa†qaras (37)

Therefore, we are left only with simulating the two-body term in Eq. (34).
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One challenge we need to overcome is the fermionic nature of the operators
a
†
p and aq, which comes from the antisymmetrization requirement of fermionic

wave functions. A first step to overcome this challenge is to map the occupation
representation to the qubit configuration. Explicitly, for each fermionic mode j,
we represent the qubit state |0〉j ≡ |↓〉j as an unoccupied state, and similarly
|1〉j ≡ |↑〉j as an occupied state. To enforce the exchange symmetry, we apply the
Jordan-Wigner transformation [5,69]:

a
†
j =

⎛
⎝∏

m<j

σz
m

⎞
⎠ σ−

j and aj =
⎛
⎝∏

m<j

σz
m

⎞
⎠ σ+

j (38)

where

σ± ≡ (σx ± iσy)/2 (39)

By using Eqs. (38) and (39), we can now write the fermionic Hamiltonian in
Eq. (37) as a spin Hamiltonian involving products of Pauli matrices {σx, σy, σz}:

Hspin =
∑
pqrs

∑
abcd

gabcd
pqrs θpqrsσ

a
pσb

qσc
r σ

d
s (40)

where the set of indices {p, q, r, s} is summed over the fermionic modes, and
{a, b, c, d} is either x or y. The operator θpqrs keeps track of the σzs; for example,
if p > q > r > s, we then have

θpqrs =
⎛
⎝ ∏

p>i>q

σz
i

⎞
⎠ ×

⎛
⎝ ∏

r>j>s

σz
j

⎞
⎠ (41)

The punchline here is that the Hamiltonian becomes a polynomial sum of products
of spin operators, and each operator is locally equivalent to σz. Therefore, the
nontrivial part of simulating the time dynamics of the fermionic Hamiltonian is to
simulate the nonlocal interaction terms of the following form:

exp(−igσzσzσz · · · σzδt) (42)

where g is some constant. It can be achieved by a series of controlled-NOT
together with a local operation (see, e.g., Fig. 4.19 of Ref. [12]), or the phase-
generating method similar to the one described in the previous section [cf. Eq. (25)].
The explicit circuits for simulating the time evolution operators can be found in
Ref. [69].
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4. Open-System Dynamics

In quantum mechanics, the time evolution dynamics of a closed system is always
described by a unitary transformation of states, U (t) ρ U† (t). However, nonunitary
dynamics occur when the dynamics of the system of interest S is coupled to the
environment B, as in

ρS (t) ≡ TrB
[
U (t) ρSB U† (t)

]
(43)

After some approximations this evolution can often be described by a (Markovian)
quantum master equation in Lindblad form [73–75],

d

dt
ρs (t) = −i [Hs, ρs] +

∑
α,β

mαβ

([
�αρs, �

†
β

]
+

[
�α, ρs�

†
β

])
(44)

where Hs is the system Hamiltonian, mαβ is a positive matrix, and �α is a lin-
ear basis of traceless operators. This quantum master equation is relevant in many
physical, chemical, and biological processes at finite temperature [76,77]. Further,
this equation has many applications in quantum information processing, including
preparing entangled states (from arbitrary initial states) [78–82], quantum mem-
ories [83], and dissipative quantum computation [84]. It has been shown that the
quantum master equation can be simulated by a unitary quantum circuit with poly-
nomial resource scaling [85,86]. The basic idea is as follows: we first rewrite the
master equation [Eq. (44)] in the form,

d

dt
ρs (t) = L (ρs) (45)

where L is a superoperator. Similar to the unitary dynamics, we can define the
superoperator version of the propagator K (t1, t0) through the relation

ρs (t1) = K (t1, t0) (ρs (t0)) (46)

for all values of time t1 ≥ t0. Suppose we consider a finite time interval T , which
can be divided into m small time intervals �t (i.e., T = m�t). Then similar argu-
ments [86] based on Trotterization show that the following approximation,

K (T ) ≈ K (�t)K (�t)K (�t) ...K (�t)︸ ︷︷ ︸
m times

(47)

indeed converges when the division size goes to zero (i.e., �t → 0). The remaining
part of the argument is to show that each of the small-time propagator termsK(�t)
can be simulated efficiently with a quantum circuit. This is generally true if the
superoperator L is a finite (polynomial) sum of local terms [85].
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C. State Preparation

We have discussed how quantum dynamics can be simulated efficiently with a
quantum computer, but we have not yet discussed how quantum states of physi-
cal or chemical interest can be initialized on the quantum computer. In fact, both
thermal and ground states of physical Hamiltonians can be prepared by incorpo-
rating the methods of simulating the time dynamics, as we shall explain later in
this section.

We first consider a strategy to prepare quantum states that can be efficiently
described by some integrable general function (e.g., a Gaussian wave packet).
Before we provide a general description, it may be instructive to consider the case
of creating a general (normalized) two-qubit state,

f00 |00〉 + f01 |01〉 + f10 |10〉 + f11 |11〉 (48)

from the initial state |00〉. First of all, we will assume that all the coefficients fij are
real numbers, as the phases can be generated by the method described in Eq. (25).
Now, we can write the state in Eq. (48) as

g0 |0〉 ⊗
(

f00

g0
|0〉 + f01

g0
|1〉

)
+ g1 |1〉 ⊗

(
f10

g1
|0〉 + f11

g1
|1〉

)
(49)

where g0 ≡
√

f 2
00 + f 2

01 is the probability to find the first qubit in the state |0〉,
and similarly for g1 ≡

√
f 2

10 + f 2
11. The form in Eq. (49) suggests that we can use

the following method to generate the general state of Eq. (48) from |00〉.
1. Apply a rotation, such that |0〉 → g0 |0〉 + g1 |1〉, to the first qubit. The

resulting state becomes

(g0 |0〉 + g1 |1〉) |0〉 (50)

2. Perform the following controlled operation:

|x〉 |0〉 → |x〉
(

fx0

gx

|0〉 + fx1

gx

|1〉
)

(51)

where x = {0, 1}.
The final state is exactly the same as that in Eq. (49) or Eq. (48).

Consider, more generally, the preparation of the following n-qubit quantum
state [6,59,87,88]:

2n−1∑
x=0

f (x) |x〉 (52)
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Figure 1. Example for
the state preparation method.
The space is divided in L =
8 divisions. The “0” divi-
sion refers to the left half of
the space, (0 ≤ x < L/2), and
similarly for the “1” division.
Finer resolution is achieved by
increasing the number of la-
beling digits.

Here, again we will assume that f (x) is real. We can image that this is the wave
function of a particle in 1D. The first qubit describes whether the particle is located
in the left half |0〉 or right half |1〉 of the line divided by L ≡ 2n divisions. The
first step is therefore to rotate the first qubit as cos θ0 |0〉 + sin θ1 |1〉, where

cos2 θ0 =
∑

0≤x<L/2

f (x)2 (53)

represents the probability of locating the particle at the left side (i.e., 0 ≤ x < L/2)
(Fig. 1). The next step is to apply the following controlled rotation:

|x〉 |0〉 → |x〉
(

cos θx0

cos θx

|0〉 + cos θx1

cos θx

|1〉
)

(54)

where

cos2θ00 =
∑

0≤x<L/4

f (x)2 and cos2θ01 =
∑

L/4≤x<L/2

f (x)2 (55)

represents the probability for finding the particle in the “00” division
(0 ≤ 0 < L/4) and the “01” division (L/4 ≤ 0 < L/2), respectively; analogous
arguments apply for the “10” and “11” divisions. In the remaining steps, simi-
lar controlled operations described in Eq. (54) are applied, which depend on the
division of the controlling qubits. The θ rotation angles have to be calculated
explicitly. It is, therefore, necessary that the function f (x) is efficiently integrable
[87]. This is expected, as otherwise such a simple algorithm would be able to
solve the random-field Ising spin models and other NP-complete problems. We
will cover the creation of thermal states later. In the next section, we will consider
methods for preparing ground states.

1. Preparing Ground States

a. Phase-Estimation Based Methods. Finding ground states of classical Hamil-
tonians (e.g., a random-field Ising model) is known to be NP-hard. Therefore, it is
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not expected that a quantum computer would be able to solve it efficiently in gen-
eral. Furthermore, preparing the ground state of a general quantum Hamiltonian H

is even more challenging as both eigenvalues and eigenvectors must be obtained,
and this problem would solve the QMA complexity class, the quantum analog of
NP. Fortunately, many problems in physics and chemistry exhibit structures and
symmetries that allow us to arrive at solutions that are approximations of the exact
solutions; for example, the BCS wave function related to superconductivity and su-
perfluidity, and the Laughlin wave function related to the fractional quantum Hall
effect (FQHE), both provide good predictions for the corresponding many-body
problems. The quality of other approximated solutions, such as the mean-field or
Hartree–Fock approximation, may vary from problem to problem.

The quality of the approximated solution (or trial solution) |ψT 〉 can be quan-
tified by the fidelity F defined by

F ≡ |〈e0 |ψT 〉|2 (56)

where |e0〉 is the target ground state (assumed unique) of the Hamiltonian H of
interest. The physical meaning of F is that if one can implement a projective
measurement {|ek〉 〈ek|} in the eigenvector basis {|ek〉} of H to the trial state |ψT 〉,
then the probability of getting the ground state |e0〉 is exactly equal to F , and can
be implemented with the phase estimation algorithm [36]. A similar procedure can
produce low energy eigenstates even if there is no gap [29].

With the methods of the previous paragraph, if the projection on the ground
state fails, the initial approximation must be reconstructed again. Because the
projection fails with probability 1 − F , the approximate preparation must be done
1/(1 − F ) times on average. Projection success can be improved using phase
amplification (a trick similar to Grover’s search) to

√
1/(1 − F ) “coherent” initial

state preparations. A different method is possible if, as is often the case, we can
evolve with a Hamiltonian H̃ for which the state approximation is a ground state.
Assume that the approximated ground state has an energy gap bounded by � for
H̃ and the exact ground state has a similar gap for H . Then we can transform
a single preparation of the approximated state into the exact ground state using
around 1/(1 − F ) phase estimations, each implemented with a time evolution for
a time of 1/� [89].

Therefore, a quantum computer, even if it cannot solve all ground-state prob-
lems efficiently, is capable to leverage classical trial states and solve a broader
class of problems than those efficiently solvable by classical computers.

b. Adiabatic State Preparation. The adiabatic method is an alternative way to
prepare ground states [48,89–93]. The original idea is due to Farhi et al. [90].
We first must be able to efficiently prepare the ground state |ψ (0)〉 of a certain
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initial Hamiltonian H(0) = Hi. Then we change the Hamiltonian H(t) slowly, for
example,

H (t) = (1 − t/T ) Hi + (t/T ) Hf (57)

Notice that for many reasonable choices of Hi and most physical Hamiltonians
Hf the Hamiltonian H(t) can be simulated using the methods of Section II.B.
Nevertheless, common two-body Hamiltonians could be simulated directly.

If the change from Hi (when t = 0) to the target Hamiltonian Hf (when t = T )
is slow enough, then the state |ψ (t)〉, satisfying the time-dependent Schrödinger
equation

i�
d

dt
|ψ (t)〉 = H (t) |ψ (t)〉 (58)

follows the corresponding eigenstate of H(t) adiabatically. Therefore, |ψ (T )〉 is
close to the ground state of the target Hamiltonian Hf . A sufficient condition for
the total time T to ensure the adiabaticity for a linear interpolation between two
Hamiltonians is

T � ‖∂sH(s)‖
�2

min

(59)

where s ≡ t/T . Here,

�min ≡ min
0≤s≤1

(E1 (s) − E0 (s)) (60)

is the minimum gap between the instantaneous eigen-energies E1(s) and E0(s) of
the first excited state and the ground state. The following bound has a better depen-
dence on the minimum gap and it also holds for general (nonlinear) interpolations
if the rate of change of the instantaneous eigenstate |∂sψ(s)〉 is known [92]

T >
L2

�min
(61)

Here, L is the path length given by the equation

L =
∫

‖∂sψ(s)〉‖ds (62)

Using the methods of Section II.B adiabatic evolutions can be simulated
efficiently on a quantum circuit. That is, for cases where one may not be able to
physically implement H(t), it is still possible to turn the adiabatic state preparation
into a quantum algorithm and simulate the adiabatic process in a digital quantum
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computer. Furthermore, in this case the total time of the adiabatic evolution can
be improved to8 [89]:

T >
L

�min
(63)

The remaining question is, in terms of finding ground states: How good are
adiabatic algorithms? As we have seen, the performance, or computational com-
plexity, of adiabatic algorithms generically depends on the scaling of the minimal
gap �min. Even for classical target Hamiltonians Hf , whether adiabatic algorithms
success in solving NP-problems is still a controversial issue [95,96]. Numerical
results suggest that for the classical satisfiability (SAT) problems, the scaling of
the gap would be exponential [28,31,34]. If the target Hamiltonian is quantum,
the problem is QMA-complete. Nevertheless, we can in principle apply the adia-
batic algorithm to the trial states to improve the ground-state fidelity [97], which
gives us a higher probability of projecting into the exact ground state by the phase
estimation algorithm discussed in the previous section.

2. Preparing Thermal States Using Quantum Metropolis

We now consider the preparation of density matrices for thermal states

ρth = e−βH/Tr
(
e−βH

)
(64)

where H can be a quantum or classical Hamiltonian, and β = 1/T is the inverse
temperature. We simplify the notation by choosing our units so that the Boltzmann
constant kB is 1. Zalka [6] and Terhal and DiVincenzo [98] proposed to simulate
the Markovian dynamics of the system by modeling the interaction with a heat-
bath by some ancilla qubits. A similar idea has been recently investigated by
Wang et al. [99]. Terhal and DiVincenzo [98] also attempted to prepare thermal
states by generalizing classical Metropolis-type sampling [100]. This first quantum
Metropolis algorithm was limited by the fact that it was not possible to control the
update rule for the Metropolis algorithm, which would generally lead to a slow
convergence rate of the underlying Markov chain. A significant improvement upon
this work has been presented recently in Ref. [101] with the “quantum Metropolis
sampling” algorithm. This algorithm also constructs a Markov-chain whose fixed
point is a thermal state Eq. (64), but the transitions between states can be engineered
to achieve faster convergence. The underlying time cost of this algorithm scales
as O(1/�) [102], where � is the eigenvalue gap of the Markov matrix associated
with the Metropolis algorithm.

8 Boixo and Somma [94] have shown that this expression for the total evolution time is also optimal.
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Szegedy [103] introduced a quantum algorithm to speed up classical Markov
chains. Richter [104] extended this method to some quantum walks with decoher-
ence. Szegedy’s method has also been applied to achieve a quadratic speed up of
classical simulated annealing algorithms [105,106]. Further, Yung and Aspuru-
Guzik [107] achieved a similar speedup of the quantum Metropolis sampling al-
gorithm for quantum Hamiltonians. This algorithm outputs a coherent encoding
of the thermal state (CETS):

|ψth〉 =
∑

k

√
e−βEk/Z |ek〉 (65)

where Z is the partition function and Ek is the eigenvalue associated with the
eigenvector |ek〉 of the Hamiltonian H .

Markov chain approaches are practical for many applications. However, for
systems such as spin glasses, the eigenvalue gap � of the corresponding Markov
matrices typically become exponentially small, making it inefficient. Several alter-
native approaches have been already introduced in the literature. Among them ex-
ploiting the transfer-matrix structure of spin systems [33,108]; mapping the CETS
as the ground state of certain Hamiltonian [109,110]; and methods based on quan-
tum phase estimation [30,32,111]. In the next section, we modified one of these al-
gorithms to prepare thermal states, building up from smaller to bigger subsystems.

3. Preparing Thermal States with Perturbative Updates

The quantum Metropolis algorithms of the previous section extend the advantages
of Markov chain Monte Carlo methods to the quantum case, even if we do not know
how to diagonalize the quantum Hamiltonian. It is expected that, as in the classical
case, they will exhibit good performance for most Hamiltonians. Nevertheless, for
complex systems, such as strongly correlated molecules, it might be difficult to
design rules to choose appropriate Markov chain update candidate states, or the
convergence rate to the thermal state might still be too slow. In this section, we
will show how, even in the worst case, quantum algorithms for preparing thermal
states will exhibit a substantial speed up over classical algorithms, elaborating
upon the method of Bilgin and Boixo [32].

The core of this algorithm is a perturbative update subroutine that builds
the thermal state ρ(ε) ∝ e−β(H+εh) from the state ρ(0) ∝ e−βH . We can use this
subroute to build thermal states of complex systems out of thermal states of their
components (see Fig. 2). For this we start with the thermal states of subsystems
with Hamiltonians H1 and H2, and use them to prepare the thermal state of the
linked system with Hamiltonian H1 + H2 + h. The coupling Hamiltonian h is
introduced perturbatively with a sequence of updates:

ρ(0) → ρ(ε) → ρ(2ε) → · · · → ρ(1) (66)
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Figure 2. Pictorial representation of the per-
turbative update method. The top figure depicts two
quantum systems with Hamiltonians H1 and H2

whose thermal states we can prepare (maybe through
prior perturbative updates). The bottom figure depicts
a single system where the two quantum systems of the
top figure have been linked with Hamiltonian h. The
perturbative update technique is a method to prepare
the thermal state of the linked system from thermal
states of the smaller subsystems.

Quite possibly the thermal states of the smaller subsystems have themselves
been prepared with a perturbative update over still smaller pieces. As in the quan-
tum Metropolis case, it is not necessary to know how to diagonalize the corre-
sponding Hamiltonian.

The perturbative update subroutine is probabilistic, and succeeds with
probability 1 − εβTr ρ(0)h, which gives the dominant cost of the algorithm. If
the perturbative update fails, we must reconstruct the state ρ(0). The probability
of failure is given by the maximum change of a thermal state ρ(0) ∝ e−βH intro-
duced by a perturbation εh, which we now bound. We denote with Z = Tr ρ(0)

the partition function of ρ(0). Using the Dyson series expansion in imaginary time
we write

e−β(H+εh)λ

Z
= e−βHλ

Z
− εβ

Z

∫ λ

0
dλ1 e−βH(λ−λ1)he−βHλ1 + · · · (67)

The appropriate measure of the difference between two density matrices is the
trace norm ‖ · ‖Tr . The reason is that this norm bounds the difference of arbitrary
measurement results for those two states. The trace norm for an arbitrary op-
erator A is given by the sum of the eigenvalues of

√
A†A, and often scales

with the dimension of the operator. We want to do better for the trace norm
of the difference between a thermal state and its perturbation, because their di-
mension grows exponentially (in the number of subsystems). We give such a
bound next.

We will use the following inequality, which applies to all unitarily invariant
matrix norms 9

∣∣∣∥∥∥ ∫ 1

0
AtXB1−tdt

∥∥∥∣∣∣ ≤ 1/2|‖AX + XB‖| (68)

9 See, for instance, Theorem 5.4.7 in Ref. [112].
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Applying this inequality to the trace norm of the Dyson series of a perturbed
thermal state we obtain the bound

(1/Z)
∥∥∥εβ

∫ 1

0
dλ1 e−βH(1−λ1)he−βHλ1

∥∥∥
Tr

≤ εβ‖h‖ (69)

where ‖h‖ is the operator norm of h. Notice that the operator norm ‖h‖ is the
highest eigenvalue of h, and does not scale with the dimension of H (or even h).10

The perturbative update subroutine is composed of two operations. The first
operation implements the quantum map

(ρ(0)) → (1 − εβh/2)ρ(0)(1 − εβh/2)N (70)

where N is just a normalization factor. Similar to the algorithms of the previous
section, this map is implemented with phase estimation and a conditional rotation
on an ancillary system. The ancillary system is then measured. This measurement
can fail, which corresponds to implementing the wrong transformation in the ther-
mal state. The success rate is 1 − εβTr ρ(0)h. When the measurement of the ancilla
system fails, the thermal state can not be recovered, and we must start again from
the beginning. The cost of the phase estimation is ε−1β−1‖h‖−2. This operation
can be understood as an update of the Gibbs probabilities of ρ(0) to those of ρ(ε).
The second operation of the perturbative update is a transformation to the eigen-
basis of ρ(ε). It is implemented by “dephasing” in that basis, which is achieved
by evolving for a random amount of time (with expectation time ε‖h‖) using the
Hamiltonian H + εh. This completes the perturbative update subroutine.

D. Algorithmic Quantum Cooling

Yung et al. [113] presented an algorithmic quantum cooling approach that trans-
forms any input state ρin into an output state ρout that is guaranteed to have lower
energy with respect to a given Hamiltonian H . Explicitly,

Tr (Hρout) < Tr (Hρin) (71)

In principle, this algorithm can cool the resulting quantum state to a state arbitrarily
close to the ground state of H . Nevertheless, like the ground-state algorithms of
Section II.C.1, the efficiency is related to the energy gap � between the ground
state and the excited state(s). Depending on how the algorithm is implemented,
this dependence can scale like O(1/�2) or O(1/�).

10 Although strictly speaking we have derived the bound on the change of the thermal state here only
to the second order, it can be shown to be valid to all orders. For that, we use the exact formula for the

perturbation εβ
∫ 1

0
dλ1 e−βH(1−λ1)he−β(H+h)λ1 , and the same matrix norm inequality. In addition, we

need to use the bound for the change on the partition from Poulin and Wocjan [30].
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Figure 3. Quantum circuit diagram for the quantum cooling algorithm. Here,H= 1√
2

(|0〉 + |1〉)
〈0| + 1√

2
(|0〉 − |1〉) 〈1| is the Hadamard gate, Rz (γ) = |0〉 〈0| − ieiγ |1〉 〈1| is a local phase gate,

and U (t) = e−iHst , is the time t evolution operator simulating the dynamics of the system under the
Hamiltonian Hs.

Algorithmic quantum cooling first entangles an ancilla qubit with the system
state. When the ancilla qubit is measured, a result of |0〉 correlates with a cooler
system state. On average, however, no gain or loss of energy occurs. This measure-
ment is used to gain information, just like a Maxwell’s demon. The measurement
outcome of the ancilla qubit in algorithmic quantum cooling can be mapped into a
1D random walk. The walker starts at x = 0. For the cooling outcome, the walker
makes a step toward the positive side x > 0, and toward the negative side x < 0
for the heating outcome. If the walker moves too far to the negative side, the
procedure is restarted. For some range of parameters, whenever the walker goes
to the negative side x < 0, the quantum state is guaranteed to be hotter than the
original state. Therefore, removing these hot walkers will reduce the average en-
ergy over an ensemble of walkers, just like in evaporative (or “coffee”) cooling of
gas molecules. The procedure stops once the walker has moved sufficiently to the
positive side.

1. Basic Idea of the Quantum Cooling Method

We now sketch the basic working mechanism of algorithmic quantum cooling.
The core component of this cooling algorithm consists of four quantum gates (see
Fig. 3).11 The first gate is a so-called Hadamard gate

H ≡ 1√
2

(|0〉 + |1〉) 〈0| + 1√
2

(|0〉 − |1〉) 〈1| (72)

It is followed by a local phase gate

Rz (γ) ≡ |0〉 〈0| − ieiγ |1〉 〈1| (73)

where the parameter γ plays a role in determining the overall efficiency of the
cooling performance of the algorithm. The interaction with the Hamiltonian H ,

11 Similar quantum circuits are used in DQC1 and phase estimation, for instance.
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which can be either quantum or classical, is encoded in the time evolution operator

U (t) = e−iHst (74)

As already explained, time evolution can be implemented efficiently in a quantum
computer.

The operation of the circuit in Fig. 3 on input state |ψin〉 is as follows.

Step 1. State initialization,

|ψin〉 |0〉 (75)

with the ancilla state in |0〉.
Step 2. Apply the Hadamard gate, H = 1√

2
(|0〉 + |1〉) 〈0| + 1√

2
(|0〉 − |1〉) 〈1|,

and the local phase gate Rz (γ) = |0〉 〈0| − ieiγ |1〉 〈1| to the ancilla qubit

|ψin〉
(|0〉 − ieiγ |1〉) /

√
2 (76)

Step 3. Apply the controlled-U(t) to the system state,

(|ψin〉 |0〉 − ieiγU (t) |ψin〉 |1〉) /
√

2 (77)

Step 4. Apply the Hadamard to the ancilla qubit again, which produces the
following output state:

�0 |ψin〉 |0〉 + �1 |ψin〉 |1〉 (78)

where �j ≡ (
I + (−1)j+1ieiγU

)
/2 for j = {0, 1}.

A projective measurement on the ancilla qubit in the computational basis
{|0〉 , |1〉} yields one of the two (unnormalized) states

(
I ± ieiγU

) |ψin〉 (79)

Their mean energy is either higher (for outcome |1〉, x is decreased by 1) or lower
(for outcome |0〉, x is increased by 1) than that of the initial state |ψin〉.

To justify this assertion, let us expand the input state,

|ψin〉 =
∑

k
ck |ek〉 (80)

in the eigenvector basis {|ek〉} of the Hamiltonian H . Note that

∥∥(
1 ± ieiγU

) |ek〉
∥∥2 = 2(1 ± sin φk) (81)
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where φk ≡ Ekt − γ depends on the eigen-energy Ek of H . For simplicity, we
will assume that one can always adjust the two parameters, γ and t, such that

−π

2
≤ φk <

π

2
(82)

for all nonnegative integers k. Then, the factors (1 − sin φk) are in descending
order of the eigen-energies, and the opposite is true for the factors (1 + sin φk).
Therefore, apart from an overall normalization constant, the action of the operator
(I ± ieiγU) is to scale each of the probability weights |ck|2 by an eigen-energy
dependent factor (1 ± sin φk), that is,

|ck|2 → |ck|2 (1 ± sin φk) (83)

The probability weights scale to larger values, that is,

(1 − sin φk) /
(
1 − sin φj

)
> 1 (84)

for the eigen-energy Ek < Ej in the cooling case (i.e., for outcome |0〉), and vice
versa for the heating case (i.e., for outcome |1〉). Further cooling can be achieved
by applying the quantum circuit repeatedly and reject/recycle the random walker
when x < 0.

2. Connection with Heat-Bath Algorithmic Cooling

The algorithmic quantum cooling approach is related to the well-known heat bath
algorithmic cooling (HBAC) [114–116]. HBAC aims to polarize groups of spins
as much as possible, that is, to prepare the state

|↑↑↑ ... ↑〉 (85)

This state is important for providing fresh ancilla qubits for quantum error
correction as well as for NMR quantum computation. In HBAC, some reversible
operations are first performed to redistribute the entropy among a group of spins.
Some of the spins will become more polarized. For a closed system, a so-called
Shannon bound [116] limits the compression of the entropy. In order to decrease
the entropy of the whole system, the depolarized spins interact with a physical heat
bath that acts as an entropy sink. We note that from an algorithm point of view, the
existence of a physical heat bath can be replaced by the (imperfect) preparation
of polarized spins by other methods. The method of algorithmic quantum cooling
from Ref. [113] may be considered as a generalization of the HBAC, because it is
applicable to cool any physical system that is simulable by a quantum computer,
not just noninteracting spins.
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III. SPECIAL TOPICS

A. Adiabatic Nondestructive Measurements

In Section II.C, we reviewed several methods to prepare ground states and thermal
states of quantum systems of interest in physics and chemistry. In particular, in
Section II.C.1 we gave an overview of the adiabatic method for preparing ground
states. The adiabatic model may be naturally more robust against noise, offering a
method to perform small to medium-size simulations without using sophisticated
error correction schemes. Because of this and other reasons, adiabatic-based quan-
tum computation is possibly easier to realize physically than quantum computation
based on the circuit model. In this section, we review a method to effect nonde-
structive measurements of constants of the motion within the adiabatic model.

As explained in Section II.C.1, it is in principle possible to adiabatically prepare
the ground state of a physical or chemical system with Hamiltonian Hf . There
we said that this can be done by interpolating slowly enough between a simple
initial Hamiltonian Hi and the final Hamiltonian Hf . Following [93], we now add
an ancillary qubit subsystem with orthonormal basis {|p0〉, |p1〉}. This auxiliary
system will be use for the adiabatic nondestructive measurements. During the
adiabatic ground state preparation, this subsystem is acted upon with Hamiltonian
δ|p1〉〈p1|, and therefore it remains in the state |p0〉. The choice of δ > 0 will be
explained shortly.

The measurement procedure begins by bringing the ancillary qubit and the
system being simulated into interaction, adiabatically.12 We choose the interaction
Hamiltonian Hint = A ⊗ |p1〉〈p1|. Here, A is any observable corresponding to a
constant of the motion, that is, [A, H] = 0. In particular, the Hamiltonian Hf itself
can be used to obtain the ground-state energy. The total Hamiltonian becomes

Hf + δ|p1〉〈p1| + A ⊗ |p1〉〈p1|︸ ︷︷ ︸
HSP

(86)

If the energy bias δ is bigger than the expectation value of the observable A, the
state does not change during this initial interaction [93].

After the initial interaction, we apply a Hadamard gate to the ancillary qubit.
We denote the time at which we apply this gate as t = 0. Let |s0〉 be the ground
state of Hf . After a further time t the system plus ancilla qubit evolves to

|ψ(t)〉 = 1√
2
|s0〉 ⊗ (|p0〉 + e−iωt|p1〉) (87)

12 The interaction Hamiltonian is typically a three-body Hamiltonian, which makes direct simula-
tions more difficult. This difficulty can be overcome using gadgets [21,93,117,118] or the average
Hamiltonian method [119].
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where ω = (a0 + δ)/�, and a0 = 〈s0|A|s0〉 is the expectation value we wish to
measure. Finally, we again apply a Hadamard gate to the probe. The resulting
state is

|ψ(t)〉 = |s0〉 ⊗ (cos (ωt/2) |p0〉 + i sin (ωt/2) |p1〉) (88)

yielding probability

P0(t) = 1

2
(1 + cos(ωt)) = cos2 (ωt/2) (89)

Measuring the probe does not disturb the state of the simulator, which can be
reused for another measurement. This measurement can be repeated until sufficient
statistics have been accumulated to reconstruct ω. We refer to Ref. [93] for details
on numerical simulations and considerations of the influence of noise.

B. TDDFT and Quantum Simulation

Density functional theory (DFT) and its time-dependent extension (TDDFT) have
become arguably the most widely used methods in computational chemistry and
physics. In DFT and TDDFT, the properties of a many-body system can be ob-
tained as functionals of the simple one-electron density rather than the correlated
many-electron wave function. This represents a great conceptual leap from usual
wave function-based methods such as Hartree-Fock, configuration interaction, and
coupled cluster methods, and therefore the connections between DFT/TDDFT and
quantum computation have just begun to be explored. Because TDDFT is a time-
dependent theory, it is more readily applicable to quantum simulation than DFT,
which is strictly a ground state theory. For recent developments in the connections
between DFT and quantum complexity13 (see Ref. [19]), while for applications
of DFT to adiabatic quantum computation (see Ref. [120]). In this section, we
provide a brief overview of the fundamental theorems of TDDFT, which estab-
lish its use as a tool for simulating quantum many-electron atomic, molecular,
and solid-state systems, and we mention recent extensions of TDDFT to quantum
computation [121].

In its usual formulation, TDDFT is applied to a system of N-electrons described
by the Hamiltonian

Ĥ(t) =
N∑

i=1

p̂2
i

2m
+

N∑
i<j

w(|r̂i − r̂j|) +
∫

v(r, t)n̂(r)d3r (90)

13 It turns out that finding a universal funcional for DFT is QMA hard. Liu [18] proved a related result:
N-representability is also QMA hard.
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where p̂i and r̂i are, respectively, the position and momentum operators of the
ith electron, w(|r̂i − r̂j|) is the electron–electron repulsion and v(r, t) is a time-
dependent one-body scalar potential, which includes the potential due to nuclear
charges as well as any external fields. The electron-electron repulsion, w(|r̂i − r̂j|),
leads to an exponential scaling of the Hilbert space with system-size and makes
simulation of the many-electron Schrödinger equation on a classical computer
intractable. n̂(r) = ∑N

i δ(r − r̂i) is the electron density operator, whose expecta-
tion value yields the one-electron probability density 〈n̂(r)〉 ≡ n(r, t). The basic
theorems of TDDFT prove that, in principle, one can simulate the evolution of
the Hamiltonian in Eq. (90) using n(r, t) directly and thereby avoid calculating
and storing the exponential amount of information in the many-electron wave
function.

The first basic theorem of TDDFT, known as the “Runge–Gross (RG) theo-
rem” [122], establishes the existence of a one-to-one mapping between the expec-
tation value of n̂(r) and the scalar potential v(r, t). That is,

n(r, t) ↔ v(r, t) (91)

However, v(r, t) is the only part of the Hamiltonian in Eq. (90) that is nonuniversal.

That is,
∑N

i=1
p̂2

i

2m
+ ∑N

i<j w(|r̂i − r̂j|) is the same operator for each electronic
system. Therefore, due to the uniqueness of the solution to the time-dependent
Schrödinger equation, the RG theorem establishes a one-to-one mapping between
the density and the wave function, which implies that the wave function is in fact
a unique functional of the density

ψ(r1, . . . , rN ; t) ≡ ψ[n](r1, . . . , rN ; t) (92)

as is any observable of the system. The RG theorem implies the remarkable fact
that the one-electron density contains the same quantum information as the many-
electron wave function. In principle, then, if one had a means of directly simulating
n(r, t), one could extract all observables of the system without ever needing to
simulate the many-body wave function.

The second basic TDDFT theorem is known as the “van Leeuwen (VL) theo-
rem” [123]. It gives an analytic expression for a time-dependent one-body scalar
potential that applied to another system with a different, and possibly simpler,
electron-electron repulsion w′(|r̂i − r̂j|) gives the same density evolution as the
original Hamiltonian of Eq. (90). When w′(|r̂i − r̂j|) = 0, this auxiliary system is
referred to as the “Kohn–Sham system” [124]. Due to its simplicity and accuracy,
the Kohn-Sham system is in practice used in most DFT and TDDFT calculations.
Because the Kohn–Sham system is noninteracting, its wavefunction is simply
described by a Slater determinant of single-electron orbitals, which satisfy the
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time-dependent Kohn–Sham equations

ı
∂

∂t
φi(r, t) =

[
−1

2
∇2 + vks[n](r, t)

]
φi(r, t) (93)

The true interacting density is obtained from the orbitals by square-summing;
that is, n(r, t) = ∑

i |φi(r, t)|2. Naturally, the set of single-particle equations in
Eq. (93) are far easier to solve than evolution under the Hamiltonian in Eq. (90). In
practice, the Kohn–Sham potential, vks[n](r, t), must be approximated as a density
functional, but the VL theorem rigorously guarantees its existence and uniqueness.

Tempel and Aspuru-Guzik [121] recently extended the RG and VL theorems
to systems of interacting qubits described by the class of universal 2-local Hamil-
tonians

Ĥ(t) =
N−1∑
i=1

J⊥
i,i+1

(
σ̂x

i σ̂x
i+1 + σ̂

y
i σ̂

y
i+1

) +
N−1∑
i=1

J
‖
i,i+1σ̂

z
i σ̂

z
i+1 +

N∑
i=1

hi(t)σ̂
z
i (94)

These Hamiltonians apply to a variety of different systems, particularly in solid
state quantum computing. Benjamin and Bose [125] and [126] have shown that
any set of universal two- and single-qubit gates can be implemented with the
Hamiltonian of Eq. (94), and therefore it can be used to perform universal quantum
computation. The RG theorem applied to such universal Hamiltonians establishes
a one-to-one mapping between the set of local fields {h1, h2, . . . hN} used to
implement a given computation, and the set of single-qubit expectation values
{σz

1, σ
z
2, . . . σz

N} (see Fig. 4). This implies that one can use single-qubit expectation
values as the basic variables in quantum computations rather than wave functions
and directly extract all observables of interest with only knowledge of the spin
densities. Naturally, certain properties such as entanglement will be difficult to
extract as functionals of the set of spin densities {σz

1, σ
z
2, . . . σz

N}. Nevertheless,
Tempel and Aspuru-Guzik [121] give an explicit entanglement functional.

In addition to the RG theorem, one can derive a VL theorem for qubits. The
VL theorem for qubits provides an exact prescription for simulating universal
Hamiltonians with other universal Hamiltonians that have different, and possibly
easier-to-realize, two-qubit interactions. In analogy to the Kohn–Sham system in
electronic TDDFT, one can consider an auxiliary Hamiltonian

Ĥ ′(t) =
N−1∑
i=1

J ′⊥
i,i+1(σ̂x

i σ̂x
i+1 + σ̂

y
i σ̂

y
i+1) +

N−1∑
i=1

J
′‖
i,i+1σ̂

z
i σ̂

z
i+1

+
N∑

i=1

h′
i[σ

z
1, σ

z
2, . . . σ

z
N ](t)σ̂z

i (95)
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Figure 4. Runge–Gross theorem for a three-qubit example. The set of expectation values
{σz

1, σ
z
2, . . . , σ

z
N }, defined by the the Bloch vector components of each qubit along the z-axis in (a), is

uniquely mapped onto the set of local fields {h1, h2, . . . , hN } in (b) through the RG theorem. Then,
through the Schrödinger equation, the set of fields is uniquely mapped onto the wave function. These
two mappings together imply that the N-qubit wave function in (c) is in fact a unique functional of the set
of expectation values {σz

1, σ
z
2, . . . , σ

z
N }.

with simpler two-qubit couplings {J ′⊥, J ′‖}. The VL theorem guarantees the ex-
istence of the auxiliary fields {h′

1, h
′
2, . . . h′

N} as functionals of the spin densities
that reproduce any given set {σz

1, σ
z
2, . . . σz

N} that one might wish to simulate. In
this way, one can construct an entire class of density functionals for quantum com-
puting that map between different universal Hamiltonians as illustrated in Fig. 5.

TDDFT applied to universal-qubit Hamiltonians provides a potentially
powerful tool for simulating quantum computations on classical computers, sim-
ilar to how it has been applied in computational chemistry for simulating elec-
tronic systems. By choosing the auxiliary Kohn–Sham system to be less entangled
than the original system, one can hope to simplify simulations of quantum algo-
rithms by finding simple approximations to the auxiliary local fields {h′

1, h
′
2, ... h

′
N}

as functionals of the spin density. As in electronic TDDFT, the development of
approximate density functionals for qubit systems will be a necessary next step,
which is discussed in Ref. [121].
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Figure 5. Van Leeuwen theorem for a three-qubit example. The set {σz
1, σ

z
2, . . . σz

N } (a) obtained
from evolution under Eq. (94), is uniquely mapped to a new set of fields {h′

1, h
′
2, . . . h′

N } (b) for a
Hamiltonian with different two-qubit interactions. Evolution under this new Hamiltonian returns the
same expectation values {σz

1, σ
z
2, . . . σz

N }, although the wave function is different and hence projections
of the Bloch vectors along other axes are in general different (c).

IV. CONCLUSION AND OUTLOOK

To the best of our knowledge, the first quantum simulation experiment was per-
formed by Somaroo et al. [136] in a two-qubit NMR system in 1999, where a
truncated quantum harmonic or anharmonic oscillator (four levels) was simulated.
Strictly speaking, this belongs to an “analog” simulation; because the Hamiltonian
of the quantum oscillator was directly simulated by the Hamiltonian of the spins,
instead of applying quantum algorithms. The progress of quantum simulation is
still gaining momentum. In Table I, we list several recent experiments on digital
quantum simulation. Earlier references may be found from them and from Refs
[7,9,137].

So far, none of the simulations implement active error correction. An important
aspect of digital quantum simulation is the resource estimation when fault-tolerant
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TABLE I
A Brief Survey of Recent Experiments on Digital Quantum Simulation

Physical Implementations What Is Simulated? Scale

Nuclear magnetic resonance (NMR) • Thermal states of a frustrated magnet [127] 4 qubits
• Ground state of a pair of interacting

Heisenberg spins subject to simulated
external fields [128]

3 qubits

• Isomerization reaction dynamics [129] 3 qubits
•Ground state of hydrogen molecule H2 [130] 2 qubits

Trapped ions • Time dynamics of spin systems [131] 6 qubits
• Dissipative open-system dynamics [132] 5 qubits

Quantum optics • 1D quantum walk of a topological
system [133]

4 steps

• 1D quantum walk with tunable
decoherence [134]

6 steps

•Ground state of hydrogen molecule H2 [135] 2 qubits

structures are considered. We refer to Refs [138] and [72] for further exploring this
area. In short, to achieve large-scale quantum simulation, many technological chal-
lenges must yet be overcome. For example, in many currently available setups, the
performances of the two-qubit gates are still too noisy for fault-tolerant simulation.
However, by experimenting with small-scale quantum simulation experiments, we
believe that valuable lessons can be learned to optimize the performance of the
currently available technology.

A related question is “What is the best way to implement quantum simula-
tion?” For classical computers, silicon-based semiconductors work successfully.
For quantum computers, a general feature of the currently proposed technologies,
such as quantum dots, quantum optics, trapped ions, nuclear and electron spins,
impurity, superconducting devices, and so on, is a trade-off between controlla-
bility and reliability. Usually, systems that can be controlled easily suffer more
from decoherence from the environment. Two approaches to tackle this problem
include looking for new systems that are good for both control and can be isolated
from the environment, or developing hybrid structures that combine the advantages
from both sides. For example, progress has been made in coupling superconduct-
ing devices with spin ensembles [139]. The former provides the controllability
and the latter provides reliability. In short, the future of quantum computation
and quantum simulation is still full of challenges and opportunities. We hope this
chapter can stimulate more ideas that can help move this field forward.
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