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ABSTRACT: We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar,
J. Chem. Theory Comput. 2016, 12, 3674], by introducing a semistochastic algorithm for performing multireference Epstein−
Nesbet perturbation theory, in order to completely eliminate the severe memory bottleneck of the original method. The
proposed algorithm has several attractive features. First, there is no sign problem that plagues several quantum Monte Carlo
methods. Second, instead of using Metropolis−Hastings sampling, we use the Alias method to directly sample determinants from
the reference wave function, thus avoiding correlations between consecutive samples. Third, in addition to removing the memory
bottleneck, semistochastic HCI (SHCI) is faster than the deterministic variant for many systems if a stochastic error of 0.1 mHa
is acceptable. Fourth, within the SHCI algorithm one can trade memory for a modest increase in computer time. Fifth, the
perturbative calculation is embarrassingly parallel. The SHCI algorithm extends the range of applicability of the original
algorithm, allowing us to calculate the correlation energy of very large active spaces. We demonstrate this by performing
calculations on several first row dimers including F2 with an active space of (14e, 108o), Mn-Salen cluster with an active space of
(28e, 22o), and Cr2 dimer with up to a quadruple-ζ basis set with an active space of (12e, 190o). For these systems we were able
to obtain better than 1 mHa accuracy with a wall time of merely 55 s, 37 s, and 56 min on 1, 1, and 4 nodes, respectively.

I. INTRODUCTION

Many methods, for example, coupled cluster and Møller−
Plesset perturbation theory, can accurately and efficiently treat
the electronic correlation of single-reference (weakly corre-
lated) systems. In particular, a coupled cluster with singles,
doubles, and perturbative triples (CCSD(T)) is very accurate
for such systems and is often referred to as the “gold standard”
of quantum chemistry. However, these methods fail catastroph-
ically when applied to multireference (strongly correlated)
systems, such as molecules undergoing chemical reactions or
systems containing transition metal atoms with partially filled d
or f orbitals.
One common approach for tackling such multireference

problems is to abandon the Hartree−Fock wave function and

instead use a multideterminantal reference wave function
obtained by correlating a subset of orbitals around the Fermi
surface. Examples include the complete active space (CAS)
method, in which all possible occupancies of orbitals within the
active space are included, and the restricted/generalized active
space (RAS/GAS) methods,1−3 in which further restrictions are
placed on the occupancies of the active orbitals in order to
reduce the size of the Hilbert space. The CAS method is limited
to about 16 active electrons and orbitals. Other possibilities
include highly accurate but approximate methods such as the
density matrix renormalization group (DMRG),4−6 full
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configuration interaction quantum Monte Carlo (FCIQMC),7,8

and its semistochastic improvement (S-FCIQMC),9 which
routinely treat up to about 40−50 active orbitals. A well-chosen
active space often results in a reference wave function that
contains qualitatively correct physics. However, quantitative
accuracy requires one to take into account the dynamical
correlation by allowing excitations into inactive-space orbitals.
Common methods for including a dynamical correlation
include multireference configuration interaction (MRCI) and
its size-consistent variants,10−12 various flavors of multi-
reference perturbation theory,13−16 and multireference coupled
cluster theories.17−21 The accuracy of these methods is often
limited by the fact that only a relatively small number of active
space orbitals can be used in the reference wave function
because the cost of enlarging the active space increases
exponentially with the number of orbitals.
Although the number of determinants in a CAS scales

combinatorially with the number of active electrons and
orbitals, many of these determinants are “configurational
deadwood,” and do not contribute appreciably to the reference
wave function.22 The so-called selected conf iguration interaction
(SCI) methods,22−37 which have been in use for more than four
decades, take advantage of this fact and generate a reference
wave function by selecting only important determinants, rather
than including all determinants in the CAS. A subset of these
methods improves upon the variational energy by employing a
perturbative correction to the energy using multireference
Epstein−Nesbet perturbation theory. We refer to these
methods as selected conf iguration interaction plus perturbation
theory (SCI+PT) methods. The first such method was called
conf iguration interaction perturbing a multiconf igurational zeroth-
order wave function selected iteratively (CIPSI).23

The focus of this paper is a newly introduced SCI+PT
method called heat-bath conf iguration interaction (HCI). HCI38

distinguishes itself from other SCI+PT techniques by employ-
ing an algorithm that greatly improves the efficiency of both the
variational and perturbative steps. Although it is more efficient
than other SCI+PT methods, HCI, in its original formulation, is
limited by a memory bottleneck because it stores in memory all
the determinants that contribute to the perturbative correction
(see the end of section II for more details).
In this paper, we introduce a semistochastic implementation

of multireference Epstein−Nesbet perturbation theory, and use
it to overcome the memory bottleneck of HCI. This method
has several attractive properties. First, it does not have a sign
problem that plagues quantum Monte Carlo methods. Second,
instead of using the Metropolis−Hastings method, we use the
Alias method to sample the variational wave function directly,
so the samples are all uncorrelated. Third, in addition to
removing the memory bottleneck, semistochastic HCI (SHCI)
is often faster than the deterministic variant if a stochastic error
of 0.1 mHa is acceptable. Fourth, within the SHCI algorithm
one can trade memory for a modest increase in computer time.
Fifth, the perturbative calculation is embarrassingly parallel.
In section II we review the improvements made in the

original HCI algorithm that make it much more efficient than
other SCI+PT algorithms. In section III, we present our
stochastic perturbation theory which removes the memory
bottleneck of the original HCI algorithm, and then our
semistochastic perturbation theory which is more efficient in
terms of computer time than either the deterministic or the
stochastic variants. In section IV we provide various
implementation details of both the variational and the

perturbative parts of our algorithm. We then demonstrate the
utility of the stochastic and semistochastic methods by applying
them in section V to various diatomic molecules including F2
with an active space of (14e, 108o), Mn-Salen cluster with an
active space of (28e, 22o), and Cr2 dimer with up to a
quadruple-ζ basis set with an active space of (12e, 190o),
obtaining energies that are accurate to better than 1 mHa with
very modest computer resources. Finally, in section VI, we
conclude and discuss future research directions.

II. HEAT-BATH CONFIGURATION INTERACTION
We begin by describing the HCI algorithm in its original
formulation,38 emphasizing the key innovations that make it
much more efficient than other SCI+PT methods. In the
following discussion the indices i, j, ··· will be used for
determinants in the variational space and the indices a, b, ···
will be used for determinants in , the space of determinants
that are connected to but not in . Similar to other SCI
+PT methods, HCI has two stages: (1) a variational stage, in
which a variational wave function is obtained as a linear
combination of a set of determinants chosen by an iterative
procedure, and (2) a perturbative stage, in which the second-
order correction to the variational energy is computed using
multireference Epstein−Nesbet perturbation theory,39,40 but
each stage is much faster than in other SCI+PT methods.

II.A. Variational Stage. At the start of the algorithm,
consists of an initial set of determinants, usually just the
Hartree−Fock determinant. Then, at each iteration, new
determinants are added to , chosen using a parameter ϵ1,
as follows. The initial wave function is the ground state of the
Hamiltonian in , |Ψ0⟩ = ∑i ci |Di⟩. At each iteration the
following is done.

1. Add to the variational space all determinants Da in the
space of connections , such that

| | > ϵH cai i 1 (1)

for at least one determinant Di in the current .
2. Calculate the lowest eigenvalue E0 with eigenvector |Ψ0⟩

= ∑i ci |Di⟩ of the Hamiltonian in .

The iterations are terminated when the number of new
determinants is less than a threshold, for example, 1% of the
current size of , or when a maximum number of iterations is
reached. Since the values of ci tend to be larger in the initial
iterations when there are few determinants in , ϵ1 is set
during the first few iterations to be larger than its final value.
HCI takes advantage of the fact that the double excitation

matrix elements depend only on the four orbitals whose
occupancy is changing. Step 1 is performed efficiently by
storing the double excitation matrix elements in order of
decreasing magnitude, so that no time is wasted on
determinants that do not meet the cutoff in eq 1. For details,
we refer the reader to the original HCI paper.38 Thus, we see
that HCI identifies new determinants to add to in a manner
that is more efficient than other SCI methods in two ways:

• HCI uses a selection criterion which is inexpensive to
evaluate for each determinant, namely eq 1. In contrast,
other SCI methods use a criterion based on a
perturbative expression which is more expensive; for
example, CIPSI23 uses the magnitude of the coefficient of
the first-order correction to the wave function, namely

> ϵ∑
−
H c

E H 1
i iai

0 aa
.
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• HCI evaluates its selection criterion (eq 1) only for those
doubly excited determinants which will be added to !
By comparison, other SCI methods iterate through all
candidate determinants {Da} (determinants for which
there exists at least one nonzero matrix element Hai with

∈Di ), evaluating their expensive selection criteria for
each one.

The simplification in HCI is possible because it was
demonstrated38 that variation in the perturbative expression
for the coefficients is dominated by variation in the largest-
magnitude term in the numerator, since the matrix elements
{Hai} and coefficients {ci} span many orders of magnitude. The
minor deviation from optimality in the choice of the most
important determinants is by far outweighed by the fact that
many more determinants can be included because the selection
criterion of HCI allows the variational and perturbative steps to
be performed at a much reduced computational cost.
II.B. Perturbative Stage. The variational wave function is

used to define the zeroth order Hamiltonian H0 and the
perturbation V,

∑ ∑= | ⟩⟨ | + | ⟩⟨ |

= −

H H D D H D D

V H H

i j
ij i j

a
aa a a0

,

0 (2)

It can easily be verified that |Ψ0⟩ is the ground state of H0 with
eigenvalue E0. Using the partitioning in eq 2, the first-order
correction of the wave function |Ψ1⟩ and the second-order
energy correction ΔE2 can be written as

∑

|Ψ⟩ =
−

|Ψ ⟩

=
∑

−
| ⟩

E H
V

H c

E E
D

1

a

i ai i
a

1
0 0

0

0 a (3)

and

∑

Δ = ⟨Ψ | |Ψ⟩

=
∑

−

E V

H c

E E

( )

a

i ai i

2 0 1

2

0 a (4)

where Ea = Haa. It is worth noting that the expression for the
total energy, E0 + ΔE2 is identical to that for the mixed
estimator of the energy used in quantum Monte Carlo
calculations, provided that the projected wave function is
replaced by the perturbed wave function.
This expression in eq 4 is expensive to calculate, as it requires

a summation over many small terms. Instead, HCI includes
only those terms in the sum that contribute substantially,

∑Δ ≈
∑

−

ϵ

E
H c

E E

( )

a

i ai i
2

( ) 2

0 a

2

(5)

where ∑(ϵ2) denotes a sum in which all terms in the sum that
are smaller in magnitude than ϵ2 are discarded; that is, ∑i

(ϵ2)

Haici includes only terms for which |Hai ci | > ϵ2.
Once again, since the double excitation matrix elements are

stored in order of decreasing magnitude, no time is spent on
the doubly excited terms that do not contribute to the sum.
The parameter ϵ2 is kept much smaller than the parameter ϵ1
because discarding small amplitude determinants can lead to

significant errors in the calculation of dynamical correlation. In
the original HCI paper,38 for each ϵ1, several values of ϵ2 were
used, and the energy for ϵ2 = 0 was obtained by extrapolation.
In this paper, a single value of ϵ2 is used, that is sufficiently
small to recover the ϵ2 = 0 limit to a precision that is better than
1 mHa.
It was shown in the previous publication38 that the above

algorithm is highly efficient and can be used to obtain sub-
milliHartree accuracy for challenging problems such as all-
electron (48e, 42o) Cr2 with the small Ahlrichs double-ζ basis

41

in a few minutes on a single computer core. However, since the
contributions from all i in eq 5 must be summed and then
squared, the efficient deterministic approach to computing the
perturbative correction requires storing the partial sums
{∑i

(ϵ2)Haici} for all a for which |Hai ci |> ϵ2 which creates a
severe memory bottleneck.
To see this, we note that the Nv determinants in the

variational space are connected to n v N( )v
2 2 determinants in

the perturbative space with nonzero Hamiltonian matrix
elements, where n is the number of electrons and v is the
number of virtual orbitals. For a relatively conservative number
of n = 12, v = 50, and Nv = 107, the perturbative space will
contain over 1012 determinants, requiring over 10 terabyte
memory. The original HCI algorithm reduces this storage
requirement by orders of magnitude by storing only
determinants Da for which |Haici| > ϵ2 for at least one
determinant ∈Di . But it should be recognized that using a
large ϵ2 to truncate the perturbative space can lead to significant
errors in the perturbative correction. If on the other hand ϵ2 is
reduced to decrease the error in the perturbative correction the
number of determinants in the perturbative space rapidly
increases as shown in Figure 1, making the calculation
infeasible.

In the following section we show that this memory
bottleneck can be completely eliminated, without having to
increase ϵ2, by using a stochastic or semistochastic version of
the perturbation theory.

Figure 1. Demonstration that the number of determinants in the
perturbative space increases rapidly as ϵ2 is reduced. These
calculations, for the C2 dimer with a QZ basis, used ϵ1 = 2 × 10−4 Ha
in the variational calculation resulting in 403 071 variational
determinants. All the calculations presented in the results section
use an ϵ2 = 10−8 Ha, whereas the smallest ϵ2 used in this graph is 3 ×
10−7 Ha.
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III. STOCHASTIC MULTIREFERENCE PERTURBATION
THEORY

We first discuss the stochastic method for computing the
perturbative correction before discussing the more efficient
semistochastic method.
III.A. Stochastic PT.We write the perturbative correction in

a slightly different form than presented in eq 5 to highlight the
fact that it is a bilinear function of the coefficients of the zeroth-
order state.

∑ ∑Δ =
−

ϵ

E
E E

H H c c
1

( )
a ij

ai aj i j2
0 a

( )2

(6)

We compute the expected value of this expression stochastically
by employing Ns samples, each of which consists of Nd
determinants {Di} sampled from with probability

=
| |

∑ | |
p

c
ci

i

i i (7)

Any given sample will contain Nd
diff distinct determinants Di

with some number of repeats wi, such that

∑ =w N
i

N

i d

d
diff

The number of repetitions wi is distributed according to the
well-known multinomial distribution. The mean and second
moment, for i ≠ j, of this distribution are

⟨ ⟩ =w pNi i d (8)

⟨ ⟩ = −ww pp N N( 1)i j i j d d (9)

where ⟨·⟩ denotes the expectation value of a quantity evaluated
for a sample of Nd determinants, a notation we will use
hereafter.
Using these expressions, the unbiased estimate of the second-

order perturbation can be calculated from the sampled wave
function as follows,

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

∑

Δ =
−

=
−

+

=
− ⟨ ⟩

+
⟨ ⟩

=
− −

+

=
− −

+
−

−

≠

≠

≠

⎡
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⎤

⎦
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⎝
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E E
H H c c H c

E E
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E E

wwc c H H

pp N N
wc H

pN

N N E E
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p
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[ ]
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i
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v
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d d
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d

d

diff diff

diff diff

diff

diff

(10)

where for brevity we have suppressed the superscript (ϵ2) on
the i and j sums, though of course we will always use a nonzero
ϵ2 value for efficiency.

Going from the 2nd to the 3rd line in eq 10, we replace the
sum over the states in by a sum over the sample, so in order
to have an unbiased expectation value we divide the two terms
by ⟨wi wj⟩ and ⟨wi⟩, respectively. In going from the 3rd to the
4th line we use eqs 8 and 9.
In practice, the exact average in eq 10 will be replaced by an

average over Ns samples. For any Nd ≥ 2 we obtain an unbiased
estimate of the second-order correction to the energy, and this
estimate can be made progressively more precise by averaging
over a large number of samples Ns. Each batch contains an
independently chosen set of Nd

diff determinants and thus there is
no autocorrelation between consecutive batches. This is in
sharp contrast to discrete-space quantum Monte Carlo
methods, such as the FCIQMC method7,8 and its semi-
stochastic improvement,9 for which the autocorrelation time
increases both with system size and the size of the basis to the
point that it can become difficult to accurately estimate the
statistical error. This drawback of the FCIQMC method is
ameliorated but not eliminated by using the more efficient
sampling method of ref 42.
We note that the expression in eq 10 is evaluated in much

the same way as the deterministic evaluation of the perturbative
correction using a single batch, the main difference being that
the Nv variational determinants have been replaced by the
much smaller subset of Nd

diff distinct sampled determinants and
that an additional summation is needed to ensure that the result
is unbiased. Note that for each sample, the summation over a in
eq 10 is restricted to only those determinants in that have a
nonzero Hamiltonian matrix element with the Nd

diff determi-
nants used to sample the zeroth-order wave function.
Figure 2a shows that the CPU time per sample increases

nearly linearly with Nd, the number of determinants in the
sample, for the C2 and F2 molecules. As shown in section IV,
the scaling contains two terms: one that scales linearly with Nd
and another that scales as Nd log(Nd) (ref 43). Figure 2b shows
the CPU time necessary to reach a standard deviation of less
than 0.1 mHa versus the number of determinants in the
sampled wave function Nd. There is a rapid initial decrease
followed by a much shallower decrease beyond about Nd = 200.
Consequently, it is desirable to use as large a value of Nd as
memory allows. Another consideration is that Ns needs to be
large enough to get a reasonable estimate of the statistical error,
and since the computer time is approximately ∝NdNs, it
sometimes makes sense to use a smaller Nd than available
memory allows. In all the calculations presented in section V,
we have used Nd = 200, even though the computer time could
be greatly reduced by using a larger Nd for the larger systems.
It is worth mentioning that the memory bottleneck can also

be removed without recourse to the stochastic method. This
can be achieved by dividing the Nv determinants in into Nb
batches, each containing on average Nd determinants (Nb = Nv/
Nd), and computing the contribution from all pairs of batches
independently. In section IV we will see that the leading cost of
performing the calculation for each pair of batches is ∝Nd and
so the cost of performing the entire calculation containing Nb
batches scales as Nd Nb

2 ∝ Nv
2/Nd. Thus, for Nv > Nd, the cost of

the deterministic approach scales quadratically with Nv. In
contrast, the cost of the stochastic approach scales sublinearly
with Nv because additional low weight determinants are
sampled only infrequently. The price to be paid is that the
computed energy has a stochastic error. Still, for large Nv and
small ϵ2, the Ns required to get a statistical error of 1 mHa in
the stochastic method is much smaller than the Nb

2 required in
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the deterministic calculation, making the stochastic approach
the more efficient choice.
III.B. Semistochastic PT. Although the stochastic method

eliminates the memory bottleneck, for large variational spaces
and large basis sets it takes many stochastic samples, Ns, to
reduce the stochastic error to the desired value. The computer
time can be reduced by using a semistochastic method in which
the perturbative calculation is split into two steps. In the first
step a deterministic perturbative calculation is performed using
a relatively loose threshold ϵ2

d to obtain the deterministic
second-order correction ΔE2D[ϵ2d]. The error incurred due to
the use of large ϵ2

d in the deterministic calculation can be
corrected stochastically by calculating the difference between
the second-order energies obtained from a tight threshold ϵ2
and a loose threshold ϵ2

d:

Δ ϵ = Δ ϵ − Δ ϵ + Δ ϵE E E E[ ] ( [ ] [ ]) [ ]S S D
2 2 2 2 2 2

d
2 2

d
(11)

where ΔE2S[ϵ2] and ΔE2S[ϵ2d] are the second-order energies
calculated with ϵ2 and ϵ2

d, respectively, using the stochastic
method. The key point here is that both the ΔE2S[ϵ2] and
ΔE2

S[ϵ2
d] are calculated using the same set of sampled Nd

variational determinants and thus there is substantial
cancellation of stochastic error, and almost no increase in

memory or computer time. The value of ϵ2
d affects the statistical

error of the energy for given computer time, but not the
expectation value of the energy. In the results section we show
that using the semistochastic method for Cr2 dimer can speed
up the calculation by more than a factor of 2. This speed up can
be even larger if the available computer memory permits a
smaller ϵ2

d to be used. In the limit that one can afford to use ϵ2
d =

ϵ2, the stochastic noise is completely eliminated. Thus, the
semistochastic method gives us the ability to go smoothly from
the fully deterministic to the fully stochastic algorithm.

IV. IMPLEMENTATION
Here we briefly describe the implementation and the leading-
order cost of the various steps of the algorithm. In the
variational stage there are three main operations, identifying the
significant determinants to be included in the variational space,
building the Hamiltonian matrix, and diagonalizing the matrix.
The cost of identifying important determinants is O(kNv ln(Nv)
+ kNv ln(Np)), where Nv is the number of determinants in the
variational space, k is the average number of Hai elements for
determinants Di in that satisfy eq 1, and Np = kNv is the total
number of new determinants that satisfy the criterion in eq 1.
The two terms in the cost function result from generating kNv
determinants and then doing a binary search of the list of the
Nv existing variational determinants and the Np newly generated
determinants before including the determinant just generated
in the newly generated determinant list.
In the current implementation we store all the nonzero

elements of the Hamiltonian in memory using a list of lists
(LIL) sparse storage format. In LIL format for each row we
store a list containing the column index and the value of the
nonzero Hamiltonian matrix elements.
The determinant labels are bit-packed strings that represent

the occupancies of the up-spin (α) and the down-spin (β)
orbitals. To build the Hamiltonian efficiently, we first generate a
list of all unique β strings and associated with each β string we
store a list of all determinants in that have that β string. We
also generate a list of all unique α strings with Nα − 1 electrons
and associated with each α string we store a list of all
determinants in that give the α string on removing one α
electron. Here, Nα is the number of α electrons in our system.
Determinants that are related to each other by double or single
α excitations have the same β string, and all the pairs of
determinants that are related to each other with the remaining
possible single or double excitations have the same α string
with Nα − 1 electrons. Hence to find the connected
determinants, only the determinants in these two lists need
to be considered rather than the entire set of Nv determinants
in . Once the Hamiltonian is generated the Davidson
algorithm is used to diagonalize it and the most expensive step
there is, the Hamiltonian wave function multiplication which
costs O(k Nv). Despite the fact that the Hamiltonian is sparse,
building it is the most expensive part of the variational step, and
storing it is currently the largest memory bottleneck in the
code. In the future we intend to implement the direct
method22,44 for carrying out Hamiltonian wave function
multiplication which does not require storing the Hamiltonian
and can take less computer time as well.
The stochastic perturbation step has two major components:

sampling Nd determinants from the list of Nv variational
determinants, and identifying the determinants in that are
connected to these Nd determinants and computing their
contribution to the perturbative correction, eq 10. The Nd

Figure 2. (a) Demonstration of the near-linear scaling of the CPU
time per batch for the perturbative calculation as a function of the
number of determinants, Nd, sampled in each batch. The open and the
filled circles are for the C2 and F2 molecules respectively with cc-pVQZ
basis sets. (b) CPU time in seconds required to reach a standard
deviation of 0.1 mHa for various values of Nd. Note the initial rapid
decrease in CPU time followed by a more gradual decrease at larger Nd
values.
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determinants are sampled using the Alias method,45,46 which
has an initial one-time memory cost of O(Nv), and a
subsequent cost of O(Nd) each time a sample is drawn. The
Alias method was used by some of us42 for efficiently sampling
determinants in the S-FCIQMC method. The computer time
for identifying the connected determinants along with their
contributions is O(n2v2Nd log(n

2v2Nd) + n2v2Nd log(Nv)), while
the memory required is O(n2v2Nd + Nv). Since the minimum
required value of Nd is just two, the memory requirement for
the stochastic perturbation theory is smaller than that of other
parts of the calculation.
We have parallelized the entire code using hybrid OMP/MPI

(open multiprocessing/message passing interface) program-
ming to make full use of the symmetric multiprocessor (SMP)
architecture of most modern computers. A separate MPI
process is initiated on each computer node and then each
process forks into several threads (one for each computational
core) on the node. The variational wave function is replicated
on each node but a single copy is shared among the different
threads on a node. As mentioned previously, the most memory
intensive data structure is the LIL used to store the sparse
Hamiltonian matrix. The rows of the Hamiltonian are
distributed in round-robin fashion among the nodes. Of course,
only the nonzero elements are stored. With this strategy the
storage of the Hamiltonian and the computation of the
Hamiltonian wave function multiplication is distributed
approximately evenly between the different nodes and threads.

The perturbative step is embarrassingly parallel and no special
strategy is needed to parallelize this step.

V. BENCHMARKS

We perform frozen core calculations (including all the
Hartree−Fock virtual orbitals in the active space) on a series
of first row dimers including C2, N2, O2, NO, and F2 with cc-
pVDZ, cc-pVTZ, and cc-pVQZ basis sets. (In the interest of
brevity, these three basis sets will sometimes be abbreviated as
DZ, TZ, and QZ, respectively.) Although the active spaces used
for the first row diatomics have large Hilbert spaces, they do
not exhibit strong correlation in their equilibrium geometry and
traditional methods such as CCSD(T) are inexpensive and
reliable. Thus, we also perform frozen-core calculations on the
Cr2 dimer using cc-pVDZ, cc-pVTZ, and cc-pVQZ bases, which
have active spaces containing (12e, 68o), (12e, 118o), and
(12e, 190o) respectively. Cr2 is well-known for being very
strongly correlated. Most multireference methods can use no
more than the minimal active space and therefore fail to get
even qualitatively correct dissociation curves. Finally, we also
perform calculations on the Mn-Salen model complex which is
a prototypical strongly correlated inorganic molecule contain-
ing open shell d-orbitals giving rise to nearly degenerate singlet
and triplet ground states. For all the systems we obtain energies
that are accurate to 1 mHa for the chosen basis; for the first-
row dimers we compare to i-FCIQMC energies,47 for the Cr2
dimer we perform internal convergence tests since there are no

Table 1. Ground State SHCI Energies of the C2, N2, O2, NO, and F2 Molecules with Bond Lengths of 1.2425, 1.0977, 1.2075,
1.1508, and 1.4119 Å, Respectively, and DZ, TZ, and QZ Basis Setsa

energy (Ha) wall time (sec)

molecule basis sym ϵ1 (Ha) Nv var total var PT total

C2 DZ 1A1g 5 × 10−4 28566 −75.7217 −75.7286(2) 1 2 3

C2 TZ 1A1g 3 × 10−4 142467 −75.7738 −75.7846(3) 7 4 11

C2 QZ 1A1g 2 × 10−4 403071 −75.7894 −75.8018(4) 36 10 46

N2 DZ 1A1g 5 × 10−4 37593 −109.2692 −109.2769(1) 1 2 3

N2 TZ 1A1g 3 × 10−4 189080 −109.3608 −109.3748(6) 10 4 14

N2 QZ 1A1g 2 × 10−4 499644 −109.3884 −109.4055(9) 44 10 54

O2 DZ 3A1g 5 × 10−4 52907 −149.9793 −149.9878(2) 2 3 5

O2 TZ 3A1g 3 × 10−4 290980 −150.1130 −150.1307(8) 17 6 23

O2 QZ 3A1g 2 × 10−4 770069 −150.1541 −150.1748(9) 72 23 95

NO DZ 2B1 5 × 10−4 48305 −129.5881 −129.5997(3) 2 3 5

NO TZ 2B1 3 × 10−4 227004 −129.6973 −129.7181(9) 18 7 25

NO QZ 2B1 2 × 10−4 606381 −129.7311 −129.7548(9) 93 23 116

F2 DZ 1A1g 5 × 10−4 68994 −199.0913 −199.1001(7) 2 3 5

F2 TZ 1A1g 3 × 10−4 395744 −199.2782 −199.2984(9) 8 6 14

F2 QZ 1A1g 2 × 10−4 1053491 −199.3463 −199.3590(9) 129 22 151

Natural Orbitals
F2 DZ 1A1g 1 × 10−3 16824 −199.0871 −199.0994(4) 0 3 3

F2 TZ 1A1g 5 × 10−4 141433 −199.2787 −199.2972(7) 7 6 13

F2 QZ 1A1g 5 × 10−4 221160 −199.3355 −199.3590(9) 28 27 55
aThe variational cutoff, ϵ1, the number of determinants in the variational space, Nv, the variational energy, var, and the total energy, total, are shown.
The statistical error in the last digit is shown in parentheses. All perturbative calculations were performed with an ϵ2 = 10−8 Ha and Nd = 200. The
last three rows show that the SHCI calculations converge with a much looser ϵ1 threshold when MP2 natural orbitals, rather than canonical HF
orbitals, are used. The final three columns show the wall time in seconds required to perform the variational and the stochastic perturbative parts of
the calculation. All the results obtained from perturbation theory (PT) agree within error bars with the results published previously using
FCIQMC.47 Each calculation was performed on a single node (see text for details).
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good approximations to the FCI energies in the literature, and
for Mn-Salen we compare to DMRG energies.48

V.A. First Row Diatomics. In the variational calculations
we start with a value of ϵ1 during the first few iterations that is
larger than its final value because the values of ci tend to be
larger in the initial iterations when there are few determinants
in . For example, for the cc-pVQZ basis set, we successively
reduce the value of ϵ1 from 10−3 to 5 × 10−4 to 3 × 10−4 and 2
× 10−4 Ha, and perform three iterations at each value. The cost
of performing the first iteration at a value of ϵ1 is larger than
that for subsequent iterations because relatively few new
determinants are introduced after the first iteration.
Table 1 shows benchmark calculations on the first row

dimers using a single node containing two Intel Xeon E5−2680
v2 processors of 2.80 GHz each and 128 gigabyte memory.
Among these calculations F2 had the largest active space
containing 14 electrons in 108 orbitals (14e, 108o) with a
Hilbert space containing over 1020 determinants. On a single
node it required less than 3 min to get the energy converged to
better than 1 mHa. It is not possible to perform the calculations
for the larger systems and basis sets on a single node with the
original algorithm because the cost of storing all the
determinants in the space of connections that contribute
to the perturbative corrections is prohibitive. Interestingly, not
only is the memory requirement of the stochastic method
smaller than that of the original deterministic algorithm, but
even the computer time required to obtain sub-mHa accuracy is
smaller, for the systems for which the deterministic algorithm is
feasible.
As expected, these calculations can be done even more

efficiently, if the Hartree−Fock orbitals are replaced by natural
orbitals from some approximate correlated theory. For example
the last three rows of Table 1 show that the calculations on the
F2 dimer, for all three basis sets, can be run with a larger ϵ1
resulting in about a factor of 3 speedup when MP2 natural
orbitals are used.
V.B. Cr2 Dimer. The Cr2 dimer is well-known to be a very

challenging system for most electronic structure methods. We
perform frozen core calculations by including all the virtual
orbitals in the active space with a bond length of 1.68 Å using
the cc-pVDZ-DK, cc-pvTZ-DK, and cc-pVQZ-DK basis sets.
The relativistic effects are included using the second-order
Douglas−Kroll−Hess Hamiltonian. For all the basis sets
calculations are performed using natural orbitals obtained by
first performing a short unconverged FCIQMC calculation. For
the TZ basis, calculations are also performed using approximate
natural orbitals obtained from an SHCI variational wave
function. The active spaces with the DZ, TZ, and QZ basis sets
contained (12e, 68o), (12e, 118o), and (12e, 190o),
respectively, with the largest Hilbert space containing more
than 1021 determinants.
Figure 3 shows the number of determinants and the sum of

the squares of the coefficients of the variational wave function
for each excitation level relative to the dominant determinant
for the three basis sets with ϵ1 = 8 × 10−5 Ha. The wave
function contains determinants with excitation orders all the
way up to the maximum possible of 12. Hence CI expansions
that are truncated at double or even quadruple excitations are
far from adequate.
Table 2 shows the variational and the total energies for each

of the three basis sets. Although the variational energies are far
from convergence, the total energies including the perturbative
corrections converge rapidly as ϵ1 is reduced. Also shown in the

table are the computer times for those calculations that
employed the computer architecture described above. The cost
of the perturbative calculation for a constant statistical error is
smaller for the semistochastic variant compared to the
stochastic variant of the method. This is particularly important
when a small statistical error is required since the stochastic
error of the perturbative calculation decreases as N1/ s , where
Ns is the number of samples used in the stochastic perturbative
calculation. For example, for the TZ basis with ϵ1 = 7 × 10−5

Ha, if a statistical error of 0.1 mHa is required the computer
time is 82800 s for stochastic PT but only 394 + 32800 = 33194
s for semistochastic PT. The efficiency of the semistochastic
method can be further improved by reducing the value of ϵ2

d.
For large systems it is most efficient to use the smallest value of
ϵ2
d that is permitted by computer memory, though for small
systems a larger value of ϵ2

d can be optimal.
The computed total energies for the smallest ϵ1 values for the

DZ and QZ bases is within 1 mHa of their respective
extrapolated energies but not for the TZ basis. Hence, as
described above, we also calculated energies using approximate
natural orbitals obtained from an SHCI wave function. These
calculations are denoted by TZ′ (although the basis is the
same) and they are much better converged.
It is noteworthy that the cost of the perturbative correction

relative to the variational calculations decreases as the size of
the variational space increases. In fact, the CPU time
required to reach a fixed statistical error is rather insensitive to
the size of the variational space for a given basis set. This is
because as the variational space is increased, the perturbative
correction becomes smaller, and because the additional
variational determinants have relatively few connections that
satisfy the ϵ2 threshold. This indicates that much larger
calculations could be performed if the memory and computer
time of the variational step were reduced, potentially by using
the direct CI method.44

V.C. Mn-Salen. The calculations for the first-row dimers
and the Cr2 dimer were for the exact frozen core energies. We
now demonstrate that SHCI can be used to calculate the active
space energy of a prototypical strongly correlated molecule like
Mn-Salen (MnClO3N2C8H10) (see Figure 4) very quickly. Mn-
Salen derivatives such as Jacobson’s catalyst are used to catalyze
enantioselective epoxidation of olefins. Despite their wide-
spread use and importance, the mechanism of the catalysis
reaction is not known and has spawned a series of theoretical

Figure 3. The number of determinants and the sum of the squares of
the coefficients of the variational wave function versus excitation level
relative to the dominant determinant for each of the three basis sets,
with ϵ1 = 8 × 10−5 Ha. Determinants of all excitation orders are
important.
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studies.49−59 Recently, some of us performed DMRG-SCF
calculations48 on the model cluster with the cc-pVDZ basis set
using an active space of (28e, 22o). The initial orbitals were
obtained by using the HOMO−13 to LUMO+7 canonical
Hartree−Fock orbitals, which were subsequently optimized
using the DMRG-SCF method. Here we perform the SHCI
calculations on the converged orbitals obtained at the end of
the converged DMRG-SCF calculations. The results in Table 3

show that both the singlet and the triplet energies converge to
better than 1 mHa accuracy in only 37 s on a single node.

VI. CONCLUSIONS

We have introduced stochastic and semistochastic implementa-
tions of multireference Epstein−Nesbet perturbation theory,
for computing the expectation value of the perturbative
correction to the variational energy of a multideterminant

Table 2. Ground State SHCI Energies of the Cr2 Molecule with Bond Length 1.68 Å with DZ, TZ, and QZ Basis Setsa

energy (Ha) wall time (sec)

basis Sym ϵ1 (Ha) ϵ2
d (Ha) Nv var total var PTdet PT(1) no. nodes

DZ 1A1g 8 × 10−5 3114163 −2099.4692 −2099.4875(5) 395 0 983 1

DZ 1A1g 50 × 10−5 5 × 10−6 210421 −2099.4344 −2099.4851(1)
DZ 1A1g 20 × 10−5 5 × 10−6 832196 −2099.4560 −2099.4864(1)
DZ 1A1g 8 × 10−5 5 × 10−6 3114163 −2099.4692 −2099.48754(3) 395 100 246 1

DZ 1A1g 6 × 10−5 5 × 10−6 4708713 −2099.4724 −2099.48782(7) 1

DZ 1A1g 5 × 10−5 5 × 10−6 6114463 −2099.4741 −2099.48788(7) 1

DZ 1A1g 4 × 10−5 5 × 10−6 8390964 −2099.4760 −2099.48809(3) 1

DZ 1A1g extrapolated −2099.4887(2)

TZ 1A1g 8 × 10−5 6268840 −2099.5051 −2099.5276(7) 593 0 783 4

TZ 1A1g 7 × 10−5 7651680 −2099.5070 −2099.5283(6) 862 0 828 4

TZ 1A1g 6 × 10−5 9666032 −2099.5090 −2099.5283(6) 1024 0 795 4

TZ 1A1g 50 × 10−5 5 × 10−6 379428 −2099.4637 −2099.52183(1)
TZ 1A1g 20 × 10−5 5 × 10−6 1561960 −2099.4887 −2099.52532(5)
TZ 1A1g 10 × 10−5 5 × 10−6 4496674 −2099.5017 −2099.5277(1)
TZ 1A1g 8 × 10−5 5 × 10−6 6268840 −2099.5051 −2099.5283(1) 593 250 233 4

TZ 1A1g 7 × 10−5 5 × 10−6 7651680 −2099.5070 −2099.52851(4) 862 319 313 4

TZ 1A1g 6 × 10−5 5 × 10−6 9687009 −2099.5090 −2099.52884(4) 1024 394 328 4

TZ 1A1g 5× 10−5 5 × 10−6 12759006 −2099.5113 −2099.52936(7)
TZ 1A1g extrapolated −2099.5312(15)

TZ′ 1A1g 50 × 10−5 5 × 10−6 365104 −2099.4650 −2099.52831(1)
TZ′ 1A1g 20 × 10−5 5 × 10−6 1549370 −2099.4899 −2099.52961(2)
TZ′ 1A1g 10 × 10−5 5 × 10−6 4429824 −2099.5028 −2099.53073(4)
TZ′ 1A1g 8 × 10−5 5 × 10−6 6185301 −2099.5062 −2099.53104(3)
TZ′ 1A1g 7 × 10−5 5 × 10−6 7553766 −2099.5081 −2099.53124(5)
TZ′ 1A1g 6 × 10−5 5 × 10−6 9510287 −2099.5101 −2099.53135(6)
TZ′ 1A1g 5 × 10−5 5 × 10−6 12479803 −2099.5123 −2099.53155(4)
TZ′ 1A1g extrapolated −2099.5325(4)

QZ 1A1g 8 × 10−5 9516339 −2099.5246 −2099.5553(13) 1584 0 3578 4

QZ 1A1g 50 × 10−5 5 × 10−6 497747 −2099.4782 −2099.5562(3)
QZ 1A1g 20 × 10−5 5 × 10−6 2285120 −2099.5064 −2099.5560(3)
QZ 1A1g 10 × 10−5 5 × 10−6 6768521 −2099.5208 −2099.55649(3)
QZ 1A1g 8 × 10−5 5× 10−6 9516339 −2099.5246 −2099.55670(7) 1584 372 1429 4

QZ 1A1g 6 × 10−5 5 × 10−6 14812200 −2099.5290 −2099.55668(8)
QZ 1A1g 5 × 10−5 5 × 10−6 19481471 −2099.5315 −2099.55682(8) 4960 2751 1087 4

QZ 1A1g extrapolated −2099.5571(3)
aFor each basis set, calculations were performed with both the stochastic and the semistochastic methods described in section III. The various
columns in the table have the same meaning as those in Table 1, but there are three new columns. The column labeled ϵ2

d gives the value of the ϵ2
used to perform the deterministic calculation in the semistochastic variant of the method. The column labeled PTdet shows the time required for the
determinstic part of the PT calculation for the semistochastic method, and the column labelled PT(1) shows the time it would take to perform the
stochastic perturbative step if we terminated the calculation after obtaining an uncertainty of 1 mHa. The final column labeled no. nodes shows the
number of computer nodes used. The extrapolated energies are obtained from a quadratic fit to the energies for ϵ1 ≤ 20 × 10−5 Ha. The relatively
slow convergence of the TZ basis is due to an integrals file that uses natural orbitals from a short, unconverged, FCIQMC calculation. The energies
in the TZ′ rows were obtained using the same basis, but with approximate natural orbitals obtained from an SHCI variational wavefunction. They
converge much faster. The wall times are not shown for some calculations because these were done on a different computer architecture so a
meaningful comparison is not possible.
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wave function without storing all the contributing determi-
nants. In addition to completely removing the memory
bottleneck, the semistochastic algorithm is faster than the
fully deterministic algorithm for most systems if a stochastic
noise of 0.1 mHa is acceptable.
Our method is capable of efficiently computing the

correlation energies of very large active spaces, as we have
demonstrated by computing the energies of the challenging,
multireference systems Mn-Salen (28e, 22o) and Cr2 (12e,
190o). For all systems studied we obtained correlation energies
accurate to within 1 mHa. In the case of the first-row dimers
and Mn-Salen we compared to FCIQMC and DMRG energies
in the literature. For Cr2 there are no published values, but one
of the positive features of our method is that one can reliably
check the convergence within the method itself.
Having removed the memory bottleneck in the perturbative

step, the largest memory requirement comes from storing the
Hamiltonian in the variational space. The next step is to create
an efficient method for obtaining the variational wave function
without storing the Hamiltonian. Other research directions
include the optimization of the orbitals within the CAS space,
and the calculation of excited states.
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