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Iron–sulfur clusters are a universal biological motif. They carry out electron transfer, redox chemistry and even oxygen
sensing, in diverse processes including nitrogen fixation, respiration and photosynthesis. Their low-lying electronic states
are key to their remarkable reactivity, but they cannot be directly observed. Here, we present the first ever quantum
calculation of the electronic levels of [2Fe–2S] and [4Fe–4S] clusters free from any model assumptions. Our results
highlight the limitations of long-standing models of their electronic structure. In particular, we demonstrate that the widely
used Heisenberg double exchange model underestimates the number of states by one to two orders of magnitude, which
can conclusively be traced to the absence of Fe d→d excitations, thought to be important in these clusters. Furthermore,
the electronic energy levels of even the same spin are dense on the scale of vibrational fluctuations and this provides a
natural explanation for the ubiquity of these clusters in catalysis in nature.

Metals in enzymes perform remarkable chemistry under
ambient pressures and temperatures. Among the most
important cofactors are the iron–sulfur clusters, compris-

ing one to eight Fe atoms bridged by S ligands. In central processes
of life ranging from nitrogen fixation to photosynthesis and respir-
ation1, these clusters perform diverse functions: redox chemistry,
electron transfer and even oxygen sensing. Their electronic struc-
ture, with multiple low-lying states with differing electronic and
magnetic character, holds the key to this rich chemistry. However,
uncovering the electronic structure has been highly non-trivial.
Direct experimental assignment of these electronic levels in larger
clusters has been impossible, because they lie at low energies and
can be embedded within the vibrational modes of the clusters2,3.

Nonetheless, through intense collaboration in the last decades
between experiment and theory, a consensus description of FeS
cluster electronic states has emerged. This is based on the
Heisenberg double exchange (HDE) model, combining Heisenberg
exchange between Fe spins with a simplified version of Anderson’s
double exchange4,5 for mixed valence delocalization. The HDE
model was first proposed by Girerd6 and Noodleman et al.7,8

for [2Fe–2S] dimers, and then generalized to [3Fe–4S] and
[4Fe–4S] clusters by Girerd, Münck and co-workers9,10, with further
extensions in recent years11,12. The HDE model has yielded many
important insights. For example, the observed electron paramagnetic
resonance (EPR) g < 2 in reduced [2Fe–2S] dimers was puzzling until
it was recognized that the ground state contains antiferromagnetic
coupling of the FeII and FeIII centres13,14. Similarly, in [3Fe–4S] and
[4Fe–4S] clusters, HDE model mixed valence eigenstates provided
the basis to interpret the distinctive Mössbauer, NMR and electron-
nuclear double resonance (ENDOR) spectra15–20.

Despite the many successes of this phenomenological model, its
limitations are also well known. The HDE model posits couplings
a priori, which must be fitted before making predictions. In basic ver-
sions, couplings consist of Heisenberg exchange Js and double-
exchange Bs, whereas extended versions include anisotropy, zero-field
splitting and further contributions21. An unambiguous determination
of all parameters from experiments is clearly difficult, if not imposs-
ible. For example, in one famous case of a [4Fe–4S] cluster1, the

experimentally fitted Bs range from ∼10 cm−1 to ∼600 cm−1, over
two orders of magnitude. Furthermore, FeS couplings obtained from
broken-symmetry density functional theory (BS-DFT) computations
(for example, in pioneering work by Noodleman and others8,22–27)
are not clearly more reliable. This is because BS-DFT only describes
a weighted average over the (multiplet) states; individual parameters
must once again be obtained through fitting, and they also depend
strongly on the density functional approximation used28. Beyond the
above issues, a deeper criticism of the phenomenological models is
that they make a priori choices about relevant chemical processes;
for example, a pure Heisenberg model will completely omit charge
transfer phenomena. Without a reliable route to obtain model par-
ameters, we cannot verify their validity, which raises the following
troubling question: How can we be sure that the current models are
even qualitatively correct?

In principle, it should be possible to compute the states of the FeS
clusters directly, without assuming an intermediate model. After all,
the long-standing premise of ab initio computation is that any mol-
ecule’s electronic structure is obtainable, without assumptions, from
the many-electron Schrödinger equation. Clearly, this has not yet
been achieved for FeS clusters. Quantum-mechanical computation
is exponentially harder than classical simulation, because it supports
superposition and non-local correlations known as entanglement.
To avoid this complexity, practical simulations—for example those
using DFT—rely on a mean-field approximation, which treats
only classical-like quantum states without entanglement. This
approximation completely fails in FeS clusters, however, because
of the Fe d-shells, which are near-degenerate on the Coulomb inter-
action scale (so-called strongly interacting), rendering the molecular
orbital picture and concept of a single mean-field electronic con-
figuration invalid. This is why BS-DFT calculations, the standard
computational method applied to FeS clusters, only provide an ener-
getic average over the spectrum and do not allow us to directly
obtain the individual electronic states.

A strongly interacting electronic structure fundamentally
involves entangled superpositions of many valence configurations.
Malrieu and co-workers29–32 showed that the main classes of con-
figurations for metal centres include the configurations involving
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metal d electrons (a complete active space, CAS), augmented with
excitations of bridging ligand orbitals, or by including ligand orbi-
tals in the active space. However, even with these restrictions, the
number of configurations grows exponentially with the number of
atoms and quickly becomes intractable. Early attempts to model
these superpositions in the [2Fe–2S] dimer had to make further
drastic approximations, completely removing non-bridging atoms
and including only d electrons in the active space33. In a [4Fe–4S]
cluster, the minimal CAS comprises all Fe 3d and S 3p valence
shells, a distribution of 54 electrons in 36 spatial orbitals, or
1 × 1016 configurations, unmanageable on any computer.

Recent advances from quantum information and condensed
matter theory demonstrate, however, that physical quantum states
—the quantum states seen in nature—are special and contain a
hidden structure to their wavefunctions. In particular, the low
energy states possess area-law entanglement34, reflecting the locality
present in all physical systems regardless of interaction strength
(Fig. 1c). This structure implies that the coefficients of the valence
configurations in the FeS clusters are related in a special way and
the information compressed. To encode this relationship we write
the wavefunction as a tensor network35, of which the density
matrix renormalization group (DMRG) of White36, a linear tensor
network, is the most widely used example. A tensor in a tensor
network represents a local variational degree of freedom. In a mol-
ecule, a tensor might represent an atom or an orbital, and contrac-
tion of the tensors creates the local entanglement, similar to a bond
(Fig. 1d). The area-law implies that if we restrict ourselves to the
physically relevant sector of quantum states the tensors used to
describe physical states can be of low rank. Working with low-
rank tensor networks, we can elevate quantum simulations from
the mean-field level to the level of the entangled quantum mech-
anics necessary to describe FeS clusters, while significantly amelior-
ating, or in some cases completely bypassing, the exponential
complexity of the general quantum-mechanical formulation.

Starting with the work ofWhite andMartin37, our group and others
have been developing tensor networks and the DMRG in the context of
quantum chemistry38–46. Here, we show that using our ab initioDMRG
methodology, we can now numerically solve the valence many-particle
quantum-mechanical equations for FeS clusters to chemical precision.
This allows us, for the first time, to directly compute and probe the
individual states and spectra in FeS clusters as large as the [2Fe–2S]
and [4Fe–4S] clusters. This direct computation unshackles the
discussion of FeS electronic structure from any earlier model
assumptions. As will be seen, our calculations enable us to review,
revisit and ultimately substantially revise the historical models
that have so far been the only basis for understanding electronic
structure in these clusters, opening up the possibility to unlock
the secrets of the chemistry of these clusters from direct simulation.

Results and discussion
[2Fe–2S] dimers. We consider the synthetic [Fe2S2(SCH3)4]

2–/3–

complexes47 that mimic the dimers prominently found in
ferredoxins48,49 (Fig. 1a).

In canonical understanding based on the HDE model, the
Fe atoms are placed in definite valence states. For the oxidized
[2Fe–2S]2− dimer, both Fe atoms are assumed high-spin FeIII

(S1,2 = 5/2), whereas for the reduced [2Fe–2S]3− dimer, one is
high-spin FeII (S1 = 2) and the other high-spin FeIII (S2 = 5/2). In
the oxidized dimer there is assumed to be no double exchange,
and the HDE model reduces to the simpler Heisenberg form,

H = 2JS1 · S2 (1)

with levels E(S) = JS(S + 1) (S is total dimer spin and J is exchange
coupling). In [2Fe–2S] dimers, J > 0, so the ground state is low-spin
with maximal antiferromagnetic alignment.

In the canonical picture of the reduced dimer, the additional
electron can delocalize between the two Fe centres. (This is
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Figure 1 | Model clusters and many-electron wavefunctions used in this work. a,b, [2Fe–2S] (a) and [4Fe–4S] (b) clusters in this work. White circles
denote H atoms. (Labels correspond to coordinates in Supplementary Tables 1, 2 and 11.) c, Area-law entanglement of the physical states can be used to
reduce the complexity of quantum calculations. d, Wavefunctions with area-law entanglement can be written compactly as a tensor network where each
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The network shown here is the linear network used by the DMRG, which removes the need to model unphysical entanglement between widely separated
sites on the chain.
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influenced by geometry and solvation; see, for example,
Supplementary Section 1.3 and refs 10 and 50.) In the HDE
model51,52, this electron is placed in either a single bonding-type
or antibonding-type orbital between the centres, splitting each
Heisenberg level by a double-exchange contribution B/(S + 1/2)
and giving levels of the form

E S( ) = JS S + 1( ) ± B S + 1/2( ) (2)

As discussed by Noodleman and Baerends7, double exchange
stabilizes high-spin states.

We now examine the accuracy of these existing pictures by com-
paring against the electronic levels that can now be directly calcu-
lated using the ab initio DMRG (for details see Supplementary
Sections 1.1 and 1.2 and Methods). Figure 2 shows the computed
levels of the oxidized [2Fe–2S]2− complex as compared to the pre-
dictions of the Heisenberg model (equation (1)). The exact
DMRG levels qualitatively form a spin ladder from S = 0 to S = 5,
in general agreement with the Heisenberg model. As S increases,
the spin–spin correlation 〈S1 · S2〉 increases, transitioning from anti-
ferromagnetic to ferromagnetic alignment. Fitting to equation (1)
yields J≈ 236 cm−1, which compares reasonably well to fits from
magnetic susceptibility measurements on a similar synthetic
dimer (J≈ 148 ± 16 cm−1, ref. 51) and computed BS-DFT estimates
(J≈ 310 cm−1, ref. 52). However, our ab initio levels also show sig-
nificant deviations from the level structure assumed by the tra-
ditional Heisenberg model. For example, the Heisenberg model
overestimates the lower spin state energies, while underestimating
those of the higher spin states. Measuring the local spin on the Fe
atoms in our calculations we find 〈S21〉 ranges from 5.47 to 5.74
(for the S = 0 and S = 5 states, respectively), as compared with
〈S21〉 = 8.75 for the pure FeIII (S = 5/2) ion assumed in the model.
This deviation from a pure S = 5/2 ion illustrates the Heisenberg
model’s limits, which does not allow for additional spin or charge
configuration mixing. In fact, charge fluctuations are responsible
for the important spin delocalization onto the sulfur orbitals, as

previously observed by Noodleman52. Guihery and co-workers
have derived the form of the corrections to the Heisenberg model
that arise from quantum charge fluctuations12. In dimers, this
yields a quadratic spin coupling 4JQ(S1 · S2)2, and fitting to the ab
initio DMRG levels gives J≈ 98 cm−1 and JQ≈ 6 cm−1. As demon-
strated in Fig. 2, the quadratic coupling greatly improves the agree-
ment, showing the importance of these corrections.

We now turn to the reduced [2Fe–2S]3− dimer. Whereas the dis-
agreement between the standard HDE model and the directly com-
puted ab initio spectrum for the oxidized dimer was primarily
quantitative, for the reduced dimer the discrepancies are more
severe. The HDE model predicts the splitting of the two lowest
levels to increase with total spin, 2B(S + 1/2). However, in the
ab initio spectrum (Fig. 3a, red curves) the splitting decreases
with dimer spin from S = 1/2 to 3/2. Clearly, this cannot be repro-
duced by any HDE model parameters, as the splitting is always pro-
portional to S; this remains after geometry relaxation, which
introduces trapping (Supplementary Section 1.)

That the earlier model description breaks down for highly excited
states is natural, but that it already fails for the lowest two states is
surprising. As explained further in the following, this reflects
the complicated nature of double exchange in nearly orbitally
degenerate metal ions. The HDE model assumes that the
additional hopping electron is held in a single pair of prescribed
bonding and antibonding orbitals bridging the sulfur ligands.
This is appropriate if ligand–field splitting places other bonding
and antibonding orbitals at higher energies (Fig. 4a), but is not in
fact the case for tetrahedrally coordinated FeIII ions where both
orbitals of e-parentage (in Td symmetry) are near-degenerate, and
weak ligand–field splitting by π-donor ligands leads to higher-
lying orbitals of t2-parentage also being accessible for double
exchange (Fig. 4b).

The multi-orbital nature of Fe double exchange is immediately
seen in the level spectrum at each dimer spin S (Fig. 3).
Especially for S = 1/2, 3/2 and 5/2, the separation between the
first two states and the higher states is small, rendering the
single pair HDE model completely invalid. Instead, the lowest ten
levels constitute a dense manifold of related states, where the
hopping electron occupies any one of ten available d orbitals on
the Fe atoms.

Multi-orbital double exchange explains many of the earlier
difficulties in determining consistent double-exchange parameters
from experiment. Simply put, a well-defined global B does not exist.
Fitting the two lowest curves to the HDE model yields J≈ 67 cm−1

and B≈ 63 cm−1, while fitting the lowest and highest curves in the
manifold yields J≈ 311 cm−1 and B≈ 1,052 cm−1. This wide range
in B values is consistent with earlier experimental fits, which also
yield B couplings varying by a factor of 50 or more1. (For a careful
analysis of experimental variation in B, see ref. 50).

A naive way to extend the canonical HDE model to include
multi-orbital exchange is to assume that the HDE energy levels in
equation (2) simply generalize from one to five hopping pairs and
five sets of Ji and Bi , i = 1…5 couplings, with ligand-field splittings
Δi , i = 1…4. (Multi-pair HDE models have been considered for
[4Fe–4S] clusters in the context of delocalization pathways via σ
and δ MO orbitals.) This gives levels of the form

Ei S( ) = Δi + 2JiS1 · S2 ± Bi Si + 1/2
( )

(3)

where i labels the orbital pair associated with the hopping. Fits to
this multi-pair form are shown in Fig. 3b. The multi-pair HDE
model does capture the low-lying spectrum better, because it has
more parameters, but it still cannot reproduce the non-monotonic
behaviour in pairs of energy levels, such as the decreasing gap
between the first two levels. This shows that multi-orbital exchange
cannot be considered a simple pairwise process.
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Figure 2 | Ab initio levels of [Fe2S2(SCH3)4]
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The correct qualitative picture for multi-orbital exchange
requires a return to Anderson’s original Hamiltonian for double
exchange. For this system it takes the form (for a detailed derivation
see Supplementary Section 1.4)

H =
∑

i

Jis1i · s2i +
∑

iσ

βi(c
†
1iσc2iσ + c†2iσc1iσ) + Δi(c

†
1iσc1iσ + c†2iσc2iσ)

[ ]

(4)

(i labels d orbitals, s1i and s2i are electron spins, and c(†)1i and c(†)2i create
and destroy electrons). Note that this Anderson Hamiltonian has the
same number of parameters as a multi-pair HDE model (equation
(3)), but the fit (Fig. 3c) is much improved and now obtains the
correct non-monotonic features. Furthermore, the fit is stable, near
unique and yields reasonable parameters: ligand field splittings are
∼4,000–5,000 cm−1, consistent with spectroscopic estimates for
tetrahedral Fe (Supplementary Table 10). Thus, all qualitative
features of our ab initio spectrum can be understood by treating
multi-orbital exchange in this more complete way.

In summary, our directly computed levels show that the low-
lying spectrum of [2Fe–2S] dimers is much richer and denser
than the simple pair-splitting long assumed within the canonical
HDE picture; the level spectrum is generated by a complex multi-
orbital exchange process and this process cannot be viewed as a
simple ‘sum’ over single orbital double-exchange pathways.

[4Fe-4S] clusters. We now turn from FeS dimers to the more
complicated [4Fe–4S] clusters. As a representative of nature’s
cubanes we consider the [Fe4S4(SCH3)4)]

2− cluster, derived from
the synthetic cluster studied by Holm and co-workers53. The
deduction of the cubane ground state from experimental
measurements is an early triumph of inorganic spectroscopy19. It
is conventionally believed that the ground state consists of two
coupled iron dimers, located on opposite faces of the cube. The
dimers are thought of as mixed-valence Fe2.5+, Fe2.5+ pairs

coupled to a high-spin S = 9/2 state, which further recouple in the
ground state to form an overall singlet.

Because we can compute the electronic structure of the [4Fe–4S]
cluster directly (see Methods) we can now test the long-standing
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Figure 3 | Ab initio levels of [Fe2S2(SCH3)4]
3− and corresponding model fits. The multi-orbital Anderson model proposed here produces an excellent fit to

all levels, capturing the essential physics of the low energy states, while the single-pair and multi-pair HDE models do not. a, Ab initio levels of
[Fe2S2(SCH3)4]

3− for each dimer spin S. Inset: fit of the lowest two levels (red) to the HDE model. The level separation does not increase monotonically as
required in the HDE model, and the separation between the lowest two and higher levels is small (especially for S = 1/2, 3/2, 5/2), indicating that the HDE
model assumptions break down and multi-orbital double exchange is important. b, Fits (S = 1/2, 3/2, 5/2) to a multi-pair HDE model. Pairs of
corresponding bonding and antibonding states are represented by the same colour. c, Fits (S= 1/2, 3/2, 5/2) to a multi-orbital Anderson model. b and c use
the same number of parameters, but c is much better than b, demonstrating that multi-orbital double exchange is not a sum of single exchange processes,
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Figure 4 | Origin of the dense manifold in the reduced dimer. Although the
HDE model predicts two low-lying states in the reduced dimer, the observed
dense manifold can result from a ligand field splitting that is energetically
comparable to the hopping energy. a, The HDE model assumes that a single
electron hops between a pair of d orbitals on the Fe ions. This is valid if Δ is
sufficiently large that other d orbitals are well separated. b, In FeS systems,
Δ is comparable to the hopping energy, giving a whole manifold of low-lying
states at each dimer spin.
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hypothesis for the ground state. In our computed singlet ground
state, the spin density is zero everywhere (because our wavefunction
is a true spin singlet), but the nature of the couplings can be estab-
lished from spin correlation functions 〈Si · Sj〉 (Fig. 5). These indi-
cate ferromagnetic coupling along the top and bottom faces, with
antiferromagnetic coupling between the faces, corresponding pre-
cisely to the experimental picture of two high-spin Fe2.5+, Fe2.5+

dimers recoupled into a singlet, thus confirming the long-standing
interpretation. We can further extend our calculations to the lowest
triplet state. This lies approximately 350 cm−1 above the singlet
state. From its spin correlation functions, we see that the triplet cor-
responds to a spin-canted state, where the S = 9/2 dimer spins are
tilted relative to their ground-state orientation.

What about the complete [4Fe–4S] spectrum? From the com-
plexity of the [2Fe–2S] spectrum, we expect this will be a formidable
beast. While the complete spectrum is too expensive, we can calcu-
late some of the lower-lying states. The ten lowest singlet S = 0 and
high-spin S = 9 states are shown in Fig. 6, as well as the lowest triplet
and a (more qualitative) spectrum for the 150 lowest S = 9 states. In
a perfect cubane we expect three degenerate singlet ground states
from the three possible spin couplings in Fig. 5. However, vibronic
coupling distorts the ground state of the [4Fe–4S] cluster, opening a
gap between the ground and higher-lying states. Neverthless, even in
the distorted [4Fe–4S] cluster, the manifold of low-lying states
remains accessible and dense on the 10–20 kcal mol−1 scale of bio-
logical FeS reorganization energies54. A detailed analysis of the
[4Fe–4S] excited states and their coupling to distortions is presented
in Supplementary Section 2.4. Furthermore, the structure of the
low-lying spectrum, for any cluster spin S, is very different to the
isolated four low-lying levels predicted by canonical HDE models
for each S. This is expected, because the model fails already in the
[2Fe–2S] dimers due to the neglect of multi-orbital double exchange
discussed above. Appropriate model Hamiltonians for the [4Fe–4S]
clusters are analysed in detail in Supplementary Section 2.4.

The high density of states (and their sensitivity to geometry via
vibronic coupling) provides an intriguing hypothesis behind the
unusual chemical flexibility and ubiquity of the [4Fe–4S] clusters.
Conventionally, molecular reactivity proceeds via well-defined
potential energy surfaces. However, in [4Fe–4S] clusters, a large
number of states of the same (and different) spin are energetically
accessible during reorganization dynamics. This suggests that
[4Fe–4S] clusters can non-adiabatically switch between many differ-
ent frontier electronic states in a reaction, in essence a generalization
of two-state reactivity already postulated in single-Fe porphyrins55
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but without slow spin-forbidden state crossings. Coupling between
the spectrum and geometry allows for ‘fine-tuning’ of reactivity by
the environment. [4Fe–4S] clusters thus appear to provide a concep-
tual bridge between molecular and surface catalytic reactivity. In the
latter case, non-adiabatic processes on many potential energy sur-
faces are common, greatly modifying the timescales of electron
and energy transfer56.

Conclusions
To summarize, using the simplifying entanglement structure of
physical many-particle quantum states, we have computed the indi-
vidual ground- and excited-state energy levels of [2Fe–2S] and
[4Fe–4S] clusters without model assumptions. Direct access to
these energy levels has not previously been possible either
through experiment or theory. Our calculations have allowed us to
critically examine the validity of the consensus phenomenological
models that have so far been the only way to understand FeS chem-
istry. In both the [2Fe–2S] dimer and the [4Fe–4S] cluster, we find
that earlier understanding based on the canonical Heisenberg
double exchange model underestimates the number of low-lying
states by one to two orders of magnitude. These low-lying states
arise from multi-orbital double-exchange processes. The new level
spectrum we reveal has important implications for reactivity, as
the density and accessibility of the low-lying states argues for the
importance of multiple electronic states and non-adiabaticity in
reactions. The theoretical techniques described here are potentially
applicable to biological systems of even greater complexity, includ-
ing the M- and P-clusters of nitrogenase57,58. More broadly, our
work demonstrates new possibilities for realizing spectroscopy in
complex systems by directly computing entangled electronic struc-
ture from many-particle quantum mechanics, without the need
for a priori model assumptions.

Methods
All our DMRG calculations employed the BLOCK code. Density functional
calculations to obtain the initial geometries were carried out using the ORCA
package. For DMRG calculations on the [2Fe–2S] clusters we used a full valence CAS
(all Fe 3d and S 3p orbitals), and further included the Fe 4s and 4d shells to account
for additional dynamic correlation effects. In the oxidized cluster, this corresponds
to a 30-electron, 32-orbital active space. Even though the formal Hilbert space
dimension is greater than 1 × 1017, our calculations are enabled by the presence of
some special entanglement structure in the states. In the [2Fe–2S] clusters we
estimate that the electronic relative energies are converged to better than
0.1 kcal mol−1 (∼35 cm−1) of the exact active space results. For the [4Fe–4S] clusters
we employed an active space with all Fe 3d and S 3p orbitals. These calculations were
more expensive than the dimer calculations, so the DMRG energy differences
between the singlet and triplet states are converged to only ∼0.5–1 kcal mol−1. These
estimated errors refer to the errors from the corresponding CAS result. Dynamical
correlation may lead to further small changes, as discussed in Supplementary
Section 1.2. The higher singlet and high-spin states in Fig. 6 were calculated to lower
accuracy than the ground singlet and triplet states, but are qualitatively correct. The
multiplet states were computed explicitly without assuming any mutual inter-
relationship, in contrast to BS-DFT techniques, which only obtain the high-spin
state and a weighted average of the multiplet energies, relying on model assumptions
to deduce the individual levels28. All our computed wavefunctions exactly
preserve spin (S2) symmetry, due to the use of an SU(2) invariant DMRG code
developed in our laboratory40. A full discussion of all the active spaces, geometry and
examination of the DMRG convergence is presented in Supplementary Sections 1.1,
1.2, 2.1 and 2.2. For the spin correlation functions, S1 and S2 are defined from
local Fe spin operators, and 〈S1 · S2〉 is the ab initio expectation value. These
operators are defined in Supplementary equations (1) and (2).
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Fe1(3d) S2(3p6)

S2(3p0) S7(3p)

Supplementary Figure 1: Orbitals in the active space of the [2Fe-2S] dimers.

ometry was derived from the experimental structure reported in [1], as shown in Supplementary

Table 1. For the [Fe2S2(SCH3)4]3− complex, we considered two geometries: (i) the geometry

in Supplementary Table 1 (the same geometry as the [Fe2S2(SCH3)4]2− complex), and (ii) a

relaxed geometry, shown in Supplementary Table 2. The relaxed geometry was obtained from

a broken-symmetry DFT calculation on the Sz=1/2 state, using the BP86 functional and a split-

valence with polarization (SVP) basis set [2] (denoted BP86/SVP) as implemented in Orca[3].

As seen from the table, in the relaxed geometry the dimer becomes slightly asymmetric, with

the bridging S atoms attracted towards one of the Fe atoms.

To generate the active space for the DMRG calculations, we performed an unrestricted DFT

BP86/SVP calculation for the high spin (Sz=5) state. The alpha occupied and unoccupied or-

bitals were then separately localized (“split-localized”) [4] using the Pipek-Mezey algorithm

[5]. From the localized orbitals, iron 3d, 4s, 4d and sulfur 3p orbitals were identified by visual

inspection. Some of these orbitals are shown in Supplementary Figure 1.
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Supplementary Table 1: Coordinates (in Å) of the [Fe2S2(SCH3)4]2− and unrelaxed
[Fe2S2(SCH3)4]3− model complexes.

x y z
1 Fe 5.22 1.05 -7.95
2 S 3.86 -0.28 -9.06
3 S 5.00 0.95 -5.66
4 S 4.77 3.18 -8.74
5 S 7.23 0.28 -8.38
6 Fe 5.88 -1.05 -9.49
7 S 6.10 -0.95 -11.79
8 S 6.33 -3.18 -8.71
9 C 6.00 4.34 -8.17
10 H 6.46 4.81 -9.01
11 H 5.53 5.08 -7.55
12 H 6.74 3.82 -7.60
13 C 3.33 1.31 -5.18
14 H 2.71 0.46 -5.37
15 H 3.30 1.54 -4.13
16 H 2.97 2.15 -5.73
17 C 5.10 -4.34 -9.28
18 H 5.56 -5.05 -9.93
19 H 4.67 -4.84 -8.44
20 H 4.34 -3.81 -9.81
21 C 7.77 -1.31 -12.27
22 H 7.84 -1.35 -13.34
23 H 8.42 -0.54 -11.90
24 H 8.06 -2.25 -11.86
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Supplementary Table 2: Coordinates (in Å) of the relaxed [Fe2S2(SCH3)4]3− model complex.

x y z
1 Fe 5.48 1.15 -8.03
2 S 4.05 -0.61 -8.75
3 S 5.47 1.25 -5.58
4 S 4.63 3.28 -8.77
5 S 7.49 0.42 -9.04
6 Fe 6.04 -1.22 -9.63
7 S 5.75 -1.50 -12.05
8 S 6.86 -3.41 -8.86
9 C 5.51 4.45 -7.51
10 H 6.49 4.83 -7.92
11 H 4.87 5.33 -7.25
12 H 5.72 3.84 -6.59
13 C 3.60 1.70 -5.54
14 H 3.01 0.80 -5.82
15 H 3.28 2.06 -4.52
16 H 3.42 2.48 -6.31
17 C 5.21 -4.22 -9.46
18 H 5.10 -4.01 -10.55
19 H 5.21 -5.32 -9.26
20 H 4.37 -3.72 -8.93
21 C 7.63 -1.85 -12.24
22 H 7.90 -2.06 -13.31
23 H 8.20 -0.96 -11.86
24 H 7.89 -2.72 -11.59
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1.2 DMRG calculations
1.2.1 Active spaces

Four types of active space DMRG calculations (labelled (1)-(4)) were performed on the [Fe2S2(SCH3)4]2−

complex to assess the effect of active space choice. For the [Fe2S2(SCH3)4]3− complex, we used

only active spaces (1) and (2), following the analysis in section 1.2.3.

All DMRG calculations were spin-adapted, using the BLOCK code as described in Ref. [6].

Thus all states obtained are eigenfunctions of Sz and S2, and M refers to the number of spin-

adapted renormalized states (the tensor link dimension in the one-dimensional tensor network

underlying the DMRG) which corresponds to effectively twice the number of non-spin-adapted

renormalized states in a standard DMRG calculation [6]. The 4 types of DMRG calculations

were:

1. DMRG-CI on a (30e, 20o) active space, with a maximum of M=3500 renormalized states.

The 20 orbitals included Fe 3d, bridging S 3p, and one 3p orbital per terminal ligand S

atom. This corresponds to a minimal full valence active space. For rapid convergence

of the DMRG energy, the orbitals were ordered as follows: S4(3p), S3(3p), Fe1(3d),

Fe1(3d), Fe1(3d), Fe1(3d), Fe1(3d), S2(3p1), S5(3p1), S2(3p0), S5(3p0), S2(3p6), S5(3p6),

Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), S7(3p), S8(3p), where the atom labels cor-

respond to the labels in Supplementary Tables 1 and 2, and Figure 1, and the subscript on

S 3p orbitals is the index of the atom they are pointing towards, with the exception that

the subscript 0 means that it is pointing in the up-down direction as shown in Figure 1.

2. DMRG-CI on a (30e, 32o) active space, with a maximum of M=4500 renormalized states.

The 30 orbitals include Fe 4d and Fe 4s orbitals in addition to the 20 described in active

space (1). The Fe 4d and 4s orbitals are expected to account for the principal dynamic

and orbital relaxation contributions to the energy (i.e. double-shell correlation [7]). The

5
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orbitals were ordered as for the 20 orbital active space, with additional Fe 4s and Fe 4d

orbitals placed in that order immediately following the 3d orbitals of the same Fe atom.

3. DMRG-SCF on the (30e, 20o) active space (cf. active space(1)). The active space or-

bitals were optimized using a self-consistent cycle. The DMRG calculations in the SCF

optimization used M=2500 states. Subsequently a final calculation with M=3500 states,

using the fixed optimized orbitals, was performed. The same ordering as in active space

(1) was used.

4. DMRG-SCF on the (30e, 32o) active space (cf. active space (2)). Again, the DMRG

calculations in the SCF optimization were performed with M=2500. Subsequently a final

calculation with M=4500 states, using the fixed optimized orbitals, was performed. The

same ordering as in active space (2) was used.

1.2.2 Energy convergence

The DMRG energies and discarded weights at different values of M can be used to extrapolate

the energy to the M = ∞ (FCI) result, which corresponds to zero discarded weight. This also

provides error estimates for the DMRG energy [8]. Extrapolations for state-specific DMRG-CI

(active space 2) calculations are shown in Supplementary Table 3 and Supplementary Figure

2. We find that the extrapolated (30e, 32o) singlet and triplet relative energies are converged to

within 0.1 mEh of the FCI energy.

For the [2Fe-2S] spectrum calculations, we computed the lowest 10 states in each spin-sector

using a state-averaged DMRG calculation. Although the energies are not as well converged as

for the state-specific calculations, the residual errors do not qualitatively affect the spectrum or

the conclusions of our analysis.

6
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Supplementary Table 3: DMRG energy in Eh versus the discarded weight of the singlet and
triplet states of the [Fe2S2(SCH3)4]−2 cluster (active space (2), (30e, 32o)).

Singlet Triplet
M Discarded weight Energy Discarded weight Energy

1500 2.45×10−5 -5,104.138933 2.54×10−5 -5,104.135801
2500 1.14×10−5 -5,104.139978 1.23×10−5 -5,104.137651
3500 5.63×10−6 -5,104.140297 8.54×10−6 -5,104.138315
4500 3.60×10−6 -5,104.140426 6.03×10−6 -5,104.138616
∞ -5,104.140718 -5,104.139510

extrapolated energies

-0.140

-0.138

-0.136

0 1x10-5 2x10-5 3x10-5

En
er

gy
 / 

E h

Discarded weight

Supplementary Figure 2: DMRG energy (E+5104.0) in Eh of the singlet and triplet states versus
the discarded weight of the [Fe2S2(SCH3)4]−2 cluster (active space (2), (30e, 32o). The black
crosses and the blue dots are respectively the DMRG singlet and triplet state energies and the
corresponding lines are the best fit straight lines which are extrapolated to zero discarded weight
to obtain an estimated FCI energy.
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Supplementary Table 4: The singlet-triplet gap of the [Fe2S2(SCH3)4]2− complex obtained in
active spaces (1)-(4).

Method Active Space Gap/mEh

DMRG-CI (30e, 20o) 1.5
DMRG-CI (30e, 32o) 2.1

DMRG-SCF (30e, 20o) 1.2
DMRG-SCF (30e, 32o) 2.0

1.2.3 Assessment of active space

From the singlet-triplet gap in the active spaces (1)-(4), shown in Supplementary Table 4, we

can assess the effect of the active space choice on the computed energy levels. We first observe

that all 4 active spaces agree closely; even the minimal valence active space yields a reasonable

gap. This is because the principle exchange pathway leading to the singlet-triplet gap is via the

bridging S 3p ligand orbitals, which are included in the minimal active space. The effect of

double-shell correlation in the larger active spaces is to increase the gap by less than 1.0mEh,

while the effect of orbital optimization is very small (0.1mEh in the larger active space). We take

active space (2) (double shell correlation but no orbital optimization) as a practical compromise

between accuracy and efficiency.

1.3 Local charge and spin

To identify the distribution of electrons, we have computed local populations on the atoms. For

atom A, the local population NA is

NA =
∑
i∈A

ni (1)

where ni is the number operator of localized orbital i on the A.

Further, since our states are eigenstates of S2, there is no spin-density in the singlet states.

Thus, we have computed local spins and spin-correlation functions to characterize the electronic

8
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structure. The spin-correlation function between atoms A and B, 〈SA ·SB〉, is defined as [9, 10,

11]

SA · SB =
∑
α

Sα
AS

α
B

Sα
A =

∑
i∈A

sαi (2)

where α ∈ {x, y, z}. The local total spin on atom A is defined as 〈SA · SA〉.

Supplementary Tables 6-9 show the relative energies, local populations, spins, and spin-

correlation functions for the [2Fe-2S] complexes. All the relative energies reported in the tables

are calculated using active space (2). For both geometries state averaged DMRG calculations

are performed for the first 10 states with a largest M of 4500. In the case of unrelaxed ge-

ometries three sweeps with M=4500 were performed and then its value was reduced in steps

of 1000 down to M=1500 to generate reliable extrapolated energies. We find that even though

the extrapolation process improves the absolute energies, the energy differences reported in the

tables are relatively unchanged. We expect to see the same trend for the relaxed geometries and

thus forego the expensive extrapolation step to report the relative DMRG energies calculated

with M=4500.

In Supplementary Table 6 and Supplementary Table 8 only the 3d, 4s and 4d orbitals of a

Fe atom are included in the summations in Equations 1 and 2 to calculate the local electron

density and electron spin; whereas in Supplementary Table 7 and Supplementary Table 9 the

first 16 orbitals and second 16 orbitals (see orbital ordering in previous section for the orbitals)

are included in the summations for first and the second Fe atoms respectively. The ideal FeII

and FeIII populations are 6 and 5 respectively, while the ideal S=2 and S=5/2 total spins are 6

and 8.75 respectively. We see that the observed local populations and total spins are increased

and reduced respectively in the complexes due to the effect of quantum fluctuations, such as

delocalization onto adjacent sulfur orbitals. We also see from the spin-correlation functions

9

© 2014 Macmillan Publishers Limited. All rights reserved. 

 



NATURE CHEMISTRY | www.nature.com/naturechemistry 10

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCHEM.2041

Supplementary Table 5: The local population, total spin, and spin-correlation functions in the
lowest spin states of the [Fe2S2(SCH3)4]2− complex, using active space (2). Note 〈N2〉 = 〈N1〉
and 〈S2

2〉 = 〈S2
1〉. One orbitals of the Fe

Dimer S 〈N1〉 〈S2
1〉 〈S1 · S2〉

0 6.18 5.47 -4.92
1 6.17 5.47 -4.22
2 6.17 5.49 -2.84
3 6.17 5.51 -0.79
4 6.16 5.54 1.84
5 6.13 5.74 3.74

that the spins progressively move from being anti-aligned to aligned as the the total dimer spin

is increased.

1.3.1 Asymmetry in the [Fe2S2(SCH3)4]3− complex

The relaxed geometry of the [Fe2S2(SCH3)4]3− complex is slightly asymmetric. The local

populations and spins in Supplementary Table 8 and 9 show the effect of this asymmetry on

the electronic structure. As observed in Supplementary Table 8 the asymmetry in the Fe atoms

appears rather small, amounting to up to 0.05 electron units in the population, and 0.2 spin

units in the local spin. But when we compare the local spins shown in Supplementary Table 9,

the asymmetry is much larger with differences between the local spins as large as 2.4 in some

cases. The difference in asymmetry between the two tables points to the fact that the asymmetry

is largely due to the difference in the S 3p orbitals.

1.4 Model Hamiltonian for the [Fe2S2(SCH3)4]3− dimer

The energy levels of the HDE model for the [Fe2S2(SCH3)4]3− mixed valence complex, as

derived by Noodleman and Baerends, are given by

E(S) = 2JS1 · S2 ± B(S + 1/2) (3)

10
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Supplementary Table 6: Unrelaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local popula-
tion, total spin and spin-correlation functions for the lowest ten levels in each dimer total spin
state, using active space (2).

State 1 2 3 4 5 6 7 8 9 10
S=1/2
E 0 325 1132 2642 4264 4989 4905 5313 6448 7049

〈N1〉 6.23 6.25 6.24 6.23 6.22 6.21 6.22 6.21 6.21 6.21
〈N2〉 6.24 6.23 6.24 6.23 6.22 6.22 6.21 6.21 6.21 6.21
〈S1〉 5.39 5.31 5.34 5.35 5.39 5.40 5.36 5.43 5.40 5.42
〈S2〉 5.32 5.36 5.34 5.35 5.36 5.37 5.43 5.42 5.41 5.42

〈S1 · S2〉 -4.74 -4.77 -4.81 -4.62 -4.84 -4.72 -4.83 -4.89 -4.78 -4.77
S=3/2
E 136 527 1710 4264 4451 5030 5131 6073 7870 8581

〈N1〉 6.22 6.24 6.24 6.22 6.21 6.21 6.21 6.22 6.21 6.20
〈N2〉 6.23 6.24 6.23 6.22 6.22 6.21 6.21 6.21 6.21 6.20
〈S1〉 5.42 5.35 5.34 5.37 5.40 5.42 5.43 5.38 5.42 5.43
〈S2〉 5.39 5.36 5.36 5.37 5.40 5.42 5.43 5.41 5.42 5.43

〈S1 · S2〉 -3.66 -3.77 -3.64 -3.38 -3.68 -3.79 -3.78 -3.47 -3.61 -3.59
S=5/2
E 336 643 2871 4668 5300 5678 6248 7580 9459 10260

〈N1〉 6.21 6.23 6.23 6.20 6.21 6.20 6.22 6.21 6.20 6.20
〈N2〉 6.22 6.24 6.23 6.21 6.21 6.21 6.22 6.20 6.20 6.20
〈S1〉 5.50 5.38 5.37 5.45 5.44 5.46 5.38 5.41 5.44 5.43
〈S2〉 5.45 5.37 5.38 5.43 5.44 5.44 5.39 5.45 5.45 5.44

〈S1 · S2〉 -1.89 -1.96 -1.77 -1.81 -1.91 -1.95 -1.33 -1.51 -1.68 -1.67
S=7/2
E 669 1330 4675 5441 6358 7049 8989 9589 9913 10115

〈N1〉 6.19 6.22 6.22 6.19 6.19 6.20 6.20 6.25 6.22 6.28
〈N2〉 6.20 6.23 6.22 6.19 6.21 6.19 6.21 6.27 6.24 6.30
〈S1〉 5.56 5.43 5.43 5.50 5.51 5.50 5.45 5.02 5.29 4.76
〈S2〉 5.55 5.42 5.44 5.51 5.46 5.54 5.40 5.00 5.25 4.76

〈S1 · S2〉 0.55 0.60 0.78 0.78 0.67 0.61 1.38 2.16 1.72 2.49
S=9/2
E 1071 2943 7357 7403 8496 9209 13263 13699 14803 15073

〈N1〉 6.18 6.21 6.16 6.20 6.19 6.17 6.17 6.17 6.17 6.22
〈N2〉 6.19 6.21 6.16 6.20 6.18 6.17 6.17 6.17 6.17 6.22
〈S1〉 5.63 5.57 5.68 5.59 5.60 5.64 5.65 5.65 5.64 5.53
〈S2〉 5.62 5.56 5.67 5.58 5.62 5.65 5.66 5.65 5.64 5.53

〈S1 · S2〉 3.62 3.58 3.67 3.60 3.62 3.65 3.66 3.65 3.65 3.56
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Supplementary Table 7: Unrelaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local popula-
tion, total spin and spin-correlation functions for the lowest ten levels in each dimer total spin
state, using active space (2). The orbitals taken to

State 1 2 3 4 5 6 7 8 9 10
S=1/2
E 0 325 1132 2642 4264 4989 4905 5313 6448 7049

〈N1〉 15.48 15.50 15.49 15.49 15.49 15.48 15.52 15.49 15.50 15.49
〈N2〉 15.52 15.50 15.51 15.51 15.51 15.52 15.48 15.51 15.50 15.51
〈S1〉 5.87 5.63 5.77 5.64 5.84 5.78 5.62 5.84 5.74 5.76
〈S2〉 5.61 5.84 5.76 5.68 5.63 5.59 5.95 5.83 5.79 5.78

〈S1 · S2〉 -5.37 -5.36 -5.39 -5.28 -5.36 -5.31 -5.41 -5.46 -5.39 -5.40
S=3/2
E 136 527 1710 4264 4451 5030 5131 6073 7870 8581

〈N1〉 15.49 15.50 15.50 15.49 15.50 15.49 15.49 15.50 15.50 15.49
〈N2〉 15.51 15.50 15.50 15.51 15.50 15.51 15.51 15.50 15.50 15.51
〈S1〉 6.00 5.95 5.85 5.76 5.93 6.00 5.99 5.74 5.89 5.90
〈S2〉 5.89 5.98 5.92 5.78 5.86 5.95 5.98 5.84 5.91 5.88

〈S1 · S2〉 -4.07 -4.09 -4.01 -3.90 -4.02 -4.10 -4.11 -3.91 -4.03 -4.01
S=5/2
E 336 643 2871 4668 5300 5678 6248 7580 9459 10260

〈N1〉 15.49 15.49 15.50 15.50 15.49 15.49 15.49 15.50 15.50 15.49
〈N2〉 15.51 15.51 15.50 15.50 15.51 15.51 15.51 15.50 15.50 15.51
〈S1〉 6.35 6.27 6.13 6.24 6.24 6.32 5.91 5.95 6.11 6.12
〈S2〉 6.22 6.25 6.17 6.18 6.26 6.16 5.94 6.10 6.16 6.13

〈S1 · S2〉 -1.91 -1.89 -1.78 -1.84 -1.87 -1.87 -1.55 -1.65 -1.76 -1.75
S=7/2
E 669 1330 4675 5441 6358 7049 8989 9589 9913 10115

〈N1〉 15.49 15.49 15.50 15.50 15.48 15.50 15.48 15.46 15.46 15.54
〈N2〉 15.51 15.51 15.50 15.50 15.52 15.50 15.52 15.54 15.54 15.46
〈S1〉 6.76 6.67 6.55 6.56 6.70 6.62 6.31 5.59 5.98 5.46
〈S2〉 6.78 6.69 6.61 6.67 6.62 6.76 6.19 5.65 5.97 5.21

〈S1 · S2〉 1.10 1.19 1.30 1.26 1.22 1.19 1.63 2.26 1.90 2.54
S=9/2
E 1071 2943 7357 7403 8496 9209 13263 13699 14803 15073

〈N1〉 15.49 15.49 15.50 15.49 15.50 15.49 15.48 15.51 15.49 15.50
〈N2〉 15.51 15.51 15.50 15.51 15.50 15.51 15.52 15.49 15.51 15.50
〈S1〉 7.44 7.43 7.41 7.45 7.42 7.44 7.46 7.39 7.44 7.42
〈S2〉 7.40 7.40 7.40 7.38 7.41 7.39 7.37 7.44 7.38 7.40

〈S1 · S2〉 4.95 4.96 4.97 4.96 4.96 4.96 4.96 4.96 4.96 4.96
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Supplementary Table 8: Relaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local population,
total spin and spin-correlation functions for the lowest ten levels in each dimer total spin state,
using active space (2).

State 1 2 3 4 5 6 7 8 9 10
S=1/2
E 0 1218 2079 3790 4070 4314 4885 5731 6975 7644

〈N1〉 6.26 6.24 6.16 6.18 6.21 6.21 6.20 6.17 6.17 6.17
〈N2〉 6.14 6.16 6.28 6.25 6.16 6.16 6.16 6.23 6.22 6.22
〈S1〉 5.32 5.37 5.67 5.63 5.45 5.42 5.48 5.62 5.65 5.64
〈S2〉 5.73 5.67 5.18 5.26 5.68 5.67 5.65 5.33 5.34 5.31

〈S1 · S2〉 -4.96 -5.01 -4.85 -4.78 -5.03 -5.04 -5.02 -4.86 -4.90 -4.89
S=3/2
E 266 1211 2374 4197 4493 4694 4925 6460 7693 8342

〈N1〉 6.24 6.23 6.17 6.20 6.19 6.18 6.19 6.17 6.17 6.24
〈N2〉 6.15 6.17 6.26 6.18 6.19 6.21 6.16 6.22 6.21 6.28
〈S1〉 5.37 5.42 5.64 5.50 5.53 5.57 5.49 5.61 5.63 5.37
〈S2〉 5.72 5.63 5.28 5.61 5.51 5.44 5.67 5.39 5.39 4.93

〈S1 · S2〉 -3.86 -3.97 -3.75 -3.90 -3.74 -3.67 -3.89 -3.61 -3.72 -2.71
S=5/2
E 623 1323 2848 4619 4913 5200 5943 7536 8374 8715

〈N1〉 6.23 6.22 6.18 6.18 6.18 6.19 6.18 6.17 6.24 6.18
〈N2〉 6.15 6.18 6.22 6.20 6.17 6.16 6.23 6.21 6.28 6.21
〈S1〉 5.44 5.47 5.59 5.57 5.55 5.52 5.60 5.62 5.34 5.61
〈S2〉 5.70 5.62 5.44 5.52 5.61 5.67 5.38 5.43 4.98 5.41

〈S1 · S2〉 -2.03 -2.16 -1.96 -1.98 -2.04 -2.03 -1.43 -1.59 -0.24 -1.76
S=7/2
E 786 1405 3375 5173 5368 5696 7528 8254 8863 9149

〈N1〉 6.21 6.21 6.20 6.17 6.17 6.18 6.17 6.24 6.17 6.24
〈N2〉 6.15 6.18 6.18 6.17 6.21 6.16 6.22 6.27 6.20 6.27
〈S1〉 5.52 5.51 5.55 5.60 5.63 5.57 5.61 5.33 5.62 5.33
〈S2〉 5.70 5.62 5.61 5.62 5.52 5.67 5.42 5.03 5.47 5.06

〈S1 · S2〉 0.50 0.39 0.53 0.60 0.60 0.52 1.33 3.07 1.18 2.98
S=9/2
E 984 1839 4254 5941 6458 6873 10136 11196 11377 12487

〈N1〉 6.19 6.20 6.20 6.16 6.17 6.15 6.15 6.15 6.18 6.16
〈N2〉 6.16 6.18 6.15 6.14 6.17 6.21 6.20 6.19 6.21 6.19
〈S1〉 5.60 5.57 5.56 5.68 5.66 5.71 5.70 5.70 5.64 5.69
〈S2〉 5.72 5.66 5.73 5.74 5.67 5.55 5.58 5.60 5.56 5.59

〈S1 · S2〉 3.66 3.63 3.66 3.71 3.68 3.65 3.66 3.67 3.63 3.66
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Supplementary Table 9: Relaxed geometry [Fe2S2(SCH3)4]3− energy (cm−1), local population,
total spin and spin-correlation functions for the lowest ten levels in each dimer total spin state,
using active space (2).

State 1 2 3 4 5 6 7 8 9 10
S=1/2
E 0 1218 2079 3790 4070 4314 4885 5731 6975 7644

〈N1〉 15.62 15.59 15.37 15.39 15.61 15.61 15.58 15.41 15.37 15.38
〈N2〉 15.38 15.41 15.63 15.61 15.39 15.39 15.42 15.59 15.63 15.62
〈S1〉 5.05 5.20 7.31 7.11 5.24 5.26 5.30 6.89 7.28 7.23
〈S2〉 7.42 7.25 5.04 5.13 7.30 7.27 7.02 5.31 5.11 5.02

〈S1 · S2〉 -5.86 -5.85 -5.80 -5.74 -5.89 -5.89 -5.79 -5.72 -5.82 -5.75
S=3/2
E 266 1211 2374 4197 4493 4694 4925 6460 7693 8342

〈N1〉 15.61 15.56 15.40 15.57 15.53 15.46 15.58 15.43 15.40 15.30
〈N2〉 15.39 15.44 15.60 15.43 15.47 15.54 15.42 15.57 15.60 15.70
〈S1〉 5.38 5.70 7.11 5.79 5.95 6.57 5.55 6.80 7.09 6.21
〈S2〉 7.38 7.10 5.51 6.96 6.43 6.05 7.07 5.53 5.47 5.11

〈S1 · S2〉 -4.51 -4.53 -4.43 -4.50 -4.32 -4.43 -4.44 -4.29 -4.41 -3.78
S=5/2
E 623 1323 2848 4619 4913 5200 5943 7536 8374 8715

〈N1〉 15.60 15.55 15.45 15.51 15.54 15.59 15.42 15.43 15.29 15.41
〈N2〉 15.40 15.45 15.55 15.49 15.46 15.41 15.58 15.57 15.71 15.59
〈S1〉 5.90 6.19 6.83 6.45 6.15 5.85 6.72 6.88 5.55 7.01
〈S2〉 7.33 7.10 6.25 6.65 6.91 7.19 5.79 5.71 5.27 5.83

〈S1 · S2〉 -2.24 -2.27 -2.16 -2.18 -2.16 -2.15 -1.88 -1.92 -1.03 -2.05
S=7/2
E 786 1405 3375 5173 5368 5696 7528 8254 8863 9149

〈N1〉 15.58 15.54 15.51 15.53 15.48 15.57 15.43 15.28 15.42 15.39
〈N2〉 15.42 15.46 15.49 15.47 15.52 15.43 15.57 15.72 15.58 15.61
〈S1〉 6.53 6.69 6.76 6.68 6.92 6.50 6.66 5.01 7.10 5.29
〈S2〉 7.37 7.23 7.00 7.06 6.69 7.26 6.17 5.46 5.90 5.23

〈S1 · S2〉 0.92 0.92 0.99 1.00 1.07 1.00 1.46 2.64 1.38 2.61
S=9/2
E 984 1839 4254 5941 6458 6873 10136 11196 11377 12487

〈N1〉 15.56 15.54 15.57 15.55 15.54 15.42 15.48 15.29 15.37 15.44
〈N2〉 15.44 15.46 15.43 15.45 15.46 15.58 15.52 15.71 15.63 15.56
〈S1〉 7.23 7.28 7.20 7.25 7.27 7.60 7.45 7.95 7.74 7.56
〈S2〉 7.55 7.50 7.57 7.53 7.51 7.18 7.33 6.83 7.03 7.21

〈S1 · S2〉 4.98 4.99 4.99 4.98 4.99 4.98 4.99 4.98 4.99 4.99
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As demonstrated in the main text, the HDE energy levels do not fit the ab-initio DMRG spec-

trum well because of the assumptions used to derive Eq. (3). Before deriving a more complete

model that is compatible with the ab-initio spectrum, we briefly recall how Eq. (3) is obtained

from Anderson’s analysis of double exchange [12, 13, 14].

We first consider an oxidized complex with two ferric ions (with spins S1 = 5/2, S2 = 5/2)

as a “base” system. The extra electron in the reduced dimer is added to this base system, where

it hops between a pair of local orbitals on each of the ions. Denoting the creation (annihilation)

operators for the local orbitals on the first (second) ions by c
(†)
1 , c(†)2 respectively, and the spin of

the electron as s1, s2 respectively, Anderson’s analysis[12] leads to a Hamiltonian of the form

H = J(S1 · S2 + S1 · s2 + S2 · s1) +
∑
σ=↑,↓

β(c†1σc2σ + c†2σc1σ) (4)

where the Hamiltonian is to be solved in the Hilbert space where the hopping electron is always

anti-aligned with the spin of the ferric ion on which it is currently residing. The terms in H

have the following meaning:

1. The first corresponds to Heisenberg exchange coupling between spins on the two ions

(the “base” ferric spins and the extra spin of the hopping electron).

2. The second describes the effective hopping of the electron between the two ferric ions

(the sum over σ is a summation over electron spin).

The eigenvalues of the Anderson Hamiltonian may be determined analytically to be the HDE

energy levels in Eq. (3), where B = β/(2S + 1), S = S1 = S2.

As argued in the main text, the most commonly used version of the HDE model breaks down

in the [Fe2S2(SCH3)4]3− dimer because it assumes that there is a single pair of d orbitals on

the ferric ions that participates in the hopping process. This assumption is valid if the double

exchange splitting B(S+1/2) is much smaller than the ligand-field splitting ∆. However, this is
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clearly not the case for Fe ions with tetrahedral coordination which is typically associated with

weak ligand fields. Instead, all 5 pairs of d orbitals participate in the hopping at low energies.

We can extend Anderson’s double exchange Hamiltonian to multi-orbital double exchange.

We label each of the 5 local d orbitals by index i. This gives

H =
∑
ij

Jijs1i · s2j +
∑
iσ

[
βi(c

†
1iσc2iσ + c†2iσc1iσ) + ∆i(c

†
1iσc1iσ + c†2iσc2iσ)

]
(5)

where we once again restrict ourselves to states where the hopping electron is strictly antifer-

romagnetically aligned to the base spins (the base spins are all ferromagnetically aligned). The

additional ∆i term gives the ligand field splitting of the orbitals. The above form has a very

large number of parameters from the general exchange couplings Jij . However, in the limiting

case where all spins are aligned on each Fe atom (e.g. as in the oxidized dimer), then it is

sufficient to consider an exchange term of the form
∑

i J
′
is1i · s2i since the interaction of any

spin on a given Fe atom, with any spin on the other Fe atom is the same, i.e. s11 · s21 = s1i · s21
for all i, and Ji =

∑
j Jij . Keeping this form for the reduced dimer, we arrive at an Anderson

Hamiltonian

H =
∑
i

Jis1i · s2i +
∑
iσ

[
βi(c

†
1iσc2iσ + c†2iσc1iσ) + ∆i(c

†
1iσc1iσ + c†2iσc2iσ)

]
(6)

which is the one used in the main text. Note that when solving for the eigenvalues of the Hamil-

tonian, we restrict each ion to have at most one additional electron (i.e. the lowest oxidation

state is ferrous).

The above multi-orbital Hamiltonian does not admit an analytic solution. However, we can

solve for its eigenvalues and eigenvectors numerically. We have written a code to do this which

works with an arbitrary number of base spins and hopping electrons and which we use also

with the [4Fe-4S] Hamiltonian discussed later. The code is made efficient by working in the

basis where the hopping electron is strictly anti-ferromagnetically aligned to the base spins.
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Supplementary Table 10: The best-fit parameters (cm−1) of the extended Anderson’s dou-
ble exchange Hamiltonian given in Equation 6 used to fit the low-lying energy levels of the
[Fe2S2(SCH3)4]3− dimer. Note that Ji and βi do not correspond to the exchange and double
exchange parameters in the standard HDE model and cannot be directly compared. Standard
deviations (as estimated from the covariance matrix of the fit) given in brackets.

Ji βi ∆i

1 2656 (±513) 3512 (±280)
2 2743 (±682) 9679 (±294) 1536 (±271)
3 2151 (±518) 4653 (±296) 4433 (±196)
4 1756 (±675) 8472 (±294) 6167 (±268)
5 395 (±695) 6562 (±296) 6167 (±284)

The hopping matrix elements in this basis can be calculated using Clebsch-Gordan coefficients,

similar to Anderson’s original work [12]. The code can be downloaded with this paper.

A direct fit of the multi-orbital Hamiltonian to the DMRG ab-initio levels yields the param-

eters in Supplementary Table 10 and the levels in Supplementary Figure 3. As we can see the fit

is very good; the r.m.s. error is only about 60 cm−1. Further it is very robust: out of 12 random

initial starting fits, all fits either converged to the same physical solution shown (to within the

standard deviation in the parameters), or attempted to find unphysical solutions with negative

parameters. Overall, this demonstrates that the multi-orbital Hamiltonian indeed captures the

essential low-energy physics of the [Fe2S2(SCH3)4]3− complex. Note that the plots in Fig. 3

are for dimer spins S=1/2, 3/2, 5/2 only. This is because for the higher dimer spins, some of the

excited states appear to have acquire d-d transition character, i.e. the Fe ions are not truly high

spin. This can be seen, for example in states 8 and 10 for S=7/2 in Supplementary Table 6. Such

states probably exist in the weak-shoulder region below 10000 cm−1 in the low-temperature ab-

sorption spectrum of ferredoxins [15], and cannot be described with the model Hamiltonians

we are using.

As emphasized in the text, the multi-orbital Hamiltonian is not equivalent to the simple

17
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Supplementary Figure 3: Fit of first 10 states each with spins from S=1/2 to 5/2 using the
multi-orbital Anderson model (see Equation 6).
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multi-pair generalization of the HDE model. This would correspond to extending the HDE

energy levels in Eq. (3) to 5 separate pairs of levels arising from each of the pair of d orbitals,

Ei(S) = ∆i + 2JiS1 · S2 ± Bi(Si + 1/2) (7)

where the subscript i denotes the pair involved in the hopping. This multi-pair HDE model in

fact has the same number of parameters as the multi-orbital Hamiltonian (6) itself. However,

as seen in the Supplementary Figure 3 in the main text, the naive form does not fit the ab-initio

DMRG results. Multi-orbital double exchange cannot generally be viewed simply as the sum

of individual orbital double-exchange processes. In particular, this means that to be precise we

should not characterize double exchange by an effective B parameter as in the HDE model, but

rather by hopping integrals, β.

Further support for the multi-orbital nature of the double exchange is obtained from density

difference plots, shown in Supplementary Figure 5. These plots are obtained as the difference

density between different singlet states. If a single well-defined d orbital pair were to give rise

to a pair of states, then we would expect the density difference to resemble a density associated

with a particular d pair. However, we find that, aside from the lowest two pair of states (which

appear to have some eg parentage), the remaining density differences involve contributions from

all sets of d orbital densities.

We now briefly discuss the effect of geometry relaxation on the [Fe2S2(SCH3)4]3− dimer

energy levels. At the relaxed geometry, some localization of the charge occurs. The computed

DMRG energy levels at the relaxed geometry are shown in Fig. 4. We find that our main

observations are unchanged: there is little separation between the lowest two and higher energy

levels, and the gap between the lowest two levels does not monotonically increase as required

by the HDE model. We have not computed further relaxation effects from solvent and vibronic

coupling, but it is clear from the above that our conclusions about the multi-orbital nature of
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Supplementary Figure 4: The computed DMRG energy levels at the relaxed [Fe2S2(SCH3)4]3−

dimer geometry.
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double exchange and the need for the multi-orbital Anderson model hold quite generally.

2 4Fe-4S cluster

2.1 Geometry and orbitals

For the [4Fe-4S] cluster, we computed an optimized BS-DFT geometry using the BP86 func-

tional and a triple zeta valence basis (TZV) basis set [16]. The optimized geometry is shown in

Supplementary Table 11.

The active space orbitals are chosen in the same way as in the case of the [2Fe-2S] dimer.

An unrestricted DFT BP86/SVP calculation was performed at the optimized geometry for the

neutral [4Fe-4S] (all ferric) cluster in the high spin (Sz=10) state. The occupied and unoccupied

alpha orbitals were then separately localized using the Pipek-Mezey localization technique. The

20 Fe 3d orbitals, 12 bridging S 3p orbitals, as well as 4 terminal ligand S 3p orbitals that point

towards the Fe atoms, were identified by visual inspection. The occupancy of these orbitals in

the [Fe4S4(SCH3)4]2− cluster gives an active space of (54e, 36o). Some representative orbitals

in the active space are shown in Supplementary Figure 6.

2.2 DMRG calculations
2.2.1 Active spaces

The DMRG-CI calculation with an active space of (54e, 36o) is performed with a maximum

of M=7500 spin-adapted renormalized states. The 36 orbitals include 20 Fe 3d orbitals, 12

bridging S 3p orbitals, as well as 4 terminal ligand S 3p orbitals that point towards the Fe

atoms. For rapid convergence of DMRG energy these orbitals were were ordered as follows:

S4(3p5), S10(3p5), Fe5(3d), Fe5(3d), Fe5(3d), Fe5(3d), Fe5(3d), S3(3p5), S1(3p5), S1(3p6),

S4(3p6), Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), Fe6(3d), S11(3p6), S2(3p6), S4(3p7), S2(3p7),

Fe7(3d), Fe7(3d), Fe7(3d), Fe7(3d), Fe7(3d), S3(3p7), S9(3p7), S3(3p8), S1(3p8), Fe8(3d),
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⇢1  ⇢2 ⇢3  ⇢4

⇢5  ⇢6 ⇢5  ⇢7 ⇢5  ⇢8

⇢5  ⇢9 ⇢6  ⇢7⇢5  ⇢10

⇢6  ⇢8 ⇢6  ⇢9 ⇢6  ⇢10

⇢7  ⇢8 ⇢7  ⇢9 ⇢7  ⇢10

⇢8  ⇢9 ⇢8  ⇢10 ⇢9  ⇢10

Supplementary Figure 5: Density differences between sets of doublet states in the
[Fe2S2(SCH3)4]3− complex. We notice that besides the lowest two pairs of states, the density
difference involves contributions from many d orbitals.
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Supplementary Table 11: Coordinates (in Å) of the [Fe4S4(SCH3)4]2− model complex.

x y z
1 S 0.04 -1.78 -1.29
2 S -0.04 1.78 -1.29
3 S 1.78 -0.04 1.29
4 S -1.78 0.04 1.29
5 Fe 0.05 -1.37 1.01
6 Fe -1.38 0.05 -1.00
7 Fe -0.05 1.38 1.00
8 Fe 1.37 -0.05 -1.01
9 S 0.24 3.30 2.14
10 S -0.24 -3.29 2.14
11 S -3.29 -0.24 -2.14
12 S 3.29 0.24 -2.14
13 C -3.80 -1.84 -1.38
14 H -3.91 -1.71 -0.29
15 H -4.76 -2.17 -1.81
16 H -3.03 -2.60 -1.56
17 C 3.80 1.83 -1.38
18 H 3.91 1.71 -0.29
19 H 4.76 2.16 -1.81
20 H 3.03 2.59 -1.55
21 C -1.83 -3.80 1.38
22 H -2.16 -4.76 1.81
23 H -2.59 -3.03 1.55
24 H -1.70 -3.91 0.29
25 C 1.84 3.80 1.38
26 H 2.17 4.76 1.81
27 H 2.60 3.03 1.56
28 H 1.71 3.91 0.29
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S1(3p5) S4(3p5) Fe5(3d)

Fe5(3d) S10(3p5) S3(3p5)

Supplementary Figure 6: Orbitals in the active space of the [Fe4S4(SCH3)4]2− cluster.

Fe8(3d), Fe8(3d), Fe8(3d), Fe8(3d), S2(3p8), S12(3p8), where the atom labels correspond to

the labels in Supplementary Tables 11, and Supplementary Figure 1, and the subscript on S 3p

orbitals is the index of the atom they are pointing towards.

2.2.2 Energy convergence

As mentioned in the main text of the article (see panel A of Supplementary Figure 5), in a

perfect cubane cluster there are three equivalent pairings of the spins of the four Fe atoms

to form a singlet ground state. In practice, structural distortion lifts this degeneracy, but the

electronic distortion energy is quite small (associated with an energy scale of less than 8mEh

as seen in 7). This small energy difference can make robust convergence of the DMRG wave

function to the true ground state difficult because the wavefunction optimization can get stuck

early on in the “wrong” pairing. To expedite the convergence of the wave function towards

the correct ground state the Hamiltonian is artificially perturbed so that atoms pairs (Fe5, Fe6)
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and (Fe7, Fe8) gain a strong tendency to ferromagnetically align. This is done by artificially

increasing the exchange integrals between the 3d orbitals of the paired up Fe atoms by 0.01

Eh until the number of renormalized states M=1600 is reached. Subsequently this perturbation

in the Hamiltonian is decreased to zero over the next few sweeps, and the rest of the DMRG

calculation (up to M=7500) is performed on the unperturbed Hamiltonian.

In fact, the above method of perturbing the Hamiltonian can be used to “converge” the

DMRG wavefunction towards any of the three pairings shown in Supplementary Figure 5. The

ground-state pairing is identified as the one with the lowest energy. The other pairings do not

necessarily approximate exact eigenstates of the full Hamiltonian, but rather, are local minima

in the parameter space of DMRG. They are a form of “broken-symmetry” DMRG solution, and

can be thought of as the best DMRG states that can be obtained with a maximum M=7500,

when the spin couplings of the various Fe centers is constrained to be non-optimal. The en-

ergy differences between these different solutions can be used to estimate the difference in the

exchange coupling coefficients of the HDE model hamiltonian (see Section 2.4).

The DMRG energies and discarded weights at different values of M are used to extrapolate

to zero discarded weight, which also gives us the estimated energy errors. This is shown in

Supplementary Figure 7. Our estimated error in the total energies is less than 1 mEh.

2.3 Local charge and spin

Local populations and spin correlation functions between different Fe atoms 1-4 can be calcu-

lated using the equations 1 and 2 and are given in Supplementary Table 12.
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Supplementary Figure 7: DMRG energy (E+8471.0) in Eh of the ground-state singlet (Singlet-
I) and triplet (Triplet-I) states versus the discarded weight of the [Fe4S4(SCH3)4]−2 cluster.
In addition, the energies of Singlet-II and Singlet-III correspond to the states where the spin
pairing is constrained be non-optimal (see text). The best fit straight lines are extrapolated to
zero discarded weight, with the shown error bars, to obtain an estimated FCI energy.
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Supplementary Table 12: Local population and spin correlation function for the four Fe atoms
in the calculated DMRG states of the [Fe4S4(SCH3)4]−2 cluster.

Fe atom 〈Ni〉 〈Si · Sj〉
Fe1 Fe2 Fe3 Fe4

Singlet-I
Fe1 6.27 5.27 3.24 -4.05 -4.05
Fe2 6.27 3.24 5.26 -4.05 -4.04
Fe3 6.27 -4.05 -4.05 5.27 3.24
Fe4 6.27 -4.05 -4.04 3.24 5.27

Singlet-II
Fe1 6.25 5.32 -4.03 3.30 -4.18
Fe2 6.26 -4.03 5.32 -4.18 3.30
Fe3 6.26 3.30 -4.18 5.32 -4.03
Fe4 6.25 -4.18 3.30 -4.03 5.32

Singlet-III
Fe1 6.25 5.32 -4.06 -4.18 3.31
Fe2 6.25 -4.06 5.33 3.32 -4.17
Fe3 6.25 -4.18 3.32 5.33 -4.06
Fe4 6.25 3.31 -4.17 -4.06 5.32

Triplet
Fe1 6.26 5.29 3.22 -3.77 -3.77
Fe2 6.26 3.22 5.27 -3.95 -3.95
Fe3 6.26 -3.77 -3.95 5.28 3.26
Fe4 6.26 -3.77 -3.95 3.26 5.28
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2.4 Model Hamiltonian for pairing and unequal exchange in the [4Fe-4S]
cluster

2.4.1 Single orbital Anderson model

The direct extrapolation of the simple (single orbital per Fe) Anderson model described in

Eq. (4) to the case of [4Fe-4S] cluster takes the form

H =
∑
ij

Jij(Si · Sj + Si · sj + Sj · si) +
∑
σ=↑,↓

βij(c
†
iσcjσ + c†jσciσ) (8)

with 6 Heisenberg coupling coefficients Jij and 6 hopping integrals βij . We assume that there

are two hopping electrons, and that the two electrons cannot be on the same Fe atom due to

on-site repulsion.

We solve the above Hamiltonian numerically in the space where the spins si and Si = 5/2

are anti-ferromagnetically aligned. The nature of the states changes as the ratio of the exchange

coupling coefficients changes. In Supplementary Figure 8 we take B = 2J ′ and J12, J34 = J ′,

J13, J14, J23, J24 = J . For J/J ′ > 1.2, we recover a single pairing picture for the S12=9/2 dimer

states that is assumed in the generalized HDE model of Noodleman et al. [17, 18, 19, 20, 21].

The difference in the Jij parameters can be estimated from energy differences between the

ground state singlet and triplet states and the difference between the ground state singlet state

(Singlet-I) and artificially paired singlet (Singlet-II). The energy difference between the singlet

and the triplet state is given by

E(S)− E(T ) = J − 0.08|B| (9)

and the energy difference between Singlet-I and Singlet-II states is given by

E(SI)− E(SII) = 22.5(J − J ′) (10)

In Eq. 9 we assume B = J so that the singlet-triplet gap is 0.92J . In Eq. 10 we have assumed

that difference in the value of B for different couplings is relatively small. Using the converged
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Supplementary Figure 8: Simplified Anderson model energy levels for the [4Fe-4S] cluster,
as a function of anisotropic exchange J ′ �= J . As the anisotropy increases, we recover the
fixed-pairing picture assumed by the HDE model.
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DMRG energies we obtain J = 382 cm−1 and J −J ′ = 84 cm−1, from which we conclude that

J/J ′ ≈ 1.28 and the [4Fe-4S] low-lying states with high effective dimer spin can be described

by the single pairing picture, although they appear to lie close to the border of validity of that

description.

2.4.2 Multi-orbital Anderson model

To check that the above analysis holds in the more complex case of multi-orbital double ex-

change, we have also analyzed some multi-orbital (per Fe) Anderson models for the [4Fe-4S]

cluster. These take the form

H =
∑
iAB

JiABsiA · siB +
∑
iABσ

βiAB(c
†
iAσciBσ + c†iBσciAσ) +

∑
iAσ

∆iAc
†
iAσciAσ (11)

where A and B now range over the 4 Fe atoms. The index i ranges over the number of d orbitals

on each Fe atom. This would be 5 orbitals in the real cubans, but solving the Hamiltonian for

all its levels would be prohibitively expensive. We have therefore considered simpler versions

(which illustrate the appropriate trends) where each model Fe atom has respectively only 1 or 2

orbitals. Note that in the 1 orbital case, the maximum spin on each Fe is then only 1/2, and the

maximum dimer spin is also 1/2, while in the 2 orbital case, the maximum spin on each Fe is 1

and the maximum dimer spin is 3/2. (The 1 orbital model is related to the Hubbard model on a

tetrahedron as discussed in Refs. [22]). In Supplementary Figures 9 and 10 we plot the effective

dimer spins of the energy levels as a function of the exchange couping ratio (inequivalent J’s),

for βiAB = 2J ′ and ∆iA = 0 (for all i, A). We see the same general trends as in the simple

Anderson model above. Note that Jc shifts to lower values as the number of orbitals on each Fe

increases.
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Supplementary Figure 9: Effective dimer spins of the energy levels as a function of exchange
coupling ratio for the [4Fe-4S] multi-orbital Anderson model with 1 orbital per model Fe atom.
Note that since the “Fe” atom has only one orbital, the maximum spin per atom is 1/2, and the
maximum dimer spin is 1/2.
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Supplementary Figure 10: Effective dimer spins of the energy levels as a function of exchange
coupling ratio for the [4Fe-4S] multi-orbital Anderson model with 2 orbitals per Fe. Note that
since the “Fe” atom has only two orbitals, the maximum spin per atom is 1, and the maximum
dimer spin is 3/2.
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