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In this chapter we will begin by

I. BASICS

In quantum mechanics we are often interested in solving the time-independent Schrödinger equation to obtain the
ground and excited state energies and wavefunctions of a system. The Schrödinger equation is an eigenvalue equations
of the type

Ĥ| i = E| i, (1)

where Ĥ is the electronic Hamiltonian, E and | i are respectively the eigenenergies and eigenfunction (the desired
wavefunction) of the system. Under the Born-Oppenheimer approximation the electronic Hamiltonian in atomic units
is given by
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where the first term is the kinetic energy of all electron, the second term is the coulomb interaction between the
electron i and nucleus I with charge ZI and the last term is the electron interaction between the electron i and j
(rij = |ri�rj |). The solution of the Schrödinger equation using the Hamiltonian in Equation 2 will give the electronic
energy E(R) which is a function of the nuclear coordinates (also known as the potential energy surface) and the
electronic wavefunction | i =  (r;R) which is a function of the electronic coordinates and parametrically depends
on the nuclear coordinates. The line under r and R denotes that it is now a vector containing coordinates of all the
electrons and nuclei respectively.

What is not apparent from the electronic Schrödinger equation is that the electronic coordinate is defined not just
by their spatial coordinate ri but also by their spin �i which can take two values ↵ or �. The combined coordinates
of an electron will be specified by xi , {ri,�i}. Another important property of the electronic wavefunction is that it
is anti-symmetric under exchange of electrons, i.e.

 (r1, · · · , ri, · · · , rj , · · · ) = � (r1, · · · , rj , · · · , ri, · · · ). (3)

Can you see how the anti-symmetry of the wavefunction leads to the Pauli exclusion principle?
So far we have represented the wavefunction in the real space coordinates which is used in several quantum Monte

Carlo approaches and methods based on adaptive mesh generation. However, for a large majority of quantum
chemistry techniques the wavefunction is represented as linear combination of many body states constructed out
of single-electron states ({ i(r)}) which are also known as orbitals. These orbitals are often written as a linear
combination of a single electron basis set which in practice is a gaussian or a plane wave function ({�µ(r)})

 i(r) =
X

µ

Cµi�µ(r). (4)

Note, that basis states are often not orthogonal, i.e.
Z
�⇤µ(r)�⌫(r)dr = Sµ,⌫ , (5)

where Sµ,⌫ 6= �µ,⌫ (�µ,⌫ is the Kronecker delta function), however in most cases one requires that the orbitals are
orthogonal, i.e.

Z
 ⇤
i (r) j(r)dr = �i,j . (6)

Although, the concept of orbitals is very general and any set of orthogonal functions can be used, in practice one
often uses the orbitals obtained from a Hatree Fock, or multiconfiguration self consistent field calculation. As we go
along we will see several ways of generating a useful set of orbitals.
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• Can you show that C†SC = I, where S is the overlap matrix in Equation 5 and C is the orbital coe�cient
matrix in Equation 4 ?

The number of “spatial” orbitals is equal to the number of basis functions, we will denote this number as k. As
mentioned earlier an electron carries another degree of freedom, namely the spin, which gives rise to the concept of a
“spin” orbital. The number of spin orbitals is merely equal 2k, twice the number of spatial orbitals because spin of
an electron can be either ↵ or �. In what follows we will denote  i as an orbital with an electron with ↵ spin and  i

as an orbital with an electron with � spin. It is easy to imagine that one could construct many body states by taking
product of orbitals for each electron coordinate

 (x1,x2, · · · ) =  i(x1) j(x2) · · · , (7)

however, the serious di�culty with this state is that it is not antisymmetric with respect to electron coordinates and
thus Pauli principle is not satisfied. One can instead use the antisymmetric product of the orbitals given as

 (x1,x2, · · · ) = Â i(x1) j(x2) · · · . (8)

Â is the antisymmetrizer (its a projection operator) and is defined as

Â =
1
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where the summation is over all the N ! elements P̂ of the symmetric group SN and ⇡ is the parity associated with the
operator P̂ . Parity ⇡ of a permutation operator P̂ is equal to the number of transposition operators that can be used
to construct it. Operator Â has the nice property that when it acts on a state, it either gives 0 or an anti-symmetric
component of the state. Operator Â is also idempotent, i.e. Â2 = Â, which implies that once the operator Â has
been applied to a state, another application of Â does not change it. Two other useful properties of antisymmetrizer
are A† = A and [A, Ĥ] = 0.

• Can you use the group property of P̂ to show that Â2 = Â?

• Can you show that the Slater determinant 1p
N !
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 i(1)  j(1)  k(1)
 i(2)  j(2)  k(2)
 i(3)  j(3)  k(3)
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is an anti-symmetric function of three

electron in three orbitals  i, j , j which is equal to
p
N !Â( i(1) j(2) j(3)).

• Show that the slater determinant is normalized as long as the orbitals used to construct it are orthogonal.

Thus we can construct a set of anti-symmetric states by simply applying the anti-symmetrizer to all the possible
product states. Notice that if there are repeated orbitals then the antisymmetrizer will give 0. Also note that if
the set of orbitals only di↵er from each other by their order then the anti-symmetrizer will merely give the same
anti-symmetrized state with an overall change of sign.

As a matter of definition the Slater determinant
p
N !Â( i(1) j(2) · · · ) is also written as | i j · · · i, note that the

electron labels have been removed from the symbol. Can you show that the number of unique many-body anti-
symmetric states that can be obtained by acting the anti-symmetrizer on a product of states is 2kCn, where n is the
number of electrons and here is assumed to be less than 2k.

We will not go into detail here, but by using the properties of the anti-symmetrizer we can derive the Slater-Condon
rules which are shown in Table I. These rules give us the recipe for calculating the transition matrix element of an
operator Ô between two Slater determinants |Li and |Ki, i.e. hK|Ô|Li.

hi|h|ji =
Z
 ⇤
i (r)h(r) j(r)dr (10)
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TABLE I: Slater Codon rules. See the test for the definition of the integrals in the last column.

Type |Ki, |Li Operator (Ô) hK|Ô|Li

Same states
|Ki = | 1 2 · · · i

P
i

ĥ(i)
P

i

hi|h|ii
|Li = | 1 2 · · · i
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i 6=j

V̂ (i, j)
P

ij

(hij|iji � hij|jii)

Di↵er by one orbital
|Ki = | 1 2 · · · m

· · · i
P

i

ĥ(i) hm|h|ni
|Li = | 1 2 · · · n

· · · i
P
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Di↵er by two orbitals
|Ki = | 1 2 · · · m

 
n

· · · i
P

i

ĥ(i) 0

|Li = | 1 2 · · · o

 
p

· · · i
P

i 6=j

V̂ (i, j) (hmn|opi � hmn|poi)

II. SECOND QUANTIZATION

The antisymmetry of the wavefunction is an essential property of the wavefunction and this is why we expand the
wavefunction as a linear combination of slater determinants. Working with slater determinants is quite a bit more
complicated than just with product states. Although Slater-Condon rules tend to simplify things substantially we will
later come across theories that benefit greatly from the introduction of a new language, that of second quantization.
In this language the requirement of antisymmetry is entirely absorbed into the operators and not the states. Further
this language allows us to work in the fock space which does not have a fixed number of particles but instead is a
union of the Hilbert spaces containing any number of particles.

The first change of notation is the use of occupation representation to denote the states. Write about the

occupation number notation.
The Slater Condon rules tell us that although the many body Hamiltonian is a large matrix containing 2kCn rows

and columns, all the matrix elements can be calculated using just the (2k)4 integrals given in Equation 11 (there
are symmetry properties of integrals which allows one to reduce to storage cost to k4/8). The language of second
quantization explicitly

III. VARIATIONAL METHOD AND NUMERICAL TECHNIQUES

IV. SELF CONSISTENT FIELD THEORY

V. MULTICONFIGURATION SELF CONSISTENT FIELD THEORY
























