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Quinones play vital roles as electron carriers in fundamental
biological processes; therefore, the ability to accurately predict
their electron affinities is crucial for understanding their proper-
ties and function. The increasing availability of cost-effective
implementations of correlated wave function methods for both
closed-shell and open-shell systems offers an alternative to den-
sity functional theory approaches that have traditionally domi-
nated the field despite their shortcomings. Here, we define a
benchmark set of quinones with experimentally available elec-
tron affinities and evaluate a range of electronic structure
methods, setting a target accuracy of 0.1 eV. Among wave func-
tion methods, we test various implementations of coupled clus-
ter (CC) theory, including local pair natural orbital (LPNO)
approaches to canonical and parameterized CCSD, the domain-
based DLPNO approximation, and the equations-of-motion
approach for electron affinities, EA-EOM-CCSD. In addition, sev-
eral variants of canonical, spin-component-scaled, orbital-

optimized, and explicitly correlated (F12) Møller–Plesset pertur-
bation theory are benchmarked. Achieving systematically the
target level of accuracy is challenging and a composite scheme
that combines canonical CCSD(T) with large basis set LPNO-
based extrapolation of correlation energy proves to be the most
accurate approach. Methods that offer comparable performance
are the parameterized LPNO-pCCSD, the DLPNO-CCSD(T0), and
the orbital optimized OO-SCS-MP2. Among DFT methods, viable
practical alternatives are only the M06 and the double hybrids,
but the latter should be employed with caution because of sig-
nificant basis set sensitivity. A highly accurate yet cost-effective
DLPNO-based coupled cluster approach is used to investigate
the methoxy conformation effect on the electron affinities of
ubiquinones found in photosynthetic bacterial reaction centers.
© 2018 Wiley Periodicals, Inc.
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Introduction

Quinones are essential components of fundamental biological
processes that involve electron transfer, such as photosynthesis
and respiration. For example, plastoquinones are used as both
intermediate and terminal electron acceptors in the oxygen-
evolving photosystem II,[1–3] phylloquinone (vitamin K1) partici-
pates in electron transfer between photosystem I and
ferredoxin,[4,5] and ubiquinone (coenzyme Q) is a component of
electron transport chains in bacterial photosynthesis and aero-
bic respiration (Fig. 1).[6–8] The role of quinones as electron car-
riers rests on their ability to access a number of stable
oxidation and protonation states, ranging from the fully oxi-
dized to the doubly reduced and doubly protonated form, and
to do so reversibly. Additionally, their electron acceptor and
donor properties can be fine-tuned by varying the substituent
groups on the central ring and by adjusting the properties of
their immediate environment, for example through hydrogen
bonding interactions in a protein pocket. It is not surprising that
these features make quinones attractive also in artificial photo-
synthesis[9] and in technological applications such as functiona-
lization of materials developed for energy harvesting and
storage.[10–12]

Quantifying the electron accepting ability of a quinone is
essential for understanding its function in any given (bio)chemi-
cal context, for gaining insight into electron transfer processes,
and potentially for enabling mechanistic control. The central

and fundamental property of a quinone is the electron affinity
(EA). The EA determines the function of the quinone in electron
transfer and also forms the basis for computing reduction
potentials,[13] for which additional energetic contributions need
to be considered. The computational prediction of quinone
electron affinities and reduction potentials has received much
attention, usually in system-specific studies.[14–27] Although
approaches such as the equations-of-motion (EOM)[28] or
Green’s function methods provide a direct way to obtain elec-
tron affinities for multiple electron attached states in a single
calculation,[28–31] quinone EAs are typically computed through
differences of energies obtained by separate quantum chemical
calculations of the quinone and the semiquinone radical. This
places high demands on electronic structure methods because
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it requires accurate and balanced treatment of electron correla-
tion between differently charged species that contain different
numbers of paired/unpaired electrons. Existing studies typically
employ density functional theory (DFT) in the form of the popu-
lar B3LYP or closely related functionals. However, a significant
development in recent years has been the advent of novel
computational approaches and algorithmic improvements that
enable the application of correlated wave function methods to
much larger systems than what would be conceivable just a
few years ago, offering the promise of much higher accuracy
and systematic performance for diverse chemical sets. To our
knowledge, there has been so far no extensive study of modern
wave function based approaches applied to the energetics of
semiquinone radical formation.

Our target in the present work is to test a range of correlated
wave functionmethods that can be applied to biologically relevant
quinones, including methods that are potentially competitive with
DFT in terms of computational cost[32–36] but hold the promise of
systematic, consistent, and system-independent improvement in
accuracy. To this end we construct a test set of 10 biologically rele-
vant quinones with experimentally known EAs and use this set to
evaluate the performance of a range of wave function and DFT
methods. It is stressed that we focus exclusively on electron affini-
ties and not on reduction potentials because wewish to isolate the
contribution of the electronic structure method in the description
of the quinone/semiquinone pair. In this way, we can study the
general problem of minimizing intrinsic errors in the electronic
structure separately from the distinct and case-dependent prob-
lem of dealing with the effect of any given chemical environment.
This ensures that the conclusions are generally valid and indepen-
dent from any computational approaches that may be employed
for the representation and estimation of the effect of the environ-
ment, such as QM/MM treatments for proteins or various approxi-
matemodels for bulk solvents.

The tested wave function methods include local pair natu-
ral orbital (LPNO)[33–35] and domain-based local pair natural
orbital (DLPNO)[36,37] implementations for coupled cluster
methods, the parametrized pCCSD method,[38,39] equation-of-
motion coupled cluster theory (EA-EOM-CCSD),[31] as well as
MP2, its spin-component-scaled variant (SCS-MP2),[40]

explicitly correlated,[41] and orbital-optimized[42] implementa-
tions. Furthermore, we compare the performance of represen-
tative DFT functionals, including methods that have been
proposed as more accurate than traditional hybrid functionals
but have not been evaluated for the present problem.[43,44]

The results allow us to define the requirements, the uncer-
tainties, and the confidence limits of wave function and DFT
approaches, and to propose a hierarchy of methods that are
expected to be systematically accurate in predicting quinone
electron affinities for any given size of computational prob-
lem. Finally, a study of the effect of methoxy group rotation
on the electron affinity of photosynthetic bacterial ubiqui-
nones is presented.

Methodology and Computational Details
Definition of the test set

The 10 biologically relevant 1,4-benzoquinones comprising our
reference set are depicted in Figure 2. The selection was based
on the basic structures of photosynthetic quinones (plastoqui-
none and ubiquinone), as well as on vitamin K, and the final
choice of compounds was defined by the availability of experi-
mentally determined electron affinities.[45–49] Starting from the
parent para-benzoquinone, methyl substituents were added
subsequently up to the tetramethyl-benzoquinone to span the
range of quinones relevant to photosystem II (1–6), while
2,6-dimethoxy-parabenzoquinone (7) and 2,3-dimethoxy-
6-methyl-paraquinone (8) were chosen for their relevance to
the quinones of bacterial reaction centers. Finally, naphthoqui-
none (9) and 2-methyl-naphthoquinone (10) were added as
models of vitamin K.

Geometries

For each molecule the geometries of the closed shell and the
anionic species were optimized using the TPSS functional.[50]

The evaluation of functionals for geometry optimizations is
described in the Supporting Information and Tables S1 and
S2. All calculations were done using the ORCA program pack-
age.[51] The minimally augmented[52] def2-TZVP basis sets[53]

(ma-def2-TZVP) were used for optimizations. Grimme’s pair-
wise dispersion corrections with Becke–Johnson damping
(D3BJ) were applied. Coulomb fitting (RI-J) was used with
decontracted universal def2/J auxiliary basis sets.[54] Increased
integration grids (“Grid6” in ORCA nomenclature) and tight
SCF convergence criteria were applied. Zero point energy
(ZPE) corrections were determined using harmonic vibrational
frequency calculations performed at the same level as the
geometry optimizations.

To obtain the adiabatic electron affinity values for all
methods discussed in this work, single point calculations were
performed at the DFT optimized geometries. All reported adia-
batic EA values include ZPE corrections (Supporting Information
Table S3). In addition, single point energies of the anionic spe-
cies using the neutral geometry were performed to extract
vertical EAs.

Figure 1. Representative quinones involved in biological electron transfer
processes.
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Wave function methods

All wave function methods employed in this work make use of
the aug-cc-pVnZ series of basis sets (n = D, T, Q). Diffuse func-
tions (aug-) were judged to be necessary for the treatment of
the anionic (semiquinone) form and to improve basis set con-
vergence for all methods, so they were used throughout this
study. In reporting results, we will be using a shorthand nota-
tion indicating only the cardinal value of the basis set, that is,
“D,” “T,” or “Q.” Two-point extrapolation for the correlation
energy followed eq. (1).

Ecorr X=Y½ � ¼ X βE Xð Þ−Y βE Yð Þ

X β−Y β
ð1Þ

with X and Y being the cardinal numbers of each basis set indi-
cated in brackets. In reporting basis set extrapolated results we
will be using the shorthand notation [X/Y] to refer to extrapo-
lated values, for example, [T/Q] stands for extrapolation with
the aug-cc-pVTZ and aug-cc-pVQZ basis sets. If not indicated
otherwise in the text, the extrapolated correlation energy is
added to the HF energy obtained using the largest basis avail-
able with the same method to obtain the total extrapolated
energy. The exponent β was set to 2.51 for [D/T] extrapolation
and 3.05 for [T/Q] extrapolation, since these values were deter-
mined to be optimal for the aug-cc-pVnZ series of basis sets by
Neese and Valeev.[55]

In addition to canonical coupled cluster with single and dou-
ble excitations (CCSD) the parameterized coupled cluster sin-
gles and doubles approach of Huntington and Nooijen was
employed (pCCSD),[38,39] in the parameterization known as
pCCSD/(−1,1,1) or pCCSD/1a. The distinguishable cluster singles
and doubles (DCSD) approximation by Kats et al.[56–58] is similar
to pCCSD in that both approaches modify the quadratic terms
in the T2 amplitudes in the doubles residual equation of
coupled cluster. Both methods perform similarly and the rela-
tion between them has been discussed in detail by Rishi
et al.[59]

The local pair natural orbital (LPNO) approach was used in
combination with both CCSD and pCCSD to enable the use of
large basis sets reaching up to aug-cc-pVQZ. The largest extrap-
olation reported in the present work was achieved with the
combination of aug-cc-pV[T/Q]Z basis sets. Note that perturba-
tive triples are not implemented for LPNO-based coupled clus-
ter methods. At the canonical CCSD(T) level the maximum basis
set size that could be used for all molecules of the test set was
aug-cc-pVDZ, therefore, the highest level of wave function the-
ory reported in the present work follows a compound
scheme[60] that leverages large basis set LPNO extrapolation of
the CCSD correlation energy:

Ecorr CBSð Þ≈Ecorr LPNO-CCSD= T=Q½ �ð Þ
+ Ecorr CCSD Tð Þ=Dð Þ
−Ecorr LPNO-CCSD=Dð Þ

ð2Þ

where D, T, and Q refer to basis sets of the aug-cc-pVnZ family
(n = D, T, Q) as stated above.

In addition to the CBS limit, Goodson’s extrapolation[61] of
the coupled cluster sequence to the full CI limit was also tested.
This is based on the use of a continued-fraction approximant of
the form:

ECC,cf ¼ δ1

1− δ2=δ1
1−δ3=δ2

ð3Þ

where δ1 is the SCF energy, δ2 is the CCSD – SCF difference,
and δ3 is the CCSD(T) – CCSD difference.

In addition to the LPNO, the more recent domain-based
DLPNO approximation was evaluated at the CCSD and CCSD(T)
levels. It is noted that the perturbative triples in the implemen-
tation available to us correspond to the semi-canonical approxi-
mation (T0). The unrestricted formalism was used in the case of
the LPNO calculations for both the quinones and the semiqui-
nones, whereas the DLPNO calculations make use of quasi-
restricted orbitals (QROs), which correspond effectively to the
restricted formalism for the quinones and restricted open-shell

Figure 2. The quinone molecules included in the present test set.
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for the semiquinones. Tight PNO criteria were used. The aug-cc-
pVnZ/C basis sets were used as auxiliary basis sets in these
calculations.[62]

The EA-EOM-CCSD method was also evaluated. The main
advantage of EA-EOM-CCSD calculations is that they provide
directly the vertical electron affinities as transitions from the
neutral to the anion. However, the O(N5) scaling of the iterative
process and O(N6) scaling of the ground state CCSD step, as
well as the huge storage requirements of canonical EA-EOM-
CCSD makes it difficult to use on the molecules included in our
test set. The bt-PNO-EOM-CCSD scheme of Izsák and
coworkers,[63] which involves the use of back-transformed pair
natural orbitals, has lower scaling for the ground state calcula-
tion as well as for the most expensive EA-EOM term, much
smaller storage requirements,[64] and gives almost identical
electron affinity as that of the canonical EA-EOM-CCSD. Here, to
obtain adiabatic EA values for comparison to experiment, two
separate calculations need to be performed, one at the opti-
mized geometry of the anion and the other at the optimized
geometry of the neutral species. The adiabatic electron affinities
are then obtained as the ground state energy at the anion
geometry plus the electron affinity at the anion geometry
minus the ground state energy at the geometry of the neutral.
To get the basis set limit EA values in bt-PNO-EOM-CCSD, the
total energy of the ground state and total energy of the anionic
state (ground state energy + EA) are extrapolated separately
using formula (1) and the EA values are calculated as the differ-
ence of the two extrapolated energies. The chain of spheres
approximation (COSX)[65,66] was beneficially applied in the bt-
PNO-EA-EOM calculations to avoid storing and manipulating
the expensive four external integrals.

Other wave function methods tested include second order
Møller–Plesset perturbation theory (MP2) and several variants
including spin-component-scaled MP2 (SCS-MP2),[40] orbital-
optimized MP2 (OO-MP2 and OO-SCS-MP2),[42] as well as explic-
itly correlated F12-MP2 to evaluate convergence to the com-
plete basis set limit. The resolution of the identity (RI), also
known as density fitting approximation was used in all of the
above cases to speed up the calculations, in combination with
the corresponding aug-cc-pVnZ/C auxiliary basis sets.[62] For
simplicity, we will not use the “RI” label when we refer to these
MP2 methods. The explicitly correlated F12-MP2 calculations
made use of the cc-pVTZ-F12 basis set of Peterson et al.[67] in
conjunction with appropriate complementary auxiliary basis
sets (cc-pVTZ-F12-CABS).[68]

Density functional methods

In addition to the wave function methods discussed above, we
tested a range of density functionals in single-point calcula-
tions, including the GGA functional PBE,[69] the meta-GGA func-
tional TPSS,[50] the hybrid functionals B3LYP[70,71] and PBE0,[72]

the hybrid meta-GGA functionals M06 and M06-2X,[73] range
corrected functionals ωB97X-D3[74] and CAM-B3LYP,[75] as well
as the double hybrid functionals PWPB95,[76] B2PLYP,[77] and
DSD-PBEP86.[78,79] All functionals were used with D3BJ correc-
tions, with the exception of M06 and M06-2X. The chain of

spheres approximation (COSX)[65,66] was employed for Hartree–
Fock exchange and the RI-MP2 approach was used for the dou-
ble hybrid functionals. To evaluate the basis set influence on
the DFT results, both ma-def2-TZVP and ma-def2-QZVPP basis
sets were used, with decontracted auxiliary def2/J basis sets. All
DFT electron affinities reported in the main text are obtained
with the ma-def2-QZVPP basis sets and include the same ZPE
corrections applied to the wave function methods. Increased
integration accuracy (“Grid6” and “GridX9” in ORCA nomencla-
ture) and tight SCF convergence criteria were used throughout.

While in this study we have restricted our attention to widely
available efficient DFT functionals, we note in passing that
promising functionals have also been developed within the
framework of reduced density matrix functional theory. One
may single out the Piris natural orbital functionals[80,81] as an
example and interested readers are referred to a recent
review[82] discussing many other approaches and advances. In
particular, some of these functionals have also been tested for
the evaluation of ionization potentials and electron
affinities.[83,84]

Target accuracy

A question that needs to be addressed before discussing the
results of the present study concerns the desired level of accu-
racy in the prediction of quinone electron affinities. This deci-
sion is to some extent arbitrary, or at least case-dependent, and
will be influenced in practice by the actual performance of the
available computational methods. Nevertheless, given that our
focus is on biologically relevant quinones, we suggest that one
may arrive at a plausible value for a protein setting by inspect-
ing some data from a biological system. We use as example the
case of photosystem II (Fig. 3). There, the electron affinities of
the primary and secondary acceptor plastoquinones QA and QB,

Figure 3. Redox active cofactors involved in electron transfer in
photosystem II, which transfers electrons from water to a plastoquinone QB,
oxidizing the former to dioxygen. The horizontal dashed line through the
site of light-induced charge separation P680 separates the “donor side” from
the “acceptor side” of the enzyme. Red arrows indicate the flow of electrons
from water to the reaction center chlorophyll assembly P680 and from the
reaction center to the primary (QA) and terminal acceptor QB. [Color figure
can be viewed at wileyonlinelibrary.com]
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the factors that control them, and the sequence of reduction
and protonation of QB are questions with critical implications
for biological photosynthesis,[2,85] and remain open challenges
for both experiment and theory.[86–99]

The midpoint potential of the primary plastoquinone accep-
tor QA is uncertain because a wide scatter of values have been
assigned experimentally, nevertheless the quinone is suggested
to be present in two forms that differ by 0.12–0.15 V, while the
difference in potential between the primary acceptor QA and
the terminal acceptor QB is estimated at approximately
0.19 V.[88,92,98,100,101] Small changes in hydrogen bonding and in
long-range interactions are known to cause shifts up to 0.10 V,
while treatment with common herbicides is known to induce

shifts in the QA potential of the order of 0.05 V. Structural or
chemical perturbations at metal binding sites of the enzyme
cause midpoint potential shifts of 0.02–0.04 V, which are critical
for determining the lifetimes of intermediates and regulating
the kinetics of electron transfer.[85,102,103] From the above cur-
sory exposition of literature values it appears that for reliable
computational studies a useful target accuracy for quinone
electron affinities in absolute terms should be better than
0.1 eV in general, and systematically better than that for truly
predictive work.

Results and Discussion
Coupled cluster methods

A summary of the adiabatic electron affinities obtained in this
study with coupled cluster methods in various implementations
is given in Table 1 (see Supporting Information Table S4 for ver-
tical electron affinities). The results in general show a small but
systematic underestimation of EA values. Qualitatively, all
methods reproduce the decrease in EA across the subset of qui-
nones 1–6, with the highest EA predicted for para-
benzoquinone 1, the lowest EA for the fully substituted tetra-
methyl derivative 6, and the isomeric quinones 3 and 4 being
practically equivalent in terms of EA. An interesting observation
is that although the numerical values differ between methods,
they all predict quinone 7 to have the lowest EA of the test set.
This is a point we will return to in the following. The worst
method on average is CCSD combined with the smallest basis
set used in this work, aug-cc-pVDZ. However, to place the abso-
lute values in perspective, the error of this “worst case” method
is already an order of magnitude better than the Hartree–Fock
electron affinities, which have a mean signed error of −1.25 eV.
At the opposite end is the composite method described in the
Methodology section, which combines canonical CCSD(T)/D
with LPNO-CCSD/[T/Q] extrapolation. This method shows the
lowest errors compared to experiment among all other coupled
cluster approaches, and indeed with mean signed and root-

Table 1. Calculated adiabatic electron affinities (eV) for the 10 quinones of the reference set, obtained with coupled cluster methods and selected basis
sets and basis set extrapolation combinations

1 2 3 4 5 6 7 8 9 10 MSE MAX RMS

CCSD/[D] 1.68 1.61 1.55 1.55 1.49 1.46 1.51 1.70 1.59 1.52 −0.21 −0.24 0.21
CCSD(T)/[D] 1.77 1.71 1.64 1.65 1.60 1.56 1.60 1.76 1.69 1.63 −0.11 −0.14 0.12
bt-PNO-EOM-CCSD/[T/Q] 1.79 1.70 1.63 1.64 1.56 1.50 1.55 1.73 1.67 1.57 −0.14 −0.17 0.14
LPNO-CCSD/[D/T] 1.80 1.73 1.66 1.67 1.61 1.59 1.60 1.79 1.68 1.54 −0.11 −0.20 0.11
LPNO-CCSD/[T/Q] 1.79 1.72 1.65 1.65 1.59 1.55 1.58 1.77 1.67 1.61 −0.12 −0.14 0.12
DLPNO-CCSD/[D/T] 1.76 1.68 1.61 1.61 1.55 1.52 1.53 1.72 1.64 1.63 −0.15 −0.19 0.15
DLPNO-CCSD/[T/Q] 1.74 1.66 1.59 1.59 1.53 1.49 1.51 1.69 1.62 1.52 −0.18 −0.22 0.18
LPNO-pCCSD/[D/T] 1.82 1.74 1.68 1.68 1.63 1.60 1.63 1.80 1.70 1.60 −0.08 −0.14 0.09
LPNO-pCCSD/[T/Q] 1.83 1.75 1.68 1.69 1.63 1.59 1.62 1.81 1.73 1.63 −0.08 −0.11 0.08
DLPNO-CCSD(T0)/[D/T] 1.86 1.79 1.71 1.71 1.66 1.61 1.61 1.78 1.74 1.74 −0.05 −0.11 0.06
DLPNO-CCSD(T0)/[T/Q] 1.83 1.76 1.68 1.68 1.63 1.58 1.58 1.75 1.71 1.61 −0.09 −0.14 0.10
CCSD(T)/[D] + ECC,cf 1.78 1.72 1.66 1.66 1.61 1.57 1.61 1.77 1.70 1.64 −0.10 −0.13 0.10
DLPNO-CCSD(T0)/

[Q] + ECC,cf
1.83 1.76 1.68 1.68 1.63 1.58 1.57 1.74 1.71 1.62 −0.09 −0.15 0.10

CCSD(T) + Ecorr/CBS 1.87 1.81 1.74 1.75 1.70 1.65 1.69 1.84 1.79 1.76 −0.01 −0.04 0.03
Experiment 1.91 1.85 1.76 1.77 1.69 1.62 1.72 1.86 1.81 1.74

Mean signed errors (MSE), maximum signed errors (MAX), and root mean squared errors (RMS) in eV are given against the experimental values.

Table 2. Basis set dependence of various coupled cluster
implementations

MSE MAX RMS

CCSD/D −0.19 −0.24 0.20
CCSD(T)/D −0.10 −0.13 0.10
LPNO-CCSD/D −0.20 −0.30 0.21
LPNO-CCSD/T −0.15 −0.20 0.15
LPNO-CCSD/Q −0.13 −0.18 0.13
LPNO-CCSD/[D/T] −0.09 −0.22 0.10
LPNO-CCSD/[T/Q] −0.10 −0.16 0.11
DLPNO-CCSD/D −0.23 −0.29 0.23
DLPNO-CCSD/T −0.19 −0.27 0.20
DLPNO-CCSD/Q −0.18 −0.26 0.19
DLPNO-CCSD/[D/T] −0.13 −0.16 0.14
DLPNO-CCSD/[T/Q] −0.17 −0.25 0.17
LPNO-pCCSD/D −0.17 −0.25 0.17
LPNO-pCCSD/T −0.11 −0.19 0.12
LPNO-pCCSD/Q −0.09 −0.16 0.09
LPNO-pCCSD/[D/T] −0.07 −0.16 0.08
LPNO-pCCSD/[T/Q] −0.06 −0.13 0.07
DLPNO-CCSD(T0)/D −0.18 −0.26 0.18
DLPNO-CCSD(T0)/T −0.11 −0.17 0.11
DLPNO-CCSD(T0)/Q −0.09 −0.16 0.10
DLPNO-CCSD(T0)/[D/T] −0.04 −0.08 0.04
DLPNO-CCSD(T0)/[T/Q] −0.08 −0.15 0.08

Mean signed errors (MSE), maximum signer errors (MAX), and root mean squared errors
(RMS) in eV for electron affinities referenced against the extrapolated CCSD(T) values.
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mean-squared (RMS) errors of −0.021 eV and 0.045 eV it is the
best method tested in the present work. In this sense, it can be
used to benchmark more approximate methods in cases where
experimental reference electron affinities are not available.

The basis set dependence of various methods is explored
with more detail in Table 2, where it is shown that all coupled
cluster approaches form a more or less regular progression
that converges toward the most accurate method employed,
the composite extrapolated CCSD(T). With one exception
that will be discussed below, for all methods where the
full sequence of aug-cc-pVnZ (n = D, T, Q) basis sets can be
applied, the decrease in error generally follows the sequence
D > T > Q > [D/T] > [T/Q]. It is important to note the superior
accuracy of the [D/T] extrapolation over the quadruple-ζ results
in most cases. In anticipation of the results obtained with other
methods (both MP2 and DFT) that will be presented in subse-
quent sections of this work, it is stressed that the direct use of
non-extrapolated coupled cluster energies obtained with a sin-
gle basis set should be avoided. This is especially so in the case
of the double-ζ basis because the errors are comparable or
larger than those obtained with much cheaper methods such
as mainstream density functionals, hence negating the rele-
vance of coupled cluster approaches.

The results of Table 1 and the sequence presented in Table 2
allow us to gain some insight into the physics of the problem
and to better define the energetic contributions that determine
the accuracy of each approach. First of all, the canonical CCSD
errors are reduced approximately by half on inclusion of pertur-
bative triples, using the same aug-cc-pVDZ basis set. The LPNO-
CCSD shows negligible deviations from the reference method
compared to canonical CCSD with the same basis set. There-
fore, the error in canonical CCSD arising from the use of a small
basis is much larger than the truncation error in LPNO-
CCSD[33,34] and the extrapolated LPNO-CCSD values with larger
basis sets are expected to reliably reflect the basis set conver-
gence behavior of CCSD. In this respect, it is important to note
that the reduction of average errors in EA values on inclusion of
perturbative triples (i.e., CCSD/D versus CCSD(T)/D) and the
reduction in errors on large-basis extrapolation (LPNO-CCSD/
[T/Q]) are of similar magnitude and direction. Therefore, it can
be concluded that the accurate calculation of quinone electron
affinities with coupled cluster methods depends almost equally
on the basis set incompleteness error and the treatment of the
triples excitations. In other words, the errors from basis set
incompleteness and from the missing (T) are additive, and
hence, it is precisely the minimization of both errors in the
composite method, via inclusion of (T) at the moderate basis
set and the CCSD extrapolation using the LPNO implementation
with large basis sets, that results in the remarkably favorable
performance of the compound approach. Conversely, dealing
with only one of these sources of error is insufficient to reduce
the average errors below the 0.1 eV mark.

The LPNO approach approximates the canonical method in
the sense that it will reproduce the canonical results with suffi-
ciently tight thresholds, while the DLPNO method introduces
the further approximation of partitioning into orbital domains.
Table 2 allows comparison of the average EA errors by the

LPNO and DLPNO approximations to the errors of canonical
CCSD with the same sequence of basis sets. It can be seen that
the basis set convergence behavior is slightly different, because
the DLPNO-CCSD results with the aug-cc-pVTZ basis set are
already well converged and show limited improvement on fur-
ther increasing the basis set. This is also reflected in the extrap-
olated values, as for DLPNO the [D/T] extrapolation already
yields EAs that are not improved with the more demanding
[T/Q] extrapolation. This does not hold exactly for the vertical
electron affinities compared to the reference method
(Supporting Information Table S5), where the mean average
error with the [T/Q] extrapolation is marginally better.

It is interesting to look a bit closer at the apparent differ-
ences between the LPNO and DLPNO approach at the CCSD
level, since the latter seem to be associated with larger aver-
age errors compared to the former. Comparison of the abso-
lute correlation energies produced by the various approaches
with the aug-cc-pVDZ basis set against the canonical CCSD
(Supporting Information Table S6) confirms that the DLPNO-
CCSD reproduces the canonical results much more closely in
absolute terms. Specifically, DLPNO-CCSD recovers 99.98% of
the canonical CCSD correlation energy for the neutral species
and 99.80% for the anions, versus 99.49% and 99.46% of
LPNO. In absolute terms, LPNO underestimates the correlation
energy by a mean value of 140 meV for the neutral and
147 meV for the anions, whereas DLPNO achieves superior
recovery with underestimations of merely 6 meV and 53 meV.
But these values also suggest that although the DLPNO
approach is clearly superior to LPNO, it is not equally superior
for both the closed and the open-shell system. Hence, the
LPNO approach at the CCSD level benefits from error cancella-
tion when total energy differences are computed, with the
result that on average it deviates by 9 meV in final electron
affinities from the canonical CCSD/D values compared to the
DLPNO deviation of 32 meV. It might be useful to investigate
the relevant technical points further to understand where the
slight imbalance in correlation energy for the DLPNO treat-
ment of the closed-shell versus the open-shell case originates
from. However, we will not branch into this type of investiga-
tion here. For the present purposes, and for future applica-
tions, we favor the use of the DLPNO approach for two simple
reasons: first, the tremendous advantage of the linear-scaling
DLPNO-CCSD implementation allows it to be applied to
exceedingly large systems, and second, the ability to address
the effect of the triples excitations, currently only possible
with the DLPNO approach, is an overwhelming and decisive
factor for achieving high accuracy in practice.

Before discussing methods that attempt to consider the
effect of the triples corrections to the correlation energy, we
would like to discuss briefly the performance of the bt-PNO-
EOM-CCSD approach. From Table 1 it is clear that in
comparison to experiment the method performs similarly to
DLPNO-CCSD (with [D/T] extrapolation) and worse than LPNO-
CCSD. It should be noted however that the error obtained in
bt-PNO-EOM-CCSD is below the error bar of the EOM-CCSD
method itself.[104] Since the effect of triples is also missing from
the presently used bt-PNO-EOM-CCSD scheme, it is expected
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that their inclusion in a future EOM implementation would sig-
nificantly improve the accuracy of the predicted EAs. This
would be an important development because in addition to
the improved accuracy it would enable one to enjoy at the
same time the substantial benefits of the EOM approach with a
much smaller computational cost than that of CCSD(T).[105]

Moreover, if one considers cases that involve doubly reduced
species (an example is the terminal plastoquinone QB of photo-
system II that may be reduced twice prior to protonation) the
EOM approach would have a substantial advantage over other
methods that might struggle to describe the dianion and would
require multiple well-converged calculations on three differ-
ently charged species.[106] Conversely, we would like to note
that inclusion of triples may not be a universal requirement in
the EOM-CC calculation of ionization potentials and electron
affinities, because good results have been reported for other
systems, for example, DNA and RNA nucleobases.[107–110]

Regardless of the potential of the method, with the present
implementation it cannot be considered competitive to the
best alternative coupled cluster approaches tested in this work.

As noted above, the triples corrections are an essential factor
for improving the accuracy of electron affinities. The available
LPNO implementations do not cover triples corrections, so the
approach cannot be extended beyond CCSD. The pCCSD
method of Huntington and Nooijen attempts to compensate
for the missing triples through parametrization.[38] Indeed this
seems to be partially successful, because LPNO-pCCSD consis-
tently outperforms LPNO-CCSD by approximately the same
margin of 0.03–0.04 eV at each basis set increment. Thus, the
combination of LPNO-enabled use of large basis sets and the
parametric inclusion of the effect of the triples excitations
results in LPNO-pCCSD achieving average errors in electron
affinities below the 0.1 eV target accuracy. Indeed, the use of
LPNO-pCCSD with [D/T] extrapolation is a cost-effective option
that offers improved performance without explicitly considering
some form of perturbative triples. It is expected that similar
methods such as the distinguishable cluster approach would
perform comparably well.

The DLPNO approach currently allows computation of the
semi-canonical triples (T0), a noniterative correction that ignores

the couplings between different triples by the off-diagonal Fock
matrix elements. The results obtained in this way, labeled as
DLPNO-CCSD(T0) in Tables 1 and 2, represent a remarkable
improvement over the DLPNO-CCSD values at equivalent basis
sets. The DLPNO-CCSD(T0) results with the [D/T] extrapolation
are in fact the second-best in terms of agreement with experi-
mental electron affinities (Table 1), and represent the best
approximation to the composite reference method (Table 2).
The [T/Q] extrapolation does not yield consistently a further
improvement. It can be expected that future developments in
advancing the DLPNO-based treatment of triples corrections
beyond the semi-canonical approximation[111] will further
improve the performance of the method.

Comparing the continued-fraction extrapolation with the CBS
extrapolation, a small improvement on addition of ECC,cf is
observed for non-extrapolated methods in combination with
small basis sets like CCSD(T)/[D] (Table 1). For larger basis sets,
the addition of ECC,cf to DLPNO-CCSD(T0)/[Q] does not yield an
improvement compared to the CBS extrapolated DLPNO-CCSD
(T0)/[T/Q] values. In addition, it should be noted that the Good-
son extrapolation is applicable to methods with perturbative tri-
ples (or higher) corrections, which is currently not the case for,
for example, LPNO-pCCSD. Therefore, CBS extrapolation appears
to offer a less method-dependent and more effective way of
obtaining improved results, at least for the present systems and
property of interest.

In conclusion, the most accurate coupled cluster approach
employed in this work is a composite method that combines
canonical CCSD(T) energies obtained at a moderately sized
aug-cc-pVDZ basis set with LPNO-CCSD extrapolation energies
at higher cardinal numbers. This leads to the best possible
error control; in fact, the maximum absolute error of the
method would be merely 0.04 eV if it were not for quinone
7. The problematic performance for this molecule may sug-
gest that it is worth revisiting the experimental assignment.
More approximate methods include the parametrized LPNO-
pCCSD and the DLPNO-CCSD(T0), both of which are recom-
mended to be used with aug-cc-pV[D/T]Z extrapolation since
the use of higher cardinal numbers does not justify the
increased cost.

Table 3. Calculated adiabatic electron affinities (eV) for the 10 quinones of the reference set, obtained with MP2 methods

1 2 3 4 5 6 7 8 9 10 MSE MAX RMS

MP2/D 1.78 1.70 1.66 1.60 1.58 1.58 1.27 1.59 1.66 1.55 −0.18 −0.45 0.21
MP2/T 1.84 1.75 1.71 1.64 1.62 1.63 1.27 1.60 1.71 1.64 −0.13 −0.45 0.18
MP2/Q 1.86 1.76 1.73 1.66 1.64 1.65 1.28 1.60 1.73 1.66 −0.12 −0.44 0.17
MP2/[D/T] 1.89 1.79 1.76 1.69 1.66 1.68 1.31 1.63 1.77 1.73 −0.08 −0.41 0.15
MP2/[T/Q] 1.88 1.78 1.75 1.67 1.65 1.67 1.29 1.62 1.75 1.68 −0.10 −0.43 0.16
MP2-F12 1.87 1.78 1.75 1.68 1.66 1.67 1.31 1.62 1.75 1.67 −0.10 −0.41 0.16
SCS-MP2/T 1.56 1.47 1.44 1.37 1.35 1.37 1.06 1.36 1.47 1.37 −0.39 −0.66 0.41
SCS-MP2/Q 1.58 1.49 1.46 1.39 1.36 1.38 1.07 1.36 1.49 1.38 −0.38 −0.65 0.39
SCS-MP2/[T/Q] 1.60 1.51 1.48 1.40 1.38 1.40 1.08 1.36 1.51 1.40 −0.36 −0.64 0.38
OO-MP2/T 2.03 1.96 1.89 1.90 1.85 1.79 1.65 1.87 1.94 1.87 0.06 −0.45 0.19
OO-MP2/Q 2.07 1.99 1.92 1.92 1.87 1.81 1.68 1.88 1.97 1.90 0.09 −0.44 0.20
OO-SCS-MP2/T 1.80 1.74 1.67 1.68 1.63 1.58 1.44 1.71 1.74 1.67 −0.11 −0.28 0.13
OO-SCS-MP2/Q 1.84 1.77 1.70 1.71 1.65 1.60 1.47 1.72 1.77 1.70 −0.08 −0.25 0.10
Experiment 1.91 1.85 1.76 1.77 1.69 1.62 1.72 1.86 1.81 1.74

Mean signed errors (MSE), maximum signed errors (MAX), and root mean squared errors (RMS) in eV are given against the experimental values.

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018, 39, 2439–2451 2445

http://WWW.C-CHEM.ORG


MP2 methods

In the present section we examine the MP2 method and a few
of its variants. The methods presented in Table 3 (for vertical
EAs see Supporting Information Table S7) show weaker depen-
dence on basis set size compared to the coupled cluster
approaches discussed above, and hence it is easier to reach the
basis set limit of each method. This is confirmed by the explic-
itly correlated F12-MP2 results, which are practically indistin-
guishable from the MP2/[T/Q] extrapolated values.
Nevertheless, the electron affinities computed with the individ-
ual basis sets, particularly for the triple-ζ basis, have non-
negligible differences from the converged results; therefore,
extrapolation is still advised for MP2 methods. An important
conclusion from Table 3 is that MP2 performs quite well, meet-
ing the target accuracy of better than 0.1 eV in the mean
signed error for electron affinities. Conversely, it exhibits a
wider spread of errors compared to the best performing
coupled cluster methods of Table 1. A remarkable observation
is that the spin-component-scaled variant SCS-MP2 fares partic-
ularly badly for quinone electron affinities and is in fact the
worst method encountered so far in this work. In the SCS
approach separate weights are used for opposite-spin and
same-spin contributions to the correlation energy (1.2 and
0.333 following Grimme).[40] SCS-MP2 is known to correct some
shortcomings of conventional MP2 in various applications, but
this is clearly not the case here.

Orbital optimized methods not only minimize the MP2
energy with respect to the MP2 amplitudes, but additionally
minimize the total energy with respect to changes in the
orbitals, making the Hylleraas functional stationary with respect
to orbital rotations. Both OO-MP2 and OO-SCS-MP2 methods
were tested here. Note that because the orbitals are changed
to minimize the total energy in OO methods, the standard basis
set extrapolation formula is not applicable. From the results of
Table 3 it appears that orbital optimization in the case of MP2
is not clearly beneficial for the specific problem. In particular, it
does not improve the average errors, but it inverts the system-
atic underestimation of experimental EAs by MP2 to an overes-
timation by a similar magnitude. Where orbital optimization has
a significant effect is instead on the SCS-MP2 variant. The OO-

SCS-MP2 method completely corrects the problematic behavior
of SCS-MP2 and, in combination with the largest aug-cc-pVQZ
basis set, leads to the best performing method in Table 3. This,
however, comes at a great computational cost, which for OO
methods is approximately an order of magnitude greater than
RI-(SCS)-MP2.

The above results allow us to conclude that classical MP2 or
orbital optimized OO-SCS-MP2 might be dependable choices
for predicting quinone electron affinities if basis set conver-
gence is ensured. However, they are not necessarily more cost
effective (this is especially not the case for the costly orbital-
optimized methods) and certainly do not match the systematic
accuracy and tight error control of the LPNO or DLPNO coupled
cluster methods discussed in the previous section, therefore, it
is hard to advocate their use in practical applications.

DFT methods

In view of the dominant use of density functional methods in
the area of quinone electron affinities and reduction potentials,
particularly in biomolecules, it is necessary to investigate how
common functionals compare against the wave function
methods presented above. Table 4 summarizes the electron
affinities and error statistics for a number of DFT methods cov-
ering various functional classes. We note that Minnesota func-
tionals, range-corrected functionals, and double-hybrid
functionals have not been systematically benchmarked before
for the present problem. For all molecules in our test set, the
spin density of the semiquinone radical anion is delocalized
over the ring, with prominent contributions of the two oxygen
atoms (see Supporting Information Fig. S1 for spin density plots
of all anions obtained from M06 calculations). There is practi-
cally no variation in spin expectation values among the 10 qui-
nones for a given functional, and little variation among
different functionals (Supporting Information Table S8), other
than a tendency toward higher values with increased exact
exchange, and for double hybrid functionals. The spin distribu-
tion as judged by Mulliken spin populations is similar across
functionals, with the double hybrids favoring a slightly
increased localization of spin on the oxygen atoms versus the

Table 4. Calculated adiabatic electron affinities (eV) for the 10 quinones of the reference set, obtained using different DFT functionals with the
ma-def2-QZVPP basis set

1 2 3 4 5 6 7 8 9 10 MSE MAX RMS

PBE 2.20 2.10 2.01 2.02 1.96 1.88 1.79 1.94 2.09 1.99 0.22 0.29 0.24
TPSS 2.12 2.03 1.94 1.95 1.89 1.82 1.75 1.86 2.00 1.91 0.15 0.21 0.17
PBE0 2.16 2.06 1.96 1.97 1.91 1.84 1.80 1.97 2.02 1.93 0.19 0.25 0.20
B3LYP 2.09 1.99 1.90 1.91 1.84 1.77 1.78 1.90 1.94 1.85 0.12 0.18 0.13
M06 2.01 1.93 1.84 1.86 1.80 1.74 1.66 1.88 1.89 1.80 0.07 0.12 0.08
M06-2X 2.13 2.04 1.95 1.96 1.90 1.84 1.84 2.03 2.00 1.91 0.19 0.22 0.19
ωB97X-D3 2.05 1.96 1.87 1.88 1.82 1.76 1.75 1.94 1.90 1.81 0.10 0.14 0.11
CAM-B3LYP 2.15 2.06 1.96 1.97 1.90 1.84 1.87 2.02 1.99 1.90 0.19 0.24 0.19
PWPB95 1.87 1.79 1.71 1.71 1.66 1.61 1.56 1.73 1.76 1.68 −0.07 −0.16 0.08
B2PLYP 1.97 1.88 1.80 1.81 1.75 1.69 1.66 1.82 1.84 1.76 0.03 0.07 0.05
DSD-PBEP86 1.88 1.80 1.73 1.73 1.67 1.63 1.58 1.76 1.77 1.69 −0.05 −0.14 0.06
Experiment 1.91 1.85 1.76 1.77 1.69 1.62 1.72 1.86 1.81 1.74

Mean signed errors (MSE), maximum signed errors (MAX), and root mean squared errors (RMS), in eV, compared with the experimental values.
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ipso carbons (see Supporting Information Table S9 for a com-
parison of spin populations for semiquinone 1).

The results listed in Table 4 indicate that DFT methods yield
mixed results. Most functionals tend to overestimate electron
affinities, something also observed for other systems in the
past.[112] Among the different electronic structure situations
that can arise in relation to an EA calculation, Curtiss et al.[113]

had identified the case of closed-shell neutral to open-shell
anion as the most problematic for DFT methods. The present
quinone test set falls in this category, for which the large aver-
age errors were attributed to overestimation of the stability of
the open-shell anion and related to the fact that the HOMO of
the anion is not occupied in the neutral—as opposed to, for
example, the situation where an open-shell neutral form is
reduced to a closed-shell anion.[112] A pertinent methodological
point[114–120] that relates to the applicability of DFT for electron
affinities[112,121,122] relates to the observation that the increased
self-interaction error when DFT is applied to anions can artifi-
cially raise the energy of Kohn–Sham orbitals, potentially lead-
ing to positive orbital eigenvalues. It has been argued that in
this case meaningful electron affinities from DFT may actually
be the result of the opposing error introduced by the finite
basis, which stabilizes states that might otherwise be unbound.
In the present set of compounds, we observe that positive
eigenvalues for the highest occupied Kohn–Sham orbitals can
occur for anions with the PBE0 and TPSS functionals when the
largest applicable basis sets are used. However, in all other
cases the highest occupied orbitals of all semiquinones have
negative eigenvalues.

The GGA functional PBE appears to yield the least accurate
results compared to the reference method, with a mean
signed error of 0.23 eV and a maximum error of 0.29 eV (for
quinone 1). The corresponding hybrid PBE0 shows a smaller
mean signed error, but still performs worse than the popular
functionals TPSS and B3LYP. The best performing hybrid is
the Minnesota functional M06 (27% exact exchange) with a
mean signed error of 0.07 eV and a maximum absolute error
of 0.12 eV (for quinone 6) compared to experiment. It also
has the narrowest spread of errors (0.14 eV) compared to all
other functionals, that is, the errors are more systematic. With
the exception of the double hybrids, M06 is the only func-
tional that achieves MAE and RMS values lower than 0.1 eV.
Conversely, M06-2X, which has double the amount of
Hartree–Fock exchange compared to M06, shows inferior per-
formance, similar to PBE0 and no better than TPSS. This is an
important observation because a recent benchmark study of
ionization energies highlighted M06-2X (with 54% exact
exchange) as the best performing functional by far, surpass-
ing double hybrid functionals and outperforming M06 by
more than a factor of two in the mean unsigned error.[123]

The reverse situation is witnessed in the present results, sug-
gesting that the two functionals perform differently for differ-
ent processes and chemical systems, presumably at least in
part because the percentage of Hartree–Fock exchange can-
not be tuned in a universal manner. Therefore, although Min-
nesota functionals often rise to the top ranks of various
benchmarks and applications, a careful selection is still

required between different variants on a case-by-case basis. It
would be interesting to see whether a new generation of
functionals perform even better than M06, given that MN15
has been reported to improve on electron affinities of the
EA13 reference set.[124]

Recent findings in the literature suggest that long-range cor-
rected functionals are appropriate for the calculation of EA
values,[125] so we tested two such functionals, ωB97X-D3 and
CAM-B3LYP. The former performs quite well, although not on a
par with M06, but CAM-B3LYP represents a deterioration across
the board compared to B3LYP. Therefore, there is no clear ben-
efit from this class of functionals in the calculation of quinone
electron affinities.

The best performing subset of functionals for the present test
set are the double hybrids, with B2PLYP achieving the smallest
average, maximum, and RMS errors, followed by DSD-PBEP86
and PWPB95. An aspect that differentiates the behavior of the
latter two compared to other functionals is that they slightly
underestimate electron affinities, analogously to most wave
function methods.

The amount of HF exchange for the hybrid and double
hybrid functionals may partly influence the quality of results,
but no systematic correlation can be identified. Double hybrid
functionals cover the large percentage range, ranging from
50% (PWPB95) to almost 70% (DSD-PBEP86). B2PLYP, which
yields the best results, contains 53% HF exchange. Among the
hybrid functionals M06 (27% HF exchange) shows better agree-
ment to experiment than M06-2X (54% HF exchange), while
PBE0, which has a similar amount of HF exchange as M06
(25%), shows poorer performance than even the nonhybrid
TPSS. It is clear, therefore, that the percentage of Hartree–Fock
exchange is not a decisive determinant of DFT performance for
the present property.

An important methodological point relates to the conver-
gence of electron affinities with respect to the size of the basis
set. Results obtained with the ma-def2-QZVPP basis sets are
reported for all DFT methods, but most functionals yield con-
verged results already with the ma-def2-TZVP basis sets,
although M06 and ωB97X-D3 show somewhat higher sensitivity
than other functionals in their families (shifts of the order of
0.02 eV and 0.01 eV, respectively). In contrast, double hybrid
functionals are not yet converged with the ma-def2-TZVP basis
set and large changes are seen on increase to ma-def2-QZVPP
(see Supporting Information Table S10). B2PLYP is the most
sensitive functional, displaying shifts of up to 0.1 eV in adiabatic
EA values from the triple-ζ to the quadruple-ζ basis, followed
by PWPB95. Such large shifts can directly affect the mean errors
associated with the method: the MSE for PWPB95 changes from
−0.14 eV to −0.07 eV while that of B2PLYP even changes sign,
from −0.06 eV to 0.02 eV. Similar observations regarding the
increased demands of double hybrid functionals on basis set
size are known from other studies,[43,76] but the changes wit-
nessed here are rather large with respect to the absolute value
of the quantity of interest, and hence some uncertainty remains
as to whether the double hybrid electron affinities are fully con-
verged. This has implications for practical applications and sug-
gests that the behavior of double hybrids must be carefully

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018, 39, 2439–2451 2447

http://WWW.C-CHEM.ORG


evaluated with respect to basis set dependence and their ability
to produce converged electron affinities.

Presumably this large basis set dependence is related to the
MP2 component of the method, so it would be interesting to
evaluate approaches that can address this problem in an effi-
cient and computationally robust manner, either converging
toward complete basis set results,[126,127] or using orbital-
optimized approaches,[128,129] or even applying correlation
methods that go beyond MP2.[130] There are interesting recent
developments in all these areas with respect to improvements
in double hybrid functionals. Although we do not intend to pur-
sue such avenues in the present work, we have tested the pos-
sibility of obtaining converged results for B2PLYP by
substituting the MP2 part with explicitly correlated MP2-F12
(using cc-pVTZ-F12 basis sets for both the Kohn–Sham and the
MP2-F12 part). This variant shows significantly deteriorated
accuracy, with a mean signed error that is 10 times worse than
the standard B2PLYP results (0.233 eV vs. 0.021 eV). This might
be an indication that B2PLYP benefits partially from basis set
related error cancellation, but further analysis is necessary in
this direction before safe conclusions can be reached.

Overall, the use of a double hybrid functional with a basis set
at least as large as ma-def2-QZVPP can yield highly accurate
quinone electron affinities. Depending on the level of accuracy
required, the cheaper GGA and hybrid functionals can be con-
sidered appropriate for semi-quantitative purposes in view of
their minimal cost compared to correlated wave function
methods. Still, there is good reason to prefer the wave function
alternatives discussed in the previous sections where possible
because of the expected consistency across different systems
and for different properties, including cases where double
hybrids may show variable performance.[123,131,132]

Application to ubiquinone 2-methoxy rotation

Bacterial reaction centers employ two ubiquinones, UQA and
UQB, as intermediate and terminal electron acceptors, similar to
the plastoquinone sites in the acceptor side of photosystem II
(Fig. 3).[1,133] A defining property of the system is that the two
chemically identical ubiquinone molecules have a difference in
reduction potentials of about 60–75 mV enabling forward elec-
tron transfer.[134–136] This difference may be the result of a sig-
nificant electrostatic effect of the protein environment, as in
the case of the plastoquinones of photosystem II. Indeed, it was
reported that a classical electrostatics simulation can fully
account for the higher potential of UQB.

[137] However, the pres-
ence of the methoxy groups in the ubiquinones provides
an additional means for modulation of their electron
affinity.[27,138–144] This can be effected through the balance
between the electron withdrawing effect when the methoxy
group is out of the ring plane and the electron donating effect
due to conjugation when the methoxy group is in-plane. IR dif-
ference spectra of anion/neutral pairs for UQA and UQB showed
no evidence for conformational inequivalence between the two
sites,[145] but recent analysis of 13C hyperfine coupling con-
stants from hyperfine sublevel correlation (HYSCORE) studies
with 13C labeled quinones clearly demonstrated that the

2-methoxy group (the one at meta-position with respect to the
polyisoprenyl chain, Fig. 4) adopts distinct conformations
between UQA and UQB.

[142] Moreover, reconstitution studies
with synthetic quinones in Rhodobacter sphaeroides established
that the 2-methoxy group is required for electron flow between
the two sites,[146] consistent with the hypothesis that the
2-methoxy conformation plays a direct role in modulating the
electron affinity of the ubiquinones.

A question that arises naturally is what are the relative contri-
butions of nonspecific protein effects versus the modulation of
the electron affinity through 2-methoxy rotation? Quantifying
the electrostatic effect of the protein on each site quantum
mechanically is complicated both methodologically and by the
lack of highly resolved and conformationally unique structures
for the binding pockets. By contrast, the effect of the
2-methoxy conformation on the electron affinity can be pre-
cisely probed and quantified using computational studies on
independent ubiquinone models. In the following we quantify
this effect using the most accurate applicable level of coupled
cluster theory identified in this work to produce reference
values for the ubiquinone system. Even with the aug-cc-pVDZ
basis set, canonical CCSD(T) results are here challenging or
impossible to complete. This, however, poses no limitation for
the DLPNO-CCSD(T0) approach, which we apply here with the
optimally performing (Tables 1 and 2) aug-cc-pV[D/T]Z extrapo-
lation. To our knowledge, this is the first attempt to apply
highly accurate wave function methods to this crucial biophysi-
cal problem.

A ubiquinone model was constructed with one isoprenyl unit,
that is, 2,3-dimethoxy-5-methyl-6-isoprenyl-1,4-benzoquinone.
Geometries were initially fully optimized using the same
methods as for the test set of the present study. Subsequently,
methoxy dihedral angles (C1C2OCMe for 2-methoxy and
C4C3OCMe for 3-methoxy) were imposed as indicated by experi-
mental studies, while the rest of the geometry was relaxed
again, separately for the neutral and anionic states. The
3-methoxy group was fixed at the crystallographic midrange
values of −77� for UQA and + 88� for UQB,

[147] whereas the
2-methoxy groups were positioned so that the constraints on
13C isotropic hyperfine couplings from the HYSCORE stud-
ies[141,142] are satisfied, +155� for UQA and − 82� for UQB.

[143]

The basis set extrapolated DLPNO-CCSD(T0) results indicate
that UQB has a greater electron affinity (1.721 eV) than UQA
(1.571 eV), and hence the conformation of methoxy groups cre-
ates an intrinsic difference of 150 meV between the two qui-
nones. Although explicit consideration of the protein

Figure 4. Ubiquinone model used in the calculation of the methoxy
conformation effect. [Color figure can be viewed at wileyonlinelibrary.com]
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environment (electrostatics and hydrogen-bonding) would be
required for further refinement, we expect the results to be
essentially exact within a few mV with respect to the intrinsic
effect of the methoxy rotation difference. This is not only
because the method performs very well in absolute terms for
the test set of the present study, but also because in this partic-
ular application it would further benefit from error cancellation
as only relative conformational effects for the same molecule
are examined. DFT studies of the two ubiquinones assuming
different methoxy conformations initially suggested a difference
in electron affinities of merely 50 meV,[142] however subsequent
studies that better combined crystallographic and 13C HYSCORE
information reported differences of more than 190 meV.[143]

The present coupled cluster results correct the apparent overes-
timation by DFT (B3LYP), but otherwise confirm that the intrin-
sic difference in electron affinities created by the methoxy
rotation is more than double that of the macroscopically
observed potential.

Therefore, the conclusion regarding the ubiquinones of bac-
terial reaction centers appears solid: in contrast to the early
classical electrostatic simulations,[137] our results support the
notion[143] that the driving force for forward electron transfer
from UQA to UQB is the combined result of two opposing contri-
butions. The particular conformation of the methoxy groups,
presumably imposed by steric constraints of the protein pocket,
creates an electron affinity difference of 150 meV that over-
comes the counteracting electrostatic effect of the protein envi-
ronment, leading to an overall potential difference of
approximately half this value. It remains to be examined in
future studies why this compensating mechanism was evolu-
tionarily selected, but we hypothesize it may be part of a
broader regulatory/protective mechanism that allows the sys-
tem to balance forward and backward electron transfer, poten-
tially in response to external stimuli such as light intensity or
the concentration of the ubiquinone pool.

Conclusions

A test set of 10 quinones relevant to quinones encountered in
biology as electron transfer components was used to evaluate a
range of wave function and density functional theory methods
for the prediction of electron affinities. The results of the pre-
sent study suggest that very few methods can deliver a level of
accuracy systematically better than 0.1 eV. Density functionals
perform very well in comparison to correlated wave function
methods given their comparatively low cost, but only the dou-
ble hybrids can consistently deliver this level of accuracy. All
implementations of coupled cluster theory require some form
of inclusion of the effect of triples excitations to reach the
desired accuracy of better than 0.1 eV. The most accurate
method, yielding reference-quality results with a mean signed
error of 0.02 eV, is a composite approach that utilizes canonical
CCSD(T) with a small basis set and LPNO-based extrapolation of
the correlation energy with a sequence of larger basis sets.
Somewhat less accurate but still highly reliable are the LPNO-
based pCCSD, which simulates the effect of the triples through
its parametrization, and the DLPNO-CCSD(T0) which has the

significant advantage that it can be extended to very large sys-
tems. In all cases basis set extrapolation is crucial. The bt-PNO-
EOM-CCSD approach could not achieve an accuracy as high as
subtraction-based extrapolation schemes that incorporate a
CCSD(T) component. With inclusion of triples the EOM-CC
approach is expected to perform more competitively and bene-
fit from its intrinsic advantages over the subtractive approach.
MP2 and orbital-optimized OO-SCS-MP2 methods perform well,
whereas SCS-MP2 proves to be problematic for the present test
set. Conversely, these MP2 methods are less systematic than
the coupled cluster alternatives and suffer from a wider spread
of errors. In the DFT world, typical GGA, meta-GGA, hybrid and
long-range corrected functionals lead to systematic overestima-
tion of electron affinities. The best performing functional
among these families is the Minnesota functional M06, the only
one which can achieve a mean unsigned error of the order of
0.1 eV. However, the most accurate functionals for the predic-
tion of electron affinities are the double hybrids, with B2PLYP
matching the accuracy of extrapolated coupled cluster
methods.

Overall, it is suggested that one of the three highlighted
coupled cluster approaches is to be preferred, depending on
the system size and cost balance, when systematic and consis-
tent performance is required, or for benchmarking other
methods. The applicability of linear scaling coupled cluster
methods was demonstrated by studying how the distinct orien-
tation of the 2-methoxy group affects the electron affinity of
the ubiquinone electron carriers in bacterial reaction centers. It
was concluded that the conformational differences of the meth-
oxy groups between the primary and terminal ubiquinone favor
forward electron transfer much more strongly (by 150 meV)
than the experimentally deduced reduction potential difference
(ca. 70 mV), strongly suggesting that protein electrostatics
oppose the intrinsic electron affinity difference of the two qui-
nones as part of a regulatory mechanism. We expect that the
increasing cost-effectiveness of approximate coupled cluster
approaches will lead to their more widespread use in practical
applications, replacing less robust approaches both as stand-
alone techniques and as components of multiscale approaches.
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