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One of the most promising applications of quantum computing is solving classically in-
tractable chemistry problems. This may enable the design of new materials, medicines,
catalysts, or high temperature superconductors. As a result, quantum computational
chemistry is rapidly emerging as an interdisciplinary field requiring knowledge of both
quantum information and computational chemistry. This review provides a comprehen-
sive introduction to both fields, bridging the current knowledge gap. We review the
major developments in this area, with a focus on near-term quantum computation. Il-
lustrations of key methods are provided, explicitly demonstrating how to map chemical
problems onto a quantum computer, and solve them. We conclude with an outlook for
this nascent field.
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I. INTRODUCTION

Quantum mechanics underpins all of modern chem-
istry. One might therefore imagine that we could use
this theory to predict the behaviour of any chemical
compound. This is not the case. As Dirac noted;
“The exact application of these laws leads to equations
much too complicated to be soluble.” (Dirac, 1929). The
problem described by Dirac is that the complexity of the
wavefunction of a quantum system grows exponentially
with the number of particles. This leaves classical
computers unable to exactly simulate quantum systems
in an efficient way. Feynman proposed a solution to this
problem; using quantum hardware as the simulation
platform, remarking that “If you want to make a simula-
tion of nature, you’d better make it quantum mechanical,
and by golly it’s a wonderful problem, because it doesn’t
look so easy.” (Feynman, 1982). Building a quantum
computer has taken over 30 years, but Feynman’s vision
may soon be fulfilled, following recent developments in
quantum hardware including ion traps (Ballance et al.,
2016; Gaebler et al., 2016; Harty et al., 2014; Monz
et al., 2011), superconducting systems (Barends et al.,
2014; Chow et al., 2012; Song et al., 2017; Wendin,
2017), and photonic systems (Chen et al., 2017; Wang
et al., 2016). It is believed that using quantum systems
as our simulation platform will yield unprecedented
developments in chemistry (Aspuru-Guzik et al., 2018),
biology (Reiher et al., 2017), medicine (Cao et al.,
2018a), and materials science (Babbush et al., 2018c).

To date, several efficient quantum algorithms have
been proposed to solve problems in chemistry (Aspuru-
Guzik et al., 2005; Huh et al., 2015; Kassal et al., 2008;
Lidar and Wang, 1999; Peruzzo et al., 2014). The
runtime and physical resources required by these algo-
rithms scale polynomially with the size of the system
simulated. Recent experimental developments have
accompanied these theoretical milestones, with many
groups demonstrating proof of principle chemistry cal-
culations (Colless et al., 2018; Du et al., 2010; Ganzhorn
et al., 2018; Hempel et al., 2018; Kandala et al., 2017,
2018; Lanyon et al., 2010; Li et al., 2011; O’Malley
et al., 2016; Paesani et al., 2017a; Peruzzo et al., 2014;
Santagati et al., 2018; Shen et al., 2018, 2017; Sparrow

et al., 2018; Wang et al., 2015). However, limited by
hardware capabilities, these experiments focus only on
small molecules that we are already able to simulate
classically. Moreover, the gate counts required for trans-
formative chemistry simulations may mandate the need
for fault-tolerance, which requires considerably more
qubits than are currently available (Mueck, 2015). New
developments are needed to solve classically intractable
chemistry problems on a shorter timescale.

These breakthroughs may be achieved by connecting
researchers working in quantum information with those
working in computational chemistry. We seek to aid
this connection with this succinct, yet comprehensive, re-
view of quantum computational chemistry and its foun-
dational fields.

Although quantum algorithms can solve a range
of problems in chemistry, we focus predominantly on
the problem of finding the low lying energy levels of
molecules (Aspuru-Guzik et al., 2005). There are three
reasons for this restriction of scope. Primarily, this
problem is a fundamental one in classical computational
chemistry. Knowledge of the energy eigenstates enables
the prediction of reaction rates, determination of stable
structures, and optical properties. Secondly, it is
because the machinery developed to solve this problem
on quantum computers is easily applied to other types
of problems. Finally, most of the prior work in quantum
computational chemistry has focused on this problem.
As such, it provides an ideal context in which to explain
the most important details of quantum computational
chemistry.

This review is organised as follows. We first provide a
brief overview of quantum computing and simulation in
Sec. II. We then introduce the key methods and terminol-
ogy used in classical computational chemistry in Sec. III.
The methods developed to merge these two fields, includ-
ing mapping chemistry problems onto a quantum com-
puter, are described in Sec. IV. We continue our discus-
sion of quantum computational chemistry in Sec. V by
describing algorithms for finding the ground and excited
states of chemical systems. Sec. VI highlights the tech-
niques developed to mitigate the effects of noise in non-
error corrected quantum computers, which will be crucial
for achieving accurate simulations in the near-future.

In Sec. VII we provide several examples of how to
map chemistry problems onto a quantum computer.
We discuss techniques that can be used to reduce the
simulation resources required, and the quantum circuits
that can be used. This section seeks to illustrate the
techniques described throughout the rest of the review,
providing worked examples for the reader. We conclude
this review with a comparison between classical and
quantum techniques, and resource estimations for the
different quantum methods. This section aims to help
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the reader to understand when and how quantum
computational chemistry may surpass its classical
counterpart.

Several other detailed reviews on this topic exist
in the literature. Summaries of early theoretical and
experimental work in quantum computational chemistry
can be found in (Kassal et al., 2011; Lu et al., 2012).
More focused discussions of quantum algorithms for
chemistry simulation, and the computational complexity
of problems in chemistry can be found in (Kais et al.,
2014; Veis and Pittner, 2012; Yung et al., 2012). A
comprehensive review was recently released by Cao et al.
(2018b). Said review, and our own, are complementary,
and together provide a complete overview of progress to
date in quantum computational chemistry.

Despite being a relatively young field, quantum
computational chemistry has grown extremely rapidly,
and has already evolved beyond the stage that it can
be fully summarised by a single review. As such,
there are approaches to solving chemistry problems
with a quantum computer which we are not able to
describe fully in this review, such as: using quantum
computers as part of a problem decomposition approach
to simulation (Bauer et al., 2016; Dallaire-Demers and
Wilhelm, 2016a,b; Kreula et al., 2016; Rubin, 2016),
hybrid quantum algorithms for time dependent density
functional theory (Whitfield et al., 2014), quantum al-
gorithms for relativistic quantum chemistry (Veis et al.,
2012), gate based methods for simulating molecular vi-
brations (McArdle et al., 2018b; Sawaya and Huh, 2018),
analog simulators of molecular vibrations (Huh et al.,
2015; Huh and Yung, 2017; Shen et al., 2018; Sparrow
et al., 2018), quantum methods for electron-phonon
systems (Macridin et al., 2018a,b), protein folding (Bab-
bush et al., 2012; Babej et al., 2018; Fingerhuth et al.,
2018; Perdomo et al., 2008; Perdomo-Ortiz et al., 2012),
and solving problems in chemistry using a quantum
annealer (Babbush et al., 2014; Genin et al., 2019).

II. QUANTUM COMPUTING AND SIMULATION

In this section, we introduce the basic elements of
quantum computing and quantum simulation. We refer
the reader to Nielsen and Chuang (2002) and Georgescu
et al. (2014) for more detailed introductions.

A. Quantum computing

In this review, we focus on the qubit-based circuit
model of quantum computation (Nielsen and Chuang,
2002). Other paradigms that vary to a greater or lesser

extent include: adiabatic quantum computing (Aharonov
et al., 2008; Farhi et al., 2000) (including in the context
of chemistry simulation (Babbush et al., 2014)), one-way
or measurement based quantum computing (Jozsa, 2005;
Raussendorf and Briegel, 2001; Raussendorf et al., 2003),
and continuous-variable quantum computing (Braunstein
and van Loock, 2005; Lloyd and Braunstein, 1999).

The canonical circuit model of quantum computation
is so-named because of its resemblance to the logic cir-
cuits used in classical computing. In the classical circuit
model, logic gates (such as AND, OR and NOT) act on
bits of information. In the quantum case, quantum gates
are acted upon the basic unit of information, the qubit.
The qubit lives in a two-dimensional Hilbert space. The
basis vectors of the space are denoted as {|0〉 , |1〉}, which
are referred to as the computational basis states,

|0〉 =

1

0

 , |1〉 =

0

1

 . (1)

A general single qubit state is described by

|ψ〉 = α |0〉+ β |1〉 =

α
β

 , (2)

α, β ∈ C,
|α|2 + |β|2 = 1.

When quantum logic gates act on the qubits, they manip-
ulate both basis state vectors at the same time, providing
(measurement limited) parallelism. Although the qubit is
in a quantum superposition during the algorithm, when it
is measured in the computational basis, it will be found
in state |0〉 or state |1〉, not in a superposition. These
measurement outcomes occur with probability |α|2 and
|β|2, respectively.

If there are N qubits in the system, the state is de-
scribed by a vector in the 2N dimensional Hilbert space
formed by taking the tensor product of the Hilbert spaces
of the individual qubits. States can be classified as either
‘product’ or ‘entangled’. Product states can be decom-
posed into tensor products of fewer qubit wavefunctions,
such as

1√
2

(|00〉+ |01〉) = |0〉 ⊗ 1√
2

(|0〉+ |1〉). (3)

Entangled states cannot be decomposed into tensor prod-
ucts, such as the state

1√
2

(|00〉+ |11〉). (4)

In this review, we refer to the leftmost qubit in a vector
as the (N − 1)th qubit, and the rightmost qubit as the
zeroth qubit. A quantum circuit consists of a number
of single and two qubit gates acted on the qubits. The
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qubits are initialised in a well defined state, such as the
|0̄〉 state (|0̄〉 = |0〉⊗n = |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉). A quantum
circuit generally concludes with measurements to extract
information. It may also employ additional intermediate
measurements, for example, to check for errors. From
a mathematical perspective, the qubit gates are unitary
matrices. Typical gates include the Pauli gates

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 , (5)

the single qubit rotation gates

R(θ)O=X,Y,Z = exp

(
−iθ O/2

)
, (6)

the Hadamard and T gates

H =
1√
2

1 1

1 −1

 , T =

1 0

0 eiπ/4

 , (7)

and multi-qubit entangling gates, such as the two qubit
controlled-NOT (CNOT) gate

•

where ‘•’ denotes the control qubit and ‘⊕’ denotes the
target qubit, which can be written mathematically as

IT ⊗ |0〉 〈0|C +XT ⊗ |1〉 〈1|C , (8)

where T denotes the target qubit, and C denotes the
control qubit.

These gates are used to create an example quantum
circuit in Fig. 1. This circuit generates the entangled
state of 2 qubits given by Eq. (4), meaning the state
cannot be written as a tensor product of individual qubit
states.

|0〉 H •

|0〉

FIG. 1 A quantum circuit that generates the entangled state
(|00〉+|11〉)/

√
2 and measures each qubit in the computational

basis. Here, H is the Hadamard gate, defined in the main text.
Half of the time both of the qubits will be measured to be 0,
and the other half, both 1. Time runs from left to right.

With only single qubit operations and the CNOT gate,
it is possible to approximate an arbitrary multi-qubit
gate to any desired accuracy (DiVincenzo, 1995). As
a result, the circuit model of quantum computing typi-
cally decomposes all algorithms into single and two qubit
gates. We denote each gate by a unitary operator U i,j(~θ),

where i, j are the indices of the qubits the gates act on
(i = j for single qubit operations), and ~θ are gate parame-
ters (although the gates do not have to be parametrised,
such as the Pauli gates). We can then mathematically
describe a quantum circuit by

|ψ〉 =
∏
k

U ik,jkk (~θk) |0̄〉 , (9)

where k denotes the kth gate in the circuit. The gates are
ordered right to left. For example, the circuit in Fig. 1
would be written as

1√
2

(|00〉+ |11〉) = CNOT0,1H0 |00〉 . (10)

We extract information from the circuits by performing
measurements of observables, O, which are represented
by Hermitian matrices. Typically, we seek the average
value over many measurements, Ō, given by

Ō = 〈ψ|O |ψ〉 , (11)

referred to as the expected value of the operator O. Mea-
suring the expectation value of qubit i in the computa-
tional basis corresponds to 〈ψ|Zi |ψ〉. In practice, this
means that we repeatedly measure the state of qubit i,
labelling the outcomes +1 (for |0〉) and −1 (for |1〉). We
then take the mean of these measurement outcomes. In
order to measure qubits in the X or Y basis, single qubit
rotations are first applied to change the basis of the rel-
evant qubits, which are then measured in the Z basis.
To measure the expectation value of a product of oper-
ators, such as ZiZj , we assign the outcomes of a single
measurement of ZiZj to be the product of the individual
measurement outcomes of Zi and Zj . These outcomes
are typically correlated for entangled states. For exam-
ple, the measurement outcome for ZZ on the state in
Eq. (4) is always +1 (+1×+1 for |00〉 and −1×−1 for
|11〉).

The Pauli operators form a complete basis for any
Hermitian operator. Therefore any observable can be
expanded into strings of Pauli operators, the expectation
values of which we can measure efficiently with a
quantum computer.

It is important to distinguish between the number of
physical and logical qubits in a quantum computer. In
order to protect our quantum state from decoherence
caused by coupling to the environment (Landauer, 1995;
Unruh, 1995), we can encode n logical qubits into m > n
physical qubits. These codes are analogous to classical
error correcting codes, but are in general more complex,
due to the delicate nature of quantum information. De-
pending on the code used, we can either detect, or de-
tect and correct the errors which occur. Error correct-
ing codes seek to endow the quantum computer with a
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property known as ‘fault-tolerance’ (Aharonov and Ben-
Or, 1997; Gottesman, 1998; Shor, 1996). This means
that if the physical error rate in the gates is below a cer-
tain (code-dependent) threshold value, the error rate in
the logical operations can be made arbitrarily low - even
if the error checking measurements cause errors (Knill
et al., 1996). A more detailed discussion of specific codes
can be found in Devitt et al. (2013); Raussendorf (2012);
and Terhal (2015). One of the most widely studied er-
ror correction codes is the surface code (Kitaev, 1997),
which is particularly suitable for 2D grids of qubits with
nearest-neighbour connectivity. Physical error rates be-
low the surface code threshold of around 1 % (Fowler
et al., 2012b; Stephens, 2014; Wang et al., 2011) have
recently been achieved for trapped ion (Ballance et al.,
2016; Gaebler et al., 2016) and superconducting (Barends
et al., 2014) qubits. However, with such error rates, we
would require around 103 − 104 physical qubits per logi-
cal qubit to perform interesting tasks in a fault-tolerant
manner (Campbell et al., 2017; Fowler et al., 2012a;
O’Gorman and Campbell, 2017).

In contrast, current quantum computers are described
in terms of tens of error-prone physical qubits. Quan-
tum computers of this size are too large to exactly simu-
late classically, and may thus be capable of solving prob-
lems which are intractable on even the largest classi-
cal supercomputers. However, these problems are typ-
ically contrived examples, rather than real-world prob-
lems (Boixo et al., 2018; Harrow and Montanaro, 2017).
Preskill (2018) has referred to these machines as noisy
intermediate-scale quantum (NISQ) devices, and ob-
served that it is currently unclear whether they will be
able to perform useful tasks better than classical com-
puters. The dichotomy between the resources needed for
tackling real problems, and the ‘superiority’ of a machine
with more than 50 qubits poses the question; ‘What,
if anything, will near-term quantum computers be use-
ful for?’. The answer may lie with Feynman’s original
proposal; using quantum systems to simulate quantum
systems.

B. Quantum simulation

In this review, we focus on the digital quantum
simulation of many-body quantum systems - specifically
molecules. Digital quantum simulation maps the target
problem onto a set of gates which can be implemented
by a quantum computer. A universal quantum computer
can be programmed to perform many different simu-
lations. This can be contrasted with analog quantum
simulation, where the simulator emulates a specific
real system of interest. However, analog simulators are
generally considered more robust to noise, and therefore
easier to construct (Georgescu et al., 2014). To date,
there have been several proposals for the simulation

of chemistry using analog simulators (Argüello-Luengo
et al., 2018; Chin and Huh, 2018; Huh et al., 2015; Huh
and Yung, 2017; Torrontegui et al., 2011), some of which
have been experimentally realised (Clements et al.,
2017; Hu et al., 2018; Shen et al., 2018; Smirnov et al.,
2007; Sparrow et al., 2018). Nevertheless, to perform
accurate simulations of large chemical systems, we will
likely require digital quantum simulation, as it is not
yet clear how to protect large analog simulations from
errors. Digital quantum simulation is more vulnerable to
noise and device imperfections than analog simulation.
While such imperfections can be addressed via error
correction, this requires additional qubits and places
stringent requirements on gate fidelities (O’Gorman
and Campbell, 2017). In this review we focus solely on
digital quantum simulation of chemistry problems. We
refer the reader to Aspuru-Guzik and Walther (2012);
Blatt and Roos (2012); Georgescu et al. (2014); Houck
et al. (2012); and Schneider et al. (2012) for information
about digital quantum simulation of other physical
systems, and analog quantum simulation.

The numerous problems in chemistry that can be sim-
ulated on a quantum computer can be divided into static
and dynamics problems. Here, we use ‘dynamics’ to
mean evolving wavefunctions in time and seeing how cer-
tain observables vary, as opposed to chemical reaction
dynamics, which are discussed separately below.

Methods for solving dynamics problems were for-
malised by Lloyd (Lloyd, 1996) and further developed
by Abrams and Lloyd (Abrams and Lloyd, 1997). As il-
lustrated in Fig. 2, we can map the system Hamiltonian,
Hs, to a qubit Hamiltonian, Hq. We similarly map the
initial system wavefunction |ψis〉 to a qubit representa-
tion |ψiq〉. We can then evolve the qubit wavefunction
in time by mapping the system time evolution operator,
e−itHs , to a series of gates. This can be achieved using a
Lie-Trotter-Suzuki decomposition (Trotter, 1959), com-
monly referred to as Trotterization. This means that if
the Hamiltonian of the system, Hs can be written as

Hs =
∑
i

hi, (12)

where hi are local terms which act on a small subset of
the particles in the system, then a small time evolution
under the Hamiltonian can be decomposed as

e−iHsδt = e−i
∑

j hjδt ≈
∏
j

e−ihjδt +O(δt2). (13)

The number of terms in the Hamiltonian scales polyno-
mially with the number of particles for systems of in-
terest, such as molecules or the Fermi-Hubbard model.
Each of the exponential terms in Eq. (13) can be realised
efficiently using a quantum computer. As the dynam-
ics of local Hamiltonians can be efficiently simulated on
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FIG. 2 Digital quantum simulation of time evolution of a spin chain, using a canonical Trotter-type method. We first map
the system Hamiltonian, Hs, to a qubit Hamiltonian, Hq. Then the initial system wavefunction |ψis〉 is mapped to a qubit
wavefunction |ψiq〉. The time evolution of the system can be mapped to a Trotterized circuit that acts on the initial qubit
wavefunction. Finally, well chosen measurements are applied to extract the desired information, such as particle correlation
functions.

a quantum computer, but are generally thought to be
inefficient to simulate on a classical computer, this prob-
lems belongs to the computational complexity class BQP
(bounded-error quantum polynomial-time). Further dis-
cussion of general Hamiltonian simulation methods is
given in Sec. V. It was recently shown that time evolution
can also be simulated using variational approaches (Li
and Benjamin, 2017). This may enable simulation of time
evolution using circuits with fewer gates than Trotteriza-
tion. However, a variational circuit with fixed parame-
ters is tailored to the time evolution of a specific initial
state, in contrast to a Trotter circuit, which can be used
to time evolve any valid initial state. Once the system
has been time evolved for the desired duration, we can
extract useful dynamical quantities from these simula-
tions. Examples of such quantities include the electronic
charge density distribution, or two-particle correlation
functions (Abrams and Lloyd, 1997).

In chemistry, one is often concerned with determining
whether two molecules will react with each other, when
brought together with a certain energy. This can be de-
termined by studying the chemical reaction dynamics of
the system. One might assume that this could be stud-
ied by simply initialising the reactant molecules on the
quantum computer, and time evolving under the system
Hamiltonian, using the methods described above. How-
ever, whether this is possible depends on the method
used to map the chemical problem onto the quantum
computer. While this will be discussed in more detail in

Sec. III and Sec. IV, we briefly elaborate on this point
here, as it is an important result. Kassal et al. (2008)
showed that if a grid based method is used, then the
electrons and nuclei can be treated on an equal footing,
and the method described above can be used. This en-
ables the explicit simulation of chemical reactions, using
resources which scale polynomially with the system size.
In contrast, if the problem is projected onto a finite basis
set of electron spin-orbitals, the time evolution method
described above cannot be used. This is because the
spatial form of the wavefunction is fixed when setting
up the problem, and so cannot change sufficiently dur-
ing the simulation to accommodate molecular bonding.
To study chemical reaction dynamics under this map-
ping, one must instead use a combination of quantum-
calculated static properties, and classical methods.

We can obtain static properties by mapping the tar-
get wavefunction (such as the ground state wavefunction
of the system) onto a qubit wavefunction. We can then
use the quantum computer to calculate the expectation
value of the desired observable, 〈ψq|Oq |ψq〉. In particu-
lar, Abrams and Lloyd showed that the phase estimation
algorithm (Kitaev, 1995) can be used to find the energy
of a quantum system (Abrams and Lloyd, 1999), and
collapse it into the desired energy eigenstate. Finding
the low lying energy levels of a quantum Hamiltonian is
in general an exponentially difficult problem for classical
computers. Moreover, it is important to note that solving
the ground state problem for a general local Hamiltonian
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belongs to the complexity class QMA (quantum Merlin-
Arthur), and is in fact, QMA-complete (the quantum
analogue of NP-complete) (Cubitt and Montanaro, 2016;
Kempe et al., 2006). Problems in this complexity class
are not believed to be efficiently solvable with either a
classical or quantum computer.

Despite this, the situation is not as bleak as it may
initially seem. As stated in the introduction, we focus
on finding the low lying energy levels of molecules. This
is commonly referred to as the molecular electronic
structure problem. It is widely believed that this
problem should be efficiently solvable with a quantum
computer (Whitfield et al., 2013). The molecular
electronic structure problem has received significant
attention since it was first introduced in the context
of quantum computational chemistry by Aspuru-Guzik
et al. (2005), and is widely considered to be one of the
first applications of quantum computing. Solving the
electronic structure problem is often a starting point
for more complex calculations in chemistry, including
the calculation of reaction rates, the determination
of molecular geometries, and calculations of optical
properties.

Before discussing how the electronic structure problem
can be solved using a quantum computer, we first sum-
marise the classical methods used to solve this problem.
Many of these methods have formed the basis of the work
done thus far in quantum computational chemistry.

III. CLASSICAL COMPUTATIONAL CHEMISTRY

In this section, we introduce the techniques used in
classical computational chemistry. As discussed in the
introduction, we focus on tools developed to solve the
electronic structure problem. The problem is formulated
in Sec. III.A, and translated into the language of first
and second quantisation in Sec. III.B. In Sec. III.C we
describe the different approximations that can be used
to make this problem tractable for classical computers.
In Sec. III.D we review some of the common spin-orbital
basis functions used in basis set approaches. We dis-
cuss orbital basis changes, and their use in reducing the
simulation resources in Sec. III.E. We have sought to pro-
duce a self-contained summary of the essential knowledge
required for quantum computational chemistry, and we
refer the reader to Helgaker et al. (2014) and Szabo and
Ostlund (2012) for further information.

A. The electronic structure problem

The Hamiltonian of a molecule consisting of M nuclei
and N electrons is

H =−
∑
i

~2

2me
∇2
i −

∑
I

~2

2MI
∇2
I −

∑
i,I

e2

4πε0

ZI
|ri −RI |

+
1

2

∑
i6=j

e2

4πε0

1

|ri − rj |
+

1

2

∑
I 6=J

e2

4πε0

ZIZJ
|RI −RJ |

,

(14)
where MI , RI , and ZI denote the mass, position, and
atomic number of the Ith nucleus, and ri is the posi-
tion of the ith electron. The first two sums in H are
the kinetic terms of the electrons and nuclei, respec-
tively. The final three sums represent the Coulomb re-
pulsion between: the electrons and nuclei, the electrons
themselves, and the nuclei themselves, respectively. For
conciseness, we work in atomic units, where the unit of
length is a0 = 1 Bohr (0.529167 × 10−10 m), the unit
of mass is the electron mass me, and the unit of energy
is 1 Hartree (1 Hartree = e2/4πε0a0 = 27.2113 eV).
Denoting M ′I = MI/me, the molecular Hamiltonian in
atomic units becomes

H =−
∑
i

∇2
i

2
−
∑
I

∇2
I

2M ′I
−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj |
+

1

2

∑
I 6=J

ZIZJ
|RI −RJ |

.

(15)

We are predominantly interested in the electronic
structure of the molecule. As a nucleon is over one thou-
sand times heavier than an electron, we apply the Born-
Oppenheimer approximation, treating the nuclei as clas-
sical point charges. As a result, for a given nuclear con-
figuration one only needs to solve the electronic Hamil-
tonian

He = −
∑
i

∇2
i

2
−
∑
i,I

ZI
|ri −RI |

+
1

2

∑
i 6=j

1

|ri − rj |
. (16)

Our aim is to find energy eigenstates |Ei〉 and the
corresponding energy eigenvalues Ei of the Hamiltonian
He. In the rest of this review, we drop the subscript
e. In particular, we are interested in the ground state
energy and the lowest excited state energies. We can
solve this equation for a range of nuclear configurations
to map out the potential energy surfaces of the molecule.
We note that mapping out these potential energy
curves explicitly is exponentially costly in the degrees of
freedom of the molecule, and that there are a variety of
methods being developed to solve this difficult problem
more efficiently (Christiansen, 2012).

We wish to measure the energy to an accuracy of at
least 1.6 × 10−3 Hartree, known as ‘chemical accuracy’.
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If the energy is known to chemical accuracy, then the
chemical reaction rate at room temperature can be pre-
dicted to within an order of magnitude using the Eyring
equation (Evans and Polanyi, 1935; Eyring, 1935)

Rate ∝ e−∆E/kBT , (17)

where T is the temperature of the system, and ∆E is
the energy difference between the reactant and product
states. In computational chemistry, we are typically more
interested in the relative energies of two points on the
potential energy surface than the absolute energy of a
single point. Even if the individual energy values can-
not be measured to within chemical accuracy, there is
often a fortuitous cancellation of errors, which leads to
the energy difference being found to chemical accuracy.
However, in this review we consider chemical accuracy
to mean an error of less than 1.6 × 10−3 Hartree in the
energy value at a single point on the potential energy
surface.

B. First and Second quantisation

It is essential to distinguish between simulations car-
ried out in first quantisation, and those carried out in
second quantisation. The distinguishing feature between
these representations is how the antisymmetry of the
wavefunction is stored. The electronic wavefunction must
be antisymmetric under the exchange of any two elec-
trons, as required by the Pauli exclusion principle.

As we will show in Sec. III.B.2, the second quan-
tised method maintains the correct exchange statistics
through the properties of the operators which are applied
to the wavefunction. In contrast, first quantised meth-
ods explicitly retain the antisymmetry in the wavefunc-
tion. These differences will become more apparent in the
context of quantum computational chemistry mappings,
which we discuss in Sec. IV.

It is important to note that whether a simulation is
carried out in first or second quantisation is a distinct
choice from whether a ‘basis set’ or ‘real space’ (grid
based) method is used. This will be elaborated on in
more detail in the following sections. However, one key
difference that is important to note here is as follows.
Using a basis set is known as a ‘Galerkin discretisation’,
which ensures that the energy converges to the correct
value from above, as the number of basis functions tends
to infinity. This property does not hold for grid based
methods. A more detailed discussion on the differences
between real space and basis set methods can be found in
the main text and Appendix A of Babbush et al. (2018c).

1. First quantisation

Here, we focus on classical first quantised simula-
tion methods. Discussion of first quantised chemistry

simulation on quantum computers is postponed until
Sec. IV.A. We only discuss first quantised real space
methods in this section, as these are more common
than first quantised basis set calculations in classical
computational chemistry. First quantised basis set
calculations are discussed in the context of quantum
computational chemistry in Sec. IV.A.

a. Real space methods Here we consider the wavefunc-
tion in the position representation, {|r〉}, which must be
explicitly anti-symmetrised to enforce exchange symme-
try (Abrams and Lloyd, 1997). Mathematically, we de-
scribe the N electron wavefunction as

|Ψ〉 =

∫
r1,r2,...,rN

ψ(r1, r2, . . . , rN) |r1, r2, . . . , rN〉 ,

(18)
where ri = (xi, yi, zi) gives the position of the ith electron
and ψ(r1, r2, . . . , rN) = 〈r1, r2, . . . , rN|ψ〉. We can simu-
late this system on a classical computer by evaluation of
the wavefunction on a discretised spatial grid. However,
the cost of storing the wavefunction scales exponentially
with the number of electrons, N . Suppose each axis of
space is discretised into P equidistant points. The dis-
cretised wavefunction is given by

|Ψ〉 =
∑

r1,r2,...,rN

ψ(r1, r2, . . . , rN) |r1, r2, . . . , rN〉 , (19)

where ri = (xi, yi, zi),∀i ∈ {1, 2, . . . , N} and xi, yi, zi ∈
{0, 1, . . . , P − 1}. In total, there are P 3N complex am-
plitudes, showing that the memory required scales ex-
ponentially with the size of the simulated system. This
makes it classically intractable to simulate more than a
few particles in real space using a classical computer.

Grid based methods are very useful when considering
chemical reaction dynamics, or when simulating systems
for which the Born-Oppenheimer approximation is not
appropriate. In these scenarios, we must include the mo-
tion of the nuclei. If we consider the nuclear motion sep-
arately, we need to obtain the potential energy surfaces
from electronic structure calculations. As mentioned in
the previous section, mapping out these potential energy
surfaces is exponentially costly. As such, it may be bet-
ter to treat the nuclei and electrons on an equal footing,
which is best achieved with real space methods. This is
discussed further in Kassal et al. (2008).

The real space method directly stores the wavefunction
without fully exploiting our knowledge of the molecu-
lar orbitals. In contrast, basis set methods exploit our
knowledge of the general spatial form of the orbitals.
This dramatically reduces the resources needed to sim-
ulate molecules. We discuss basis set methods in the
context of second quantisation in the next section.
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2. Second quantisation

We only discuss second quantised basis set methods
in this section, as these are more common than second
quantised real space calculations in both classical and
quantum computational chemistry.

a. Basis set methods We project the Hamiltonian onto
M basis wavefunctions, {φp(xi)} (where xi is the spa-
tial and spin coordinate of the ith electron, xi = (ri, si)),
which approximate electron spin-orbitals. We write the
many electron wavefunction as a Slater determinant,
which is an antisymmetrised product of the single elec-
tron basis functions. The wavefunction is given by

ψ(x0 . . .xN−1) =

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ0(x0) φ1(x0) ... φM−1(x0)

φ0(x1) φ1(x1) ... φM−1(x1)

. . . .

. . . .

. . . .

φ0(xN−1) φ1(xN−1) ... φM−1(xN−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(20)

Swapping the positions of any two electrons is equiva-
lent to interchanging two rows of the Slater determinant,
which changes the sign of the wavefunction. This pro-
vides the correct exchange symmetry for the fermionic
wavefunction. While the number of orbitals considered,
M , is typically larger than the number of electrons in
the molecule, N , the electrons can only occupy N of the
orbitals in a given Slater determinant. As a result, the
Slater determinant only contains theN occupied orbitals.
This means that to write down a Slater determinant,
we only need to indicate which orbitals are occupied by
electrons. This enables the introduction of a convenient
shorthand for Slater determinants (Szabo and Ostlund,
2012)

ψ(x0 . . .xN−1) = (21)

|fM−1, . . . , fp, . . . , f0〉 = |f〉 ,

where fp = 1 when φp is occupied (and therefore present
in the Slater determinant), and fp = 0 when φp is
empty (and therefore not present in the determinant).
The vector |f〉 is known as an occupation number
vector. The second quantised formalism is concerned
with manipulating these occupation number vectors.
As these occupation number vectors are a convenient
short-hand for Slater determinants, we will refer to them
throughout this review as Slater determinants. This is
common practice in computational chemistry (Szabo

and Ostlund, 2012).

Electrons are excited into the single electron orbitals
by fermionic creation operators, a†p. They are de-excited
by annihilation operators, ap. These operators obey
fermionic anti-commutation relations

{ap, a†q} = apa
†
q + a†qap = δpq,

{ap, aq} = {a†p, a†q} = 0.
(22)

The determinants |f〉 form an orthonormal basis in the
Fock space of the system. The actions of the fermionic
operators on the determinants are given by

ap |fM−1, fM−2, . . . , f0〉

=δfp,1(−1)
∑p−1

i=0 fi |fM−1, fM−2, . . . , fp ⊕ 1, . . . , f0〉 ,
a†p |fM−1, fM−2, . . . , f0〉

=δfp,0(−1)
∑p−1

i=0 fi |fM−1, fM−2, . . . , fp ⊕ 1, . . . , f0〉 ,
(23)

where ⊕ denotes addition modulo 2. The phase term

(−1)
∑p−1

i=0 fi enforces the exchange anti-symmetry of
fermions. The orbital occupation operator is given by

n̂i = a†iai,

n̂i |fM−1, . . . , fi, . . . , f0〉 = fi |fM−1, . . . , fi, . . . , f0〉 ,
(24)

and counts the number of electrons in a given orbital.

Observables must be independent of the representa-
tion used. Therefore, the expectation values of second
quantised operators must be equivalent to the expecta-
tion values of the corresponding first quantised opera-
tors. As first quantised operators conserve the number
of electrons, the second quantised operators must contain
an equal number of creation and annihilation operators.
We can use these requirements to obtain the second quan-
tised form of the electronic Hamiltonian (Helgaker et al.,
2014; Szabo and Ostlund, 2012).

H =
∑
p,q

hpqa
†
paq +

1

2

∑
p,q,r,s

hpqrsa
†
pa
†
qaras, (25)

with

hpq =

∫
dxφ∗p(x)

(
−∇

2

2
−
∑
I

ZI
|r−RI |

)
φq(x),

hpqrs =

∫
dx1dx2

φ∗p(x1)φ∗q(x2)φs(x1)φr(x2)

|x1 − x2|
.

(26)
This Hamiltonian contains up to M4 terms, and be-
comes extremely difficult to solve as the number of basis
functions increases. Before examining the form of these
basis functions and how to select them in Sec. III.D, we
first consider general and approximate solutions of the
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electronic Hamiltonian.

If the electron-electron Coulomb interaction term in
Eq. (16) is neglected, we obtain a new Hamiltonian which
describes the behaviour of N independent electrons. We
can define a suitable basis for this fictitious system as
the set of molecular orbitals which diagonalise the non-
interacting Hamiltonian. These molecular orbitals are
typically linear combinations of the atomic orbitals. The
energy eigenfunctions are anti-symmetrised tensor prod-
ucts of these single-particle molecular orbitals. This can
be achieved by creating Slater determinants from the
molecular orbitals.

As they are eigenstates of a Hermitian operator, these
Slater determinants form a complete basis of the problem
Hilbert space. Consequently, the eigenstates of the true
Hamiltonian can be expressed as linear combinations of
these Slater determinants, written as

|ψ〉 =
∑
f

αf |f〉 , (27)

where αf are complex coefficients which we refer to herein
as the determinant amplitudes. These solutions are ex-
act, provided that the molecular orbitals form a com-
plete basis for the single particle states, and the N -
electron wavefunction contains all the determinants that
these MOs can generate (Helgaker et al., 2014; Szabo and
Ostlund, 2012). If all

(
M
N

)
determinants are included, the

wavefunction is known as the full configuration interac-
tion (FCI) wavefunction. However, this has a number of
determinants which scales exponentially with the num-
ber of electrons, making the calculations classically in-
tractable. One way to make the calculation classically
tractable is to approximate the exact ground state wave-
function by considering a restricted number of Slater de-
terminants, as will be discussed in the following section.
Alternatively, one may consider only the most important
MOs, which we discuss in Sec. III.D. We note that in
practice, the molecular orbitals obtained by diagonalis-
ing the non-interacting part of the Hamiltonian will likely
form a poor basis for the system. Instead, the Hartree-
Fock procedure, described in Sec. III.C.1 can be used to
obtain more suitable molecular orbitals.

C. Classical computation methods

In this section, we review four methods for approximat-
ing the ground state wavefunction with a restricted num-
ber of Slater determinants; the Hartree-Fock (HF), multi-
configurational self-consistent field (MCSCF), configura-
tion interaction (CI), and coupled cluster (CC) methods.
These methods create parametrised trial states, which
can then be optimised to approach the ground state (to
an accuracy determined by the approximations made).
In this section we assume that we are working in the full

MO basis for our molecule, although in practice this is
intractable. The errors resulting from truncation of the
basis will be discussed in the next section.

The methods discussed below are in the context of sec-
ond quantised basis set calculations, as these translate
most easily to the methods used in quantum computa-
tional chemistry. However, these methods can also be ap-
plied in first quantised or real space simulations. These
methods are, in a sense, the most basic in classical com-
putational chemistry. For a review of the more advanced
methods developed recently for the electronic structure
problem, see Cao et al. (2018b).

1. Hartree–Fock

The Hartree–Fock (HF) method aims to find the dom-
inant Slater determinant in the system wavefunction.
This is achieved by optimising the spatial form of the
spin-orbitals to minimise the energy of the wavefunction.
We generally consider a set of orbitals, M , that is larger
than the number of electrons in the molecule, N . As
we only consider a single Slater determinant, we are es-
sentially assuming that N of the orbitals are occupied,
and M − N are left unoccupied, or virtual. In the HF
method, we first neglect the Coulomb repulsion term in
Eq. (16), reducing the problem to one of N independent
electrons. We then assume that each electron moves in
the average charge distribution of all of the other elec-
trons, which introduces an effective potential. We can
solve the N coupled equations iteratively; first calcu-
lating the position of each electron, then updating the
potential, and repeating this process until the orbitals
converge. In the second quantised formalism, this proce-
dure is carried out by using the orbitals to construct the
‘Fock operator’, and diagonalising the Fock operator to
obtain new orbitals. This process is repeated until the
orbitals converge, and so HF is also referred to as the
self-consistent field method (SCF). The Fock operator,

f̂ , is given by (Helgaker et al., 2014)

f̂ =
∑
i,j

(hij + Vij)a
†
iaj ,

Vij =
∑
k∈occ

(hikkj − hikjk),
(28)

where Vij describes the effective potential, and occ is the
set of occupied orbitals. We see that the Fock operator
depends on the spatial form of the orbitals through hij ,
hikkj , and hikjk which are obtained by calculating the in-
tegrals in Eq. (26). When performing a HF calculation,
we input a set of atomic orbitals, which are localised
around each atom. These orbitals are used to calculate
the Fock operator, which is then diagonalised to obtain
new orbitals (which are linear combinations of the old
orbitals). This process is repeated until the orbitals con-
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verge (Szabo and Ostlund, 2012). The new orbitals ob-
tained are referred to as the canonical orbitals. This pro-
cedure generates single particle molecular orbitals from
combinations of the single particle atomic orbitals.

The term hikkj describes the Coulomb interaction of
an electron with the charge distribution of the other elec-
trons, while the term hikjk describes exchange effects
(also called Fermi correlation) arising from the required
antisymmetrisation. However, as a mean-field solution,
the HF method neglects the effects of dynamical cor-
relation (correlation between the electrons due to their
Coulomb repulsion) and static correlation (correlation
arising from near degeneracies of electronic configura-
tions). As a result, this method is inaccurate when ap-
plied to strongly correlated molecules (Helgaker et al.,
2014).

The Slater determinant generated from a HF calcula-
tion is typically taken as the reference state for post-HF
methods, such as configuration interaction and coupled
cluster, which seek to capture some of the electron corre-
lation energy by including additional determinants, de-
scribing excitations above the HF state. In these excita-
tions, the electrons are excited into the virtual orbitals
described above. However, in practice, the form of the
virtual orbitals is found by performing correlated calcu-
lations on atomic systems, rather than uncorrelated HF
calculations on molecular systems (Helgaker et al., 2014).

2. Multiconfigurational self-consistent field

As discussed above, the HF method performs poorly
for strongly correlated systems. For states where mul-
tiple Slater determinants are equally important, static
correlation dominates. These include excited states, sys-
tems at the dissociation limit, transition metals, large
systems and reaction pathways (Wang et al., 2008). One
method to treat these systems is to use a multiconfig-
urational self-consistent field (MCSCF) approach. The
MCSCF approach considers a wavefunction with several
Slater determinants, and variationally optimises both the
molecular orbitals, and the determinant amplitudes si-
multaneously (Roos et al., 1980). MCSCF can be con-
sidered the best approximation to the exact wavefunction
for a given number of determinants (Wang et al., 2008).
It is not possible to perform an MCSCF calculation on
systems with more than a few electrons, as the num-
ber of determinants scales exponentially with the num-
ber of electrons. For large systems, one can instead use
chemical intuition to select the most important Slater
determinants, and perform an MCSCF calculation on
this restricted number of determinants. Alternatively,
we can use the complete active space self-consistent field
(CASSCF) method (Roos et al., 1980). This considers
only the most important orbitals (an active space, see
Sec. III.E) and performs an MCSCF calculation on all of

the determinants that could be generated from distribut-
ing a certain number of electrons in these orbitals. Both
MCSCF and CASSCF calculations are computationally
expensive, with the cost dominated by basis transforma-
tion of the two electron integrals (Wang et al., 2008).
However, they are the most effective methods at treating
systems with strong static correlation (Helgaker et al.,
2014).

3. Configuration interaction

The configuration interaction (CI) method generates a
correlated wavefunction by considering excitations above
a reference state, typically the HF state. The CI method
is effective at recovering dynamic correlation, but less ef-
fective at recovering static correlation (Helgaker et al.,
2014). If all determinants are included, we recover the
full configuration interaction (FCI) wavefunction, gener-
ated by considering all excitations above the HF wave-
function

|ψFCI〉

=

I +
∑
i,α

Ciαa
†
iaα +

∑
i>j,α>β

Cijαβa
†
ia
†
jaαaβ + ...

 |ψHF〉,

(29)
where C are parameters to be variationally optimised.
As considering all determinants is classically intractable,
the CI method is typically limited to including a small
number of excitations above the reference state; single
excitations (CIS), double excitations (CISD), and occa-
sionally triple excitations (CISDT). However, as low en-
ergy excitations dominate the ground state wavefunction,
these truncations produce good approximations to the
ground state energy (Helgaker et al., 2014; Szabo and
Ostlund, 2012). If the reference state is a MCSCF state,
the method is known as multireference configuration in-
teraction (MRCI). The CI method suffers from two ma-
jor limitations. The method converges slowly to the FCI
wavefunction, as a result of its linear parametrisation.
Furthermore, the energy obtained from a CI calculation
is not proportional to the size of the system (not ‘size
extensive’) (Helgaker et al., 2014).

4. Coupled cluster

The coupled cluster (CC) method also includes ad-
ditional determinants to recover the correlation energy,
but uses a product parametrisation. This overcomes the
size-extensivity problem of the CI method. Like the CI
method, the CC method is effective at recovering dy-
namic correlation, but not static correlation (Helgaker
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et al., 2014). The CC wavefunction is given by

|ψCC〉 =
∏
i,α

(
I + Ciαa

†
iaα

)
×

∏
i>j,α>β

(
I + Cijαβa

†
ia
†
jaαaβ

)
× ...|ψHF〉.

(30)

This formula can be recast in an exponential form, writ-
ten as

|ψCC〉 = eT |ψHF〉, (31)

where T =
∑
i Ti,

T1 =
∑

i∈virt,α∈occ
tiαa

†
iaα,

T2 =
∑

i,j∈virt,α,β∈occ

tijαβa
†
ia
†
jaαaβ ,

...,

(32)

where occ denotes orbitals that are occupied in the
Hartree-Fock state, virt denotes orbitals that are un-
occupied (virtual) in the Hartree-Fock state, and t are
excitation amplitudes which are variationally optimised.
When all of the excitation operators Ti are included,
the CC method recovers the FCI wavefunction, but
this is intractable. As a result, the method is normally
truncated at a lower excitation level; often single and
double excitations (CCSD). Because of its product
parametrisation, the CC method generates a trial wave-
function which includes all possible determinants, albeit
with an incorrect parametrisation. It therefore provides
faster convergence than the CI method. However,
the CC method is not without its own shortcomings.
Most notably, the CC operator is not unitary, and
therefore the wavefunction generated does not obey
the Rayleigh-Ritz variational principle (Helgaker et al.,
2014). Furthermore, the CC method cannot be used
with MCSCF states, and so struggles with systems
displaying strong static correlation (Romero et al.,
2019). In Sec. V.B we describe a modified form of
the CC method, known as Unitary Coupled Cluster
(UCC). This method is both variational and suitable for
multireference states. While it is classically intractable,
this method is efficient to implement using a quantum
computer (Romero et al., 2019).

This section has treated the inaccuracies which re-
sult from considering a reduced number of determinants,
while including all MOs. The following section will dis-
cuss the converse case; we consider only a limited number
of MOs, but assume that we include all possible determi-
nants that they can generate, unless explicitly stated.

D. Chemical basis sets

In a Galerkin discretisation, the Schrödinger equa-
tion is projected onto M basis functions, as discussed
in Sec. III.B. In this section, we describe some of the
conventional basis sets used in classical computational
chemistry. Throughout this section, we refer to the ‘true’
orbitals of the system. These can be obtained by numer-
ically solving the Schrödinger equation using real space
methods with a very fine grid spacing, which is only pos-
sible for small atoms or simple molecules. The orbital
functions introduced in this section are approximations
of these true orbitals.

To understand the form of the single-particle atomic
orbitals, it is helpful to first revisit the most simple
atomic system, the non-relativistic hydrogen atom. The
Hamiltonian of this system is that of a single particle in a
central Coulomb potential, and has solutions of the form

ψnlm = Rnl(r)Ylm(θ, φ), (33)

where n denotes the energy level of the orbital, l and
m describe the angular momentum, Rnl(r) are products
of Laguerre polynomials and a term decaying expo-
nentially with distance r, and Ylm(θ, φ) are spherical
harmonics (Griffiths, 2016). While these solutions are
exact for one electron atoms, they perform poorly for
many-electron atoms. They rapidly become diffuse, so
cannot describe the behaviour of the core electrons well.
As a result, functions of a different form are used as the
basis states in computational chemistry.

A better basis is obtained by retaining only the term
in Rnl(r) with the highest power of r (thus we discard
the l index), and including an additional parameter ζ.
These functions are known as Slater-type orbitals (STO)

RSTO
n (r) ∝ (ζr)n−1e−ζr, (34)

where n is the energy level and ζ is a fitting parameter.
By using different values of ζ for each orbital, we can
generate a good basis (Helgaker et al., 2014). Unlike the
true atomic orbitals, these functions do not display oscil-
latory behaviour. Consequently, linear combinations of
STOs are required to approximate the true orbitals. It is
possible to only introduce a single basis function for each
considered orbital in the molecule, and give each basis
function a different ζ value. This is known as a single-
zeta representation. Alternatively, we can introduce n
basis functions (where n is not the energy level of the
orbital, but a number defining the number of basis func-
tions we wish to include), each with a different ζ value,
for each orbital. This is known as an n-zeta representa-
tion. Introducing additional basis functions in this way
increases the radial flexibility of the wavefunction. While
the STO functions exhibit many desirable features, they
make evaluating the two-electron integrals in Eq. (26)
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FIG. 3 Comparing the shapes of Slater (STO) and Gaussian
(GTO) type orbitals. Normalisation factors are neglected.

computationally difficult. As a result, they are not used
as basis functions in practice.

To simplify the two-electron integrals, Gaussian basis
functions are used. The Gaussian basis functions are
obtained by considering the Schrödinger equation with
a three dimensional Harmonic oscillator potential. The
form of a Gaussian-type orbital (GTO) is given by

RGTO
nl (r) ∝ (

√
αnlr)

le−αnlr
2

, (35)

where αnl is a fitting parameter. As illustrated in Fig. 3,
because of the dependence on r2 in the exponent, GTOs
are more localised than STOs. As a result, GTOs do not
approximate the atomic charge distribution as well, so
more are required to describe a given orbital. However,
this limitation is compensated by the ease of integral
evaluation. Furthermore, the disadvantages of GTOs are
less prominent in molecular calculations (Helgaker et al.,
2014).

The most common basis sets construct approximate
STOs from linear combinations of GTOs. These approx-
imate STOs are used as the basis functions for our atomic
orbitals. The number and type of orbitals defines the
basis set. There is a compromise between the accuracy
obtained and the number of basis functions used. The
number of orbitals considered determines the runtime
and memory requirements of classical chemistry algo-
rithms. In the case of quantum computational chemistry,
the number of basis functions determines the number of
qubits and gate operations required to solve the problem.

1. STO-nG basis sets

Some of the most simple bases are the STO-nG ba-
sis sets (Slater Type Orbital-n Gaussians) (Hehre et al.,

1969). In an STO-nG basis, each atomic orbital is consid-
ered to be an approximate STO. The STOs are approxi-
mated using n GTOs. STO-nG basis sets are often called
minimal basis sets, as they contain only the orbitals re-
quired to write the Hartree–Fock (HF) state (and those
orbitals of similar energy). Calculations using minimal
basis sets are of limited accuracy, giving only a qualita-
tive description of the system. It is important to note
that when carrying out a HF calculation in an STO-nG
basis, the true HF energy (i.e. the energy obtained by
performing a HF calculation using a grid based method,
on an infinitely precise grid) will not be obtained, as these
basis sets only approximate the true HF orbitals. As an
example of an STO-nG basis set we consider lithium,
which has 3 electrons, of which 2 can reside in the 1s or-
bital, leaving 1 in the second energy level. We include in
the minimal basis set {1s, 2s, 2px, 2py, 2pz} orbitals. We
include both the 2s and 2p orbitals because they are of
the same energy level. On a quantum computer, we must
use two qubits for each orbital, due to the electron spin.
As a result, without any reduction we would require 10
qubits to simulate lithium on a quantum computer.

2. Split-valence basis sets

Split-valence (or Pople (Ditchfield et al., 1971)) basis
sets, such as the 6-31G basis, can be used to obtain more
accurate results. These basis sets again include only the
minimal orbitals, but better approximate the true or-
bitals than the STO-nG bases do, as they introduce in-
creased radial flexibility for the valence orbitals (the or-
bitals of the highest occupied energy level). In the case
of the 6-31G basis, the core orbitals are described by one
approximate STO, constructed from a linear combina-
tion of six GTOs. However, each valence shell orbital has
a double-zeta representation; we introduce two approxi-
mate STOs for each valence orbital. The more localised
STO is composed of three GTOs, while the more diffuse
is represented by a single GTO. For example, lithium in
the 6-31G basis has a single-zeta representation of the
core 1s orbital, and a double-zeta representation of the
valence orbitals. As a result, the 6-31G basis for lithium
consists of {1s, 2s, 2s′, 2px, 2py, 2pz, 2p′x, 2p′y, 2p′z}, where
the prime denotes that the orbital has a different ex-
ponent. This would require 18 qubits to simulate on a
quantum computer.

The 6-31G basis is inaccurate when describing molec-
ular systems, as it does not take into account the polari-
sation of atomic charge caused by bonding. This is some-
what rectified by considering a polarised Pople basis set,
such as the 6-31G* basis (which is not a minimal basis
set). This basis set includes orbitals with higher angular
momenta, which make the angular part of the wavefunc-
tion more flexible. These additional orbitals are referred
to as ‘polarisation functions’, as they describe the polar-
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isation of electronic charge. Nevertheless, as Pople basis
sets were designed for HF calculations, even large, po-
larised Pople basis sets are not well suited for correlated
post-HF calculations (Helgaker et al., 2014).

3. Correlation-consistent basis sets

Additional accuracy can be obtained by using cc-PVnZ
basis sets (correlation consistent polarised valence n
zeta), introduced by Dunning (Dunning Jr., 1989).
These include additional unoccupied (‘virtual’) orbitals
to recover the correlation energy. The virtual orbitals
are generated from correlated calculations on atoms.
The core orbitals have a single-zeta representation, while
the valence orbitals have an n-zeta representation. The
virtual orbitals considered are polarisation functions,
with higher angular momenta than the valence orbitals.
The polarisation functions are selected by the size of
their contribution to the correlation energy. Higher
accuracy can be obtained by correlating both the core
and valence electrons (cc-PCVnZ bases), but the cost
typically outweighs the benefits. The contribution of the
core orbitals to the correlation energy is approximately
constant over the potential energy surface, so it can be
removed by taking relative energies (Helgaker et al.,
2014). We illustrate the number of basis functions
included in the cc-PVnZ basis by considering several
examples.

For atomic hydrogen in the cc-PVDZ (n = 2, D = dou-
ble) the highest occupied energy level (the valence level)
is the first level, and so we take a double-zeta represen-
tation of the 1s state, considering {1s, 1s′} orbitals. The
1s′ orbital is often referred to as a 2s orbital. This is
because the additional function chosen to describe the
valence orbital has the same angular momentum as the
ordinary 1s orbital, but is more diffuse – so it resembles a
2s orbital. We then include polarisation functions, which
have a higher angular momentum value than the valence
functions. In total, there are five basis functions for cc-
PVDZ hydrogen: {1s, 1s′, 2px, 2py, 2pz}, requiring 10
qubits to simulate. These are shown in Fig. 4.

For lithium in the cc-PVDZ basis, the core orbital is
{1s}. The valence orbitals (which have a double-zeta rep-
resentation) are {2s, 2px, 2py, 2pz, 2s′, 2p′x, 2p′y, 2p′z},
and the polarisation functions are {3dzz, 3dxz, 3dyz,
3dxy, 3dx2−y2 }, which we write as {5× 3d}. This yields
14 basis functions, requiring 28 qubits.

Argon has 18 electrons, which completely fill the 1s,
2s, 2p, 3s and 3p states. The core orbitals are {1s, 2s,
2px, 2py, 2pz}. The valence orbitals are {3s, 3px, 3py,
3pz, 3s′, 3p′x, 3p′y, 3p′z}. We include {5×3d} polarisation
functions for angular flexibility. This gives a total of 18
basis functions for argon, requiring 36 qubits to simulate.

For lithium in the cc-PVTZ basis (n = 3, T = triple),

FIG. 4 The orbitals included in different basis sets for the
Hydrogen atom. The 1s′ orbital is often written as 2s. The
plots show the radial probability distributions for the true
Hydrogenic orbitals, which the basis orbitals approximate.

we first include the 14 orbitals above. As we consider a
triple-zeta representation of the valence orbitals, we need
additional {2s′′, 2p′′x, 2p′′y , 2p′′z} orbitals. We then include
additional polarisation functions; {5× 3d′, 7× 4f}. This
leads to a total of 30 orbitals, requiring 60 qubits to
simulate.

The number of orbitals included in a cc-PVnZ basis
scales approximately as n3/3 (Helgaker et al., 2014).
It is important to highlight that cc-PVnZ basis sets
with higher values of n contain orbitals that better
approximate the true atomic orbitals than those with
lower n values. However, even large (n = 5) basis sets
struggle to exactly represent the true HF orbitals of
simple molecules such as N2 (Helgaker et al., 2014). This
limitation can be overcome by measuring the ground
state energy in several different cc-PVnZ bases, and
then extrapolating to the basis set limit.

4. Plane wave basis sets

While the afforementioned basis sets have a long his-
tory of use in classical computational chemistry (and as a
result, early work in quantum computational chemistry),
they are not necessarily optimal basis sets for calculations
performed on quantum computers. These basis sets were
designed for ease of performing the two-body integrals,
which is no longer a major bottleneck for modern super-
computers. As a result, there is some freedom to develop
basis sets which may be more useful for quantum compu-
tational chemistry. Two examples of such bases are the
plane wave and plane wave dual basis sets introduced
for quantum computing by Babbush et al. (2018c). The
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plane wave basis functions, φν(r), are given by

φν =

√
1

V
exp

(
2πiνr

L

)
, (36)

for a wave with wavevector corresponding to the νth har-
monic of the computational cell with length L and vol-
ume V . The plane wave dual basis is obtained by taking
the discrete Fourier transform of the plane wave basis
states. These basis sets diagonalise the kinetic and po-
tential operators, respectively. This reduces the number
of Hamiltonian terms from O(M4) to O(M2). Multiple
benefits are obtained from this reduction – most notably,
improved asymptotic scaling of quantum chemistry algo-
rithms, which will be discussed in more detail in Sec. V.
Plane wave basis sets are well suited to periodic systems,
and have a long history of use in classical density func-
tional theory calculations. However, to describe molecu-
lar systems, approximately 10 times as many plane wave
basis functions are required as GTOs (Babbush et al.,
2018c). A similar improvement in algorithmic scaling
might be obtained using the recently proposed gausslet
basis sets (White, 2017), which have a smaller multiplica-
tive overhead. Creating efficient basis sets for quantum
computational chemistry remains an open and funda-
mental problem.

E. Reduction of orbitals

It is often the case that certain orbitals are very likely
to be either occupied or virtual in all Slater determi-
nants in the wavefunction. As calculating the ground
state energy is essentially a question of distributing elec-
trons among orbitals, we can simplify our calculation by
using this information. Specifically, we are able to remove
orbitals from the calculation if their expected occupation
number is close to 0 or 1. Our calculation is reduced to in-
cluding only the most important (ambiguously occupied)
orbitals. This is known as performing the calculation in
a reduced active space.

In order to determine the occupation of orbitals, we use
the reduced density matrices (RDMs) of the system. The
expectation value of any 1- or 2-electron Hermitian oper-
ator, O, with a state |ψ〉 =

∑
f αf |f〉, is given by (Hel-

gaker et al., 2014)

〈ψ|O |ψ〉 =
∑
i,j

Oijρ
1
ij +

∑
i,j,k,l

Vijklρ
2
ijkl,

ρ1
ij = 〈ψ| a†iaj |ψ〉 , ρ2

ijkl = 〈ψ| a†ia
†
kalaj |ψ〉 ,

(37)

where ρ1 is the single-particle reduced density matrix (1-
RDM), ρ2 is the two-particle reduced density matrix (2-
RDM), and Oij and Vijkl are defined in a similar way
to the coefficients in Eq. (26). The RDMS are defined

with respect to a state which is an approximation of the
ground state, which could be the results of a classically
tractable configuration interaction or coupled cluster cal-
culation. These RDMs contain all of the information
required to evaluate 〈O〉ψ. From the definition above,
we can see that the diagonal elements of ρ1 are the ex-
pectation values of the number operator for the corre-
sponding orbitals. As ρ1 is a Hermitian operator, we
can diagonalise it with a unitary transform. This is a
basis change from the canonical orbitals to the ‘natural
molecular orbitals’. The diagonal elements of the basis
transformed ρ1 are called the natural orbital occupation
numbers (NOONs).

Orbitals with a NOON close to 0 or 1 (compared
to the other NOONs) can be assumed to be empty or
occupied, respectively. As a result, we can reduce our
problem by considering only the ambiguously occupied
orbitals. This was used in Hempel et al. (2018) to reduce
the number of qubits required for simulation. In Sec. VII
we provide an explicit example of how this method can
be used to reduce the number of orbitals required to
simulate lithium hydride in an STO-3G basis set.

This part of the review has introduced the concepts
in classical computational chemistry necessary to under-
stand the early work in quantum computational chem-
istry. The following sections introduce methods devel-
oped to solve chemistry problems using quantum com-
puters. We return to classical computational chemistry
methods in Sec. VIII, where we assess the strengths,
weaknesses and limits of the methods introduced here.

IV. QUANTUM COMPUTATIONAL CHEMISTRY
MAPPINGS

In this section, we describe the techniques developed
to enable quantum computers to solve problems in chem-
istry. In Sec. IV.A and Sec. IV.B we introduce methods of
encoding fermions into qubits, which maps the chemistry
problem onto a quantum computer. We then describe
methods which take advantage of symmetries to reduce
the number of qubits required, in Sec. IV.C. As discussed
in Sec. III.B the distinguishing feature between first and
second quantised methods is whether antisymmetry is
enforced in the wavefunction directly (first quantised),
or in the behaviour of the operators which act on the
wavefunction (second quantised). As in the previous sec-
tion, we consider a molecule with M spin-orbitals (when
discussing basis set approaches) and N electrons.

We note that most of the work to date in quan-
tum computational chemistry has focused on second
quantised simulation methods. This is because, while
first quantised simulations require asymptotically fewer
qubits than second quantised simulations, for the small-
est simulable systems (such as small molecules in minimal
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basis sets), second quantised methods require either fewer
qubits and/or shorter gate sequences. This has caused
second quantised methods to become the de facto option
for experimental demonstrations of quantum computa-
tional chemistry algorithms, due to the limits of current
quantum hardware.

A. First quantised encoding methods

Here we give an overview of first quantised quantum
simulation, which can be carried out using either a dis-
crete single-particle basis, or real space methods.

1. Basis set methods

The original algorithm for simulating quantum systems
in the first quantisation using a discrete basis was given
by Abrams and Lloyd (1997). If we consider M single-
particle basis functions (the molecular orbitals described
in the previous section), we can enumerate these from
0 to M − 1. We can store these orbitals using log2(M)
qubits, denoting orbital 0 as |0...0〉, orbital 1 as |0...01〉
and so on, such that orbital M − 1 is represented as
|1...1〉. We then use N registers of these log2(M) qubits
(one register for each electron) to describe the states of all
of the electrons in the molecule. As a result, it requires
O(N log2(M)) qubits to store the wavefunction.

If we consider a product state generated by each elec-
tron being in a single orbital, we observe that the wave-
function does not have the correct antisymmetry. As
such, it must be antisymmetrised. The original algo-
rithm (Abrams and Lloyd, 1997) accomplishes this in
O(N2) gates. This has recently been dramatically im-
proved upon by Berry et al. (2018), who used a circuit of
depth O(logc

2(N)log2log2(M)), where c > 1 and depends
on the choice of sorting network used.

The Hamiltonian can be obtained by projecting it onto
the single-particle basis functions, and the wavefunc-
tion can then be time evolved under the Hamiltonian,
which will maintain the correct antisymmetry (Abrams
and Lloyd, 1997). A first quantised representation of
the plane wave basis has recently been used to achieve
the best scaling chemistry algorithm to date (Babbush
et al., 2018a). It requires O(N log2(M)) qubits to store
the wavefunction, and can perform time evolution under
the Hamiltonian with a gate count of O(N8/3M1/3t), ne-
glecting logarithmic factors. This is a substantial devel-
opment, as it is the first quantum chemistry algorithm
scaling sublinearly with the number of basis functions.
This can be used to mitigate the drawback of plane wave
basis functions; that more are required than gaussian ba-
sis functions to achieve accurate results.

2. Real space methods

As discussed in Sec. III.B.1, the wavefunction of an
N -particle system can be represented in real space on a
discretised grid of P points per axis, and is given by

|ψ〉 =
∑

r1,r2,...,rN

ψ(r1, r2, . . . , rN) |r1, r2, . . . , rN〉 , (38)

where ri = (xi, yi, zi),∀i ∈ {1, 2, . . . , N} and xi, yi, zi ∈
{0, 1, . . . , P − 1}. We consider the case where P = 2m,
where m is an arbitrary number which determines the
precision of our simulation. While it is classically in-
tractable to store the required 23mN complex amplitudes
for large quantum systems, it is possible using a quan-
tum computer. If we write the basis vector |x = 2m − 1〉
in binary as |11....11〉, we note that it only requires m
bits. Furthermore, an m qubit register can be in a su-
perposition of 2m possible states. As a result, it only
requires 3mN qubits to store the N electron wavefunc-
tion described by Eq. (38). This makes it efficient to
represent quantum systems on quantum computers in
real space. As discussed in Sec. III.B, simulation of re-
action dynamics is more efficient in real space, without
making the Born-Oppenheimer approximation, which ne-
cessitates costly classical precomputation (Kassal et al.,
2008).

Real space methods were first introduced for the quan-
tum simulation of general quantum systems by Wiesner
(1996) and Zalka (1998). They were then adapted for
simulating problems in chemistry by Lidar and Wang
(1999) and Kassal et al. (2008). The algorithm given
by Kassal et al. (2008) proceeds as follows. The qubits
are used to create a discretised grid, as described above.
Physically relevant states can then be prepared using the
algorithms outlined by Kassal et al. (2008) and Ward
et al. (2009). The state can be propagated in time by
repeatedly using the quantum Fourier transform to move
between the position and momentum bases, so that the
potential and kinetic terms are diagonal (respectively)
and so are simple to apply. Finally, the relevant observ-
ables can be measured (Kassal et al., 2008; Whitfield,
2015). A thorough investigation of the resources required
to perform these simulations in a fault-tolerant manner
was carried out by Jones et al. (2012).

The algorithm described above was improved upon
considerably by Kivlichan et al. (2017), who also per-
formed a more thorough analysis of both gate counts and
errors. Their method discretises the kinetic and poten-
tial terms of the Hamiltonian, separates them into linear
combinations of unitary operators, and applies the Taylor
expansion method for simulating time evolution (Berry
et al., 2015a). The number of gates required scales as
O((N/h2 +N2)t), where h is the grid spacing and t is the
simulation time. Although the spatial resolution of the
grid increases exponentially with the number of qubits
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used, it is not possible to use this as a route to exponen-
tially improving the accuracy of the calculation. To see
this, note that the gate count scales polynomially with
the inverse grid spacing, so any attempts to exponentially
increase the simulation accuracy by exponentially reduc-
ing the grid spacing will cause the gate count to increase
exponentially. Kivlichan et al. (2017) also show that
there exist systems where the grid spacing must decrease
exponentially with the number of particles in the sys-
tem to maintain constant accuracy. Consequently, these
systems are not efficient to simulate using this method.
However, those authors note that such pathological cases
can also exist for basis set methods, but are typically
dealt with efficiently using a clever choice of basis func-
tion.

The simulation of molecules in real space requires con-
siderably more qubits than in basis set approaches (Kas-
sal et al., 2008, 2011; Kivlichan et al., 2017; Ward et al.,
2009). For example, it would require around 100 logical
qubits to simulate the lithium atom in real space (a task
beyond classical computers using numerical grid based
methods) (Kassal et al., 2008). Consequently, real space
approaches are typically considered unsuitable for near-
term quantum computers, which will have small numbers
of qubits.

B. Second quantised encoding methods

To simulate chemical systems in the second quantised
representation on a quantum computer, we need to
map from operators which act on indistinguishable
fermions to distinguishable qubits. An encoding method
is a map from the fermionic Fock space to the Hilbert
space of qubits, such that every fermionic state can
be represented by a qubit state. There are multiple
methods of encoding, which we describe below. In the
following section, we only discuss second quantised basis
set methods, as second quantised grid based methods
have only briefly been discussed in the context of
second quantised quantum computational chemistry (see
Babbush et al. (2018c) Appendix A).

1. Jordan-Wigner encoding

In the Jordan–Wigner (JW) encoding, we store the
occupation number of an orbital in the |0〉 or |1〉 state of
a qubit (unoccupied and occupied, respectively). More
formally,

|fM−1, fM−2, . . . , f0〉 → |qM−1, qM−2, . . . , q0〉 ,
qp = fp ∈ {0, 1}.

(39)

The fermionic creation and annhilation operators in-
crease or decrease the occupation number of an orbital

by 1, and also introduce a multiplicative phase factor (see
Eq. (23)). The qubit mappings of the operators preserve
these features, and are given by,

ap = Qp ⊗ Zp−1 ⊗ · · · ⊗ Z0,

a†p = Q†p ⊗ Zp−1 ⊗ · · · ⊗ Z0,
(40)

where Q = |0〉 〈1| = 1
2 (X + iY ) and Q† = |1〉 〈0| =

1
2 (X−iY ). The Q or Q† operator changes the occupation
number of the target orbital, while the string of Z opera-

tors recovers the exchange phase factor (−1)
∑p−1

i=0 fi . An
example JW mapping is shown in Table. I.

The primary advantage of the JW encoding is its sim-
plicity. However, while the occupation of an orbital is
stored locally, the parity is stored non-locally. The string
of Z operators means that a qubit mapped fermionic op-
erator generally has a weight of O(M) Pauli operators,
each acting on a different qubit.

Working in the JW basis, it is easy to see the advan-
tage that quantum computers have over their classical
counterparts for chemistry problems. As discussed in
Sec. III.B.2, the full configuration interaction wavefunc-
tion contains a number of determinants which scales ex-
ponentially with the number of electrons, N < M . As
such, it requires an amount of memory that scales expo-
nentially with the system size. However, using a quantum
computer, we can instead store the FCI wavefunction us-
ing only M qubits (Aspuru-Guzik et al., 2005). A register
of M qubits can be in a superposition of 2M computa-
tional basis states. In the JW basis, every Slater deter-
minant required for the FCI wavefunction can be written
as one of these basis states. As such, quantum computers
can efficiently store the FCI wavefunction. This is also
true for the other second quantised encodings.

2. Parity encoding

In the parity encoding, instead of directly storing the
occupation number, one can instead use the pth qubit to
store the parity of the first p modes (Seeley et al., 2012),

|fM−1, fM−2, . . . , f0〉 → |qM−1, qM−2, . . . , q0〉 ,

qp =

[ p∑
i

fi

]
(mod 2).

(41)

The creation and annihilation operators are

ap =XM−1 ⊗ · · · ⊗Xp+1

⊗ (Qp ⊗ |0〉 〈0|p−1 −Q
†
p ⊗ |1〉 〈1|p−1),

a†p =XM−1 ⊗ · · · ⊗Xp+1

⊗ (Q†p ⊗ |0〉 〈0|p−1 −Qp ⊗ |1〉 〈1|p−1).

(42)

These operators check the parity of the first (p − 1)th

modes, and update qp accordingly using Qp or Q†p. The
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TABLE I Example mappings of a fermionic Fock state and its fermionic operators onto the corresponding qubit state, and
qubit operators. n̂i is the fermionic number operator.

Fermion Jordan-Wigner Parity Bravyi-Kitaev

a |0001〉+ b |0010〉 a |0001〉+ b |0010〉 a |1111〉+ b |1110〉 a |1011〉+ b |1010〉

+c |0100〉+ d |1000〉 +c |0100〉+ d |1000〉 +c |1100〉+ d |1000〉 +c |1100〉+ d |1000〉

a0 Q0 X3X2X1Q0 X3X1Q0

a1 Q1Z0 X3X2

(
Q1 |0〉 〈0|0 −Q

†
1 |1〉 〈1|0

)
X3

(
Q1 |0〉 〈0|0 −Q

†
1 |1〉 〈1|0

)
a2 Q2Z1Z0 X3

(
Q2 |0〉 〈0|1 −Q

†
2 |1〉 〈1|1

)
X3Q2Z1

a3 Q3Z2Z1Z0 Q3 |0〉 〈0|2 −Q
†
3 |1〉 〈1|2

1
2

(
Q3(1 + Z2Z1)−Q†3(1− Z2Z1)

)
n̂i = a†iai |1〉 〈1|i |1〉 〈1|i=0 , 1

2
(1− ZiZi−1)i=1,2,3 |1〉 〈1|i=0,2 , 1

2
(1− Z1Z0)i=1 , 1

2
(1− Z3Z2Z1)i=3

string of X gates then updates all of the qubits which
store the parity of qubit p. The minus sign is intro-

duced to recover the exchange phase factor (−1)
∑p−1

i=0 fi

in Eq. (23).
It is simple to transform between the JW basis and the

parity basis. This can be done using a lower triangular
matrix, as shown below for the fermionic state described
in Table. I.

P · (a |0001〉+ b |0010〉+ c |0100〉+ d |1000〉)

=


1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 .
a


1

0

0

0

+ b


0

1

0

0

+ c


0

0

1

0

+ d


0

0

0

1



 ,

=

a


1

1

1

1

+ b


0

1

1

1

+ c


0

0

1

1

+ d


0

0

0

1



 ,

= a |1111〉+ b |1110〉+ c |1100〉+ d |1000〉 .
(43)

In contrast to the JW encoding, the parity mapping
stores the parity information locally, and the occupation
number non-locally. Like the JW mapping, each mapped
fermionic operator has a weight of O(M) Pauli operators,
each acting on a different qubit.

3. Bravyi–Kitaev encoding

The Bravyi–Kitaev (BK) encoding (Bravyi and Ki-
taev, 2002) is a midway point between the JW and parity
encoding methods, in that it compromises on the local-
ity of occupation number and parity information. The
orbitals store partial sums of occupation numbers. The

occupation numbers included in each partial sum are de-
fined by the BK matrix, βpq.

|fM−1, fM−2, . . . , f0〉 → |qM−1, qM−2, . . . , q0〉 ,

qp =

[
p∑
q=0

βpqfq

]
(mod 2).

(44)

It is defined recursively (Bravyi and Kitaev, 2002; Seeley
et al., 2012) via

β1 = [1],

β2x+1 =

β2x 0

A β2x

 , (45)

where A is an (2x×2x) matrix of zeros, with the bottom
row filled with ones, and 0 is a (2x× 2x) matrix of zeros.
As an example, when M = 4 (x = 1), the matrix βpq is

β4 =


1 0 0 0

1 1 0 0

0 0 1 0

1 1 1 1

 . (46)

When the number of qubits is not a power of two,
the BK encoding is carried out by creating the BK
matrix for the next largest power of two, and only
using the first M rows. The qubit operators for the
BK encoding are considerably more complicated than
those in the JW or parity encodings, and we refer to
Table I for an example and works by Seeley et al. (2012)
and Tranter et al. (2015) for a complete presentation of
them. The advantage of the BK encoding is a reduction
in the number of qubit operations needed to carry out
a fermionic operation. By balancing the locality of
occupation and parity information, the number of terms
needed to realise a fermionic operator in general scales
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as O(log2M). A thorough comparison of the BK and
JW mappings was recently performed by Tranter et al.
(2018) for 86 molecular systems. They found that the
BK transform was in general at least as efficient as the
JW transform, and was in many cases considerably more
so.

We remark that another version of the BK encoding
also exists in the literature. This is referred to as the BK-
tree method, as it takes its inspiration from a classical
data structure known as a Fenwick tree (Havlicek et al.,
2017). We explicitly show how to use this mapping with
molecules in Sec. VII.

As with the standard BK mapping, the BK-tree en-
coding balances how it stores occupation and parity in-
formation. As a result, it too only requires O(log2M)
qubit operations to realise a fermionic operator, in gen-
eral. However, there are subtle differences between the
two mappings. It has been noted that the BK-tree map-
ping produces qubit operators with a greater weight than
the standard BK mapping (Sung, 2018). This would sug-
gest that it is less suitable for near-term quantum com-
putation. However, the BK-tree mapping also possesses
advantages over the standard BK encoding. The BK-tree
mapping is uniquely defined even when the number of or-
bitals, M , is not a power of 2. As a result, when using
the BK-tree mapping we are always able to use the qubit
reduction by symmetry technique, which is discussed in
Sec. IV.C. We have observed that it is only possible to
use this technique with the standard BK mapping when
the number of orbitals is a power of two. As a result, it
is important to consider the benefits of both mappings,
before choosing which one to use.

4. Other encoding methods

There are also other possible encodings, although these
are less widely discussed in the literature, and have not
yet been experimentally implemented. There are non-
linear encoding methods which can be used to encode
M orbitals into M ′ < M qubits (Steudtner and Wehner,
2018a). In some cases, the number of qubits saved can
be exponential in M , although this introduces the need
for O(M)-controlled gates.

In contrast to these non-linear encodings, other map-
pings have been developed which exchange an increased
number of qubits for a lower gate count. Verstaete and
Cirac (2005) developed a scheme to eliminate the strings
of Z operators introduced by the JW transform, resulting
in qubit operators with the same locality as the fermionic
operators. This is achieved by doubling the number of
qubits. Similar ideas were introduced by Ball (2005) and
Farrelly and Short (2014). These ideas were generalised
by Whitfield et al. (2016), who refer to these mappings
as ‘auxiliary fermion transforms’. They too introduce ad-

ditional qubits (at most doubling the number of qubits)
to map local fermionic operators to local qubit opera-
tors. Related techniques have recently been introduced
by Steudtner and Wehner (2018b).

There is also another variant of the BK transform,
known as the Bravyi-Kitaev superfast transform (Bravyi
and Kitaev, 2002). This mapping first represents each
orbital by a vertex on a graph, and each interaction term
in the Hamiltonian as an edge on the graph. Qubits are
then associated to the edges. In general, a graph will
have more edges than vertices, so this increases the num-
ber of qubits required. However, the number of gates
required to implement a fermionic operator will scale as
O(d) where d is the degree of the graph. Assuming fairly
local interactions for a molecule, the degree of the graph
will be less than the number of vertices. As a result, the
BKSF transform will require fewer gates than the JW or
parity mapping. We refer the reader to (Setia and Whit-
field, 2018) for a detailed discussion of the BKSF trans-
form. Recently, generalised superfast encodings (GSE)
have been proposed (Setia et al., 2018), which introduce
additional benefits to the mapping. The first GSE re-
duces the weight of each of the Pauli operators in the
Hamiltonian to O(log d), while the second GSE provides
the possibility of correcting any single qubit error, as
long as d ≥ 6. A related mapping, known as the majo-
rana loop stabilizer code, was recently proposed by Jiang
et al. (2018a). It is capable of correcting any single qubit
error on a square lattice (for which d = 4), and has lower
weight operators than those of the second GSE.

C. Hamiltonian reduction

In this section, we focus on methods used to reduce
the number of qubits required for the second quantised
approach, using Z2 symmetries. More general qubit re-
duction schemes have also been developed (Bravyi et al.,
2017), but these have yet to be numerically or experi-
mentally investigated. Alternatively, one may make use
of quantum autoencoders, which can compress the wave-
function into a smaller Hilbert space (Romero et al.,
2017).

In the JW, parity and BK encoding methods, the num-
ber of qubits is equal to the number of spin-orbitals con-
sidered, M . However, as the molecular Hamiltonian pos-
sesses symmetries, the wavefunction can be stored in a
smaller Hilbert space. Here, we will describe the method
by Bravyi et al. (2017), which utilises two such symme-
tries: conservation of electron number and spin. This
method enables the systematic reduction of two qubits
when using the parity, BK (with the caveat that the
number of orbitals must be a power of two), or BK-
tree encoding. For a molecule with M spin-orbitals, we
can arrange the orbitals such that the first M/2 orbitals
describe spin up states (|↑〉), and the last M/2 orbitals
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describe the spin down states (|↓〉). For non-relativistic
molecules, the total number electrons and the total spin
are conserved. As can be seen for the BK matrix given
in Eq. IV.B.3, every element in the final row is one, and
the first half of the elements in the M/2th row are also
one.

Consequently, the final element of the vector encoded
by this matrix, qM−1, is equal to the number of electrons
(mod 2). Similarly, the M/2th element in the encoded
vector, qM

2 −1, is equal to the number of spin up electrons

(mod 2). As the electron number and total spin are con-
served by the molecular Hamiltonian, these qubits are
only acted on by the identity or Pauli Z operators. We
can replace these operators by their corresponding eigen-
values (+1 for the identity, +1 for ZM−1 if the total num-
ber of orbitals is even, −1 for ZM−1 if the total number
of orbitals is odd, +1 for ZM

2 −1 if the number of spin

up orbitals is even, and −1 for ZM
2 −1 if the number of

spin up orbitals is odd). The Hamiltonian then only acts
on (M − 2) qubits, so two qubits can be removed from
the simulation. Exactly the same method can be used
for the parity and BK-tree encodings. We will explicity
show how this method can be used to remove two qubits
from molecular Hamiltonians in Sec. VII. We remark that
while this transformation leaves the ground state of the
system unchanged, it does alter the excited states that
can be found. In particular, we are restricted to finding
those states with an electron number equal to the atomic
number of the molecule.

V. QUANTUM COMPUTATIONAL CHEMISTRY
ALGORITHMS

In this section, we focus on methods used to solve the
electronic structure problem with a quantum computer.
We describe the quantum phase estimation algorithm
(QPE) and related methods in Sec. V.A. We then give
a comprehensive description of the variational quantum
eigensolver (VQE) in Sec. V.B. Both of these sections
are concerned with finding the ground state energies of
molecules. We conclude this section with a discussion of
methods that can be used to find the excited states of
molecules in Sec. V.C.

It can be argued that the VQE and QPE, as presented
herein, represent near-term and long-term methods
(respectively) for solving chemistry problems with a
quantum computer. However, in reality, aspects of each
algorithm can be incorporated into the other, creating
new methods (Wang et al., 2018; Yung et al., 2014)
which occupy the intermediate region in the quantum
computational chemistry timeline. Moreover, algorithms
to find the ground state using methods which differ from
both QPE and VQE have also been devised (Ge et al.,
2017).

A. Quantum phase estimation

1. Implementation

Phase estimation (Kitaev, 1995) can be used to
find the lowest energy eigenstate, |E0〉, of a Hamilto-
nian (Abrams and Lloyd, 1999). In the case of quantum
computational chemistry, this qubit Hamiltonian en-
codes a molecular fermionic Hamiltonian, and may
have been reduced using the methods described in the
previous sections.

The phase estimation algorithm is described as fol-
lows (Nielsen and Chuang, 2002), and shown in Fig. 5.
The number of ancilla qubits required for phase estima-
tion is determined by the desired success probability and
precision in the energy estimate. Nielsen and Chuang
(2002) show that to obtain a binary estimate of the en-
ergy, precise to n bits, with success probability p, requires

ω = n+ dlog2(2 +
1

2p
)e (47)

ancilla qubits.

1. We initialise the qubit register in state |ψ〉, which
has non-zero overlap with the true FCI ground state
of the molecule. We require an additional register
of ω ancilla qubits. We can expand the state |ψ〉 in
terms of energy eigenstates of the molecular Hamil-
tonian, writing that |ψ〉 =

∑
i ci |Ei〉, where ci are

complex coefficients.

2. We apply a Hadamard gate to each ancilla qubit,
placing the ancilla register in the superposition

1√
2ω

∑
x |x〉, where x are all possible bit-strings that

can be constructed from ω bits. We then apply the
controlled gates shown in Fig. 5:

1√
2ω

∑
i

∑
x

|x〉 ci |Ei〉 →
1√
2ω

∑
i

∑
x

e−2πiEixci |x〉 |Ei〉 .

(48)

3. We apply the inverse quantum Fourier transform
to the ancilla qubits in order to learn the phase,
which encodes the information about the energy
eigenvalue:

1√
2ω

∑
i

∑
x

e−2πiEixci |x〉 |Ei〉
QFT−1

−−−−−→
∑
i

ci |bin(Ei)〉 |Ei〉 .

(49)

4. We measure the ancilla qubits in the Z basis, which
gives the ground state energy eigenvalue as a binary
bit-string bin(E0), accurate to n bits with proba-
bility p×|c0|2. This collapses the main register into
the corresponding energy eigenstate, |E0〉.
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|0〉 H •

QFT−1|0〉 H •

|0〉 H •

|ψ〉 e−2πiH20 e−2πiH21 e−2πiH22

FIG. 5 The canonical quantum phase estimation circuit with
three ancilla qubits. When the ancilla qubits are in state
|x〉, a control rotation e−2πiHx is applied to the target state
|ψ〉. QFT denotes the quantum Fourier transform (Nielsen
and Chuang, 2002). By measuring the ancilla qubits in the
computational basis, they collapse to an eigenvalue of H and
the register qubits collapse to the corresponding energy eigen-
state.

To realise the standard phase estimation algorithm
given above, we sequentially need to time evolve the main
register under the Hamiltonian H for times t0 = 2π, t1 =
4π, ..., tω−1 = 2ωπ. The total coherent time evolution, T ,
is then given by approximately T = 2ω+1π. For a suc-
cess probability of p = 0.5, we require ω = n + 2 ancilla
qubits. The total evolution time can be related to the
binary precision ε = 1/2n, to show that T = 8π/ε. Given
that our success probability for this estimate is 0.5, we
expect to have to repeat the procedure twice to obtain a
good estimate of the ground state. This is equivalent to
a total of 16π/ε calls to the unitary e−iH (Reiher et al.,
2017).

The basic phase estimation algorithm described above
can be improved in many ways. It can be modified to use
only a single ancilla qubit, which is used to measure each
bit in the energy eigenvalue sequentially (Aspuru-Guzik
et al., 2005). It can also be made more efficient (Svore
et al., 2013), parallelised (Knill et al., 2007; Reiher et al.,
2017), or made more resilient to noise using time-series
analysis (O’Brien et al., 2018). Recent work has fur-
ther improved upon the asymptotic scaling of phase esti-
mation by using classically obtainable knowledge about
the energy gap between the ground and first excited
states (Berry et al., 2018). The ultimate limit for the
number of calls required to e−iH is π/ε, which is ap-
proximately obtained using Bayesian approaches (Berry
et al., 2009; Paesani et al., 2017b; Wiebe and Granade,
2016). For the case of molecular simulation Reiher et al.
(2017) show that a number of calls scaling as π/2ε will
suffice.

Regardless of which version of phase estimation is
used, there are two universal features. Firstly, it is
necessary for the register to initially be in a state with
a non-zero overlap with the ground state. Secondly, we
must have a way to coherently implement time evolution
under the Hamiltonian H. We will discuss ways to
satisfy both of these requirements in the following two
sections.

2. State preparation

Initialising the qubit register in a state which has a
sufficiently large overlap with the ground state is a non-
trivial problem. This is important, because a randomly
chosen state would have vanishing probability of collaps-
ing to the desired ground state, as the system size in-
creases. Moreover, it has been shown that if our state
preparation scheme is imperfect, unbiased ground state
preparation becomes exponentially more difficult as the
system increases in size (McClean et al., 2014). Sev-
eral techniques have been proposed for state prepara-
tion, including: specific chemical state preparation rou-
tines (Babbush et al., 2015; Sugisaki et al., 2016, 2018;
Tubman et al., 2018; Wang et al., 2008), using the varia-
tional methods discussed in the next section (Yung et al.,
2014), quantum cooling (Xu et al., 2014), and most com-
monly, adiabatic state preparation (Aspuru-Guzik et al.,
2005; Veis and Pittner, 2014). We focus here on adiabatic
state preparation.

For any Hamiltonian Hs, we can prepare a state |ψ〉
that is close to its ground state via adiabatic state prepa-
ration. To do so, we first start with a simple Hamiltonian
H0 and prepare its ground state. We then time evolve the
system under a Hamiltonian that changes slowly from H0

to Hs, thus preparing a state that is close to the ground
state of Hs. The efficiency of adiabatic state preparation
depends on the gap between the ground state and the
first excited state along the path between H0 and Hs.
For molecules, this may be achieved by initialising the
system in the ground state of the Hartree-Fock Hamil-
tonian (H0), and interpolating between the initial and
final Hamiltonians using an annealing schedule such as
H(t) = (1−t/T )H0 +(t/T )Hs, where t is the time and T
is the maximum desired simulation time (Aspuru-Guzik
et al., 2005; Veis and Pittner, 2014). The maximum an-
nealing time, T , is given by

T ≈ O(
M4

mins∆(s)
), (50)

where ∆(s) = E1(s) − E0(s) and M is the number of
spin-orbitals in the molecule, although the true scaling
may be closer to O(M2/mins∆(s)), using physical argu-
ments (Reiher et al., 2017). It is difficult to know the
size of the gap along the entire adiabatic path a priori,
which is potential problem for applying ASP.

There are a variety of methods that can be used to
evolve the system under this time-dependent Hamilto-
nian, which are discussed below.
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TABLE II Asymptotic query complexities of quantum simu-
lation algorithms as a function of the simulation time t, sim-
ulation error ε, and the Hamiltonian sparsity d.

Algorithm Query complexity (d, t,ε)

Product formulae O
(

poly(d) t
2

ε

)
Taylor series expansion O

(
d2t log(d2t/ε)

log log(d2t/ε)

)
Qubitization +

O
(
dt+ log(1/ε)

log log(1/ε

)
Quantum signal processing

3. Hamiltonian simulation

As discussed above, both QPE and adiabatic state
preparation require implementation of the time evolu-
tion operator, e−iHt, where H may or may not be time
dependent. There are several ways to do this, each with
their own advantages and disadvantages.

a. Product formulae

The most simple method has already been described
in Sec. II; Trotterization. For a time-independent Hamil-
tonian H, if it can be decomposed as H =

∑
i hi, where

hi are local Hamiltonians, then a first order Lie-Trotter-
Suzuki approximation (Trotter, 1959) of the time evolu-
tion is

e−iHt =

(∏
i

e−ihit/S

)S
+O(t2/S). (51)

This approach is also referred to as the ‘product formu-
lae’ method. In practice, to achieve accuracy ε, the num-
ber of Trotter steps S = O(t2/ε) should be large in or-
der to suppress the errors in the approximation. This
is effectively a stroboscopic evolution under time evolu-
tion operators corresponding to each of the terms in the
Hamiltonian. It is also possible to use higher order prod-
uct formulae (Berry et al., 2007; Dür et al., 2008; Suzuki,
1976), which scale better with respect to the simulation
error than the first order method. Recently, randomisa-
tion procedures have been shown to improve the accuracy
obtained using product formulae (Campbell, 2018; Childs
et al., 2018).

Product formulae can also be used to simulate dynam-
ics under a time dependent Hamiltonian, H(t). Wiebe
et al. (2011) showed that the accuracy of such simulations
depends on the derivatives of the Hamiltonian (although
this dependence may be alleviated by incorporating ran-
domisation procedures (Poulin et al., 2011)).

As discussed above, the error in the simulation is
determined by the Trotter order used, and the number
of Trotter steps. However, it is important to note that
the gate counts of all product formula based methods

scale as O(poly(1/ε)). Recent work (Endo et al., 2018b)
investigated suppressing the error arising from using a
finite number of Trotter steps, by using extrapolation
(using extrapolation for physical error mitigation will
be described in more detail in Sec. VI). Those authors
performed simulations with several different numbers
of Trotter steps, and then extrapolated their values to
obtain an estimate of the result in the limit of an infinite
number of Trotter steps.

b. Advanced Hamiltonian simulation methods

Alternative methods have been introduced which
can realise the time evolution operator more efficiently
than Trotterization, including; quantum walk based
methods (Berry et al., 2015b; Childs and Kothari, 2011),
Taylor series expansions (Berry and Childs, 2012; Berry
et al., 2015a,c) or Chebyshev polynomial approximations
(Subramanian et al., 2018), and qubitization (Low, 2018;
Low and Chuang, 2016) in conjunction with quantum
signal processing (Low and Chuang, 2017; Low et al.,
2016). These methods make use of oracle access to the
Hamiltonian and provide improved efficiency when sim-
ulating Hamiltonians which are d-sparse (they have at
most d non-zero elements in each row and column, where
d is a polylogarithmic function of the matrix dimension).
The Taylor series and qubitization based methods also
scale exponentially better with regards to the accuracy
of the simulation than product formula based methods.
We refer the readers to work by Childs et al. (2017) and
the review of Cao et al. (2018b) for a summary of recent
progress in Hamiltonian simulation and a comparison of
the different methods.

4. Implementing time evolution for chemistry simulation

Both product formulae and more advanced methods
of Hamiltonian simulation have been considered in the
context of solving problems in quantum computational
chemistry. Once again, the number of spin-orbitals in
the molecule, or spin-sites in a lattice is given by M , and
the number of electrons is given by N .

Early works on finding the ground state of molecular
systems using phase estimation used first and second
order product formalae (Aspuru-Guzik et al., 2005;
Babbush et al., 2015; Hastings et al., 2015; Kassal et al.,
2008; Poulin et al., 2015; Reiher et al., 2017; Wecker
et al., 2014; Whitfield et al., 2011). A series of improve-
ments throughout these papers reduced the scaling of
phase estimation for molecules from O(M11) (Wecker
et al., 2014) to (empirically) O(M5) (Babbush et al.,
2015). Additional benefits have recently been obtained
using plane wave based basis sets, which reduces the
scaling to at most O(M7/2t3/2) (Babbush et al., 2018c).
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As would be expected, the advanced Hamiltonian sim-
ulation algorithms have led to a reduction in the asymp-
totic scaling of chemistry algorithms. Babbush et al.
made use of the Taylor series method (Berry et al., 2015a)
to produce algorithms which simulate time evolution un-
der a molecular Hamiltonian scaling as O(M5t) (Bab-
bush et al., 2016) and O(N2M3t) (Babbush et al., 2017)
(both excluding logarithmic factors). The algorithms
scale exponentially better in the simulation error than
Trotter based algorithms. The first result uses the sec-
ond quantised representation of the Hamiltonian. The
second, more efficient result is obtained by writing the
Hamiltonian in the basis of Slater determinants, where it
is known as the CI matrix, which was initially suggested
as the basis for a quantum algorithm by Toloui and Love
(2013). While this matrix has an exponential number of
elements, it has a sparsity of O(N2M2) when the number
of orbitals is much larger than the number of electrons
(the continuum limit, required for high accuracy calcu-
lations). The Slater rules (Helgaker et al., 2014) can be
used to determine where the non-zero elements are lo-
cated. The benefit obtained from using the CI matrix is
both a reduced gate count, and fewer qubits (a reduced
spatial complexity). Because the particle number in each
Slater determinant is fixed, only O(N log2(M)) qubits are
required (plus additional ancilla qubits). By constructing
oracle circuits to find the non-zero elements, the reported
algorithmic scalings can be obtained. These algorithms
also require calculation of the molecular integrals on the
quantum computer, which are performed efficiently by
exploiting an analogy between the discretisation of space
in Riemannian integration and the discretisation of time
in the Taylor series method to simulate a time depen-
dent Hamiltonian (Babbush et al., 2016). Once again,
the introduction of the plane wave and plane wave dual
basis sets made both of these algorithms more efficient
to perform, resulting in an asymptotic depth scaling of
O(M8/3t) (Babbush et al., 2018c).

The Taylor series method is also used in the first
quantised real space algorithm of Kivlichan et al. (2017)
to obtain a gate scaling of O((N/h2 + N2)t) (excluding
logarithmic factors), where h is the grid spacing. It was
also used in its time dependent form for simulation in the
‘interaction picture’, which enables more efficient time
evolution in a plane wave basis, scaling as O(M2t) (Low
and Wiebe, 2018) (although this comes at a cost of
O(M log2(M)) spatial complexity). A similar interac-
tion picture method was used in the first quantised,
plane wave basis method discussed in Sec. IV.A, which
achieved a gate scaling of O(N8/3M1/3t) and a spatial
complexity of O(N log2(M)) (Babbush et al., 2018a).

The recently proposed quantum signal processing
and qubitization methods have also been applied to
quantum computational chemistry simulation. Berry

et al. (2018) showed how qubitization can be used to
perform the time evolution required for phase estima-
tion with zero error. Recent work has shown that by
implementing e−if(H)t in phase estimation (where f(H)
is an efficiently invertible function of the Hamiltonian),
the errors that arise from trying to approximate e−iHt

can be circumvented (Berry et al., 2018; Poulin et al.,
2018). These techniques, together with qubitization and
the plane wave dual basis, were used by Babbush et al.
(2018b), who developed new techniques and performed
a resource analysis for fault-tolerant implementations
of phase estimation. When performing a fault-tolerant
resource estimation, the quantity of interest is the
number of T gates, as these are the most costly gates
to implement for error correcting schemes such as the
surface code. As such, the scaling reported below is
not comparable to the other scalings reported in this
review, which describe primitive gate scalings, without
considering the overhead of error correction. As part
of that work, Babbush et al. (2018b) have carried out
T gate estimations for many of the papers described in
this review. Their algorithm results in a T gate scaling
of O((M3 + M2log(1/ε))/ε), which is asymptotically
better than all previous results. We will discuss the cost
(in terms of wall time and number of physical qubits) of
applying this method to problems of interest in Sec. VIII.

Recently, new procedures have been developed for
time evolution under lattice Hamiltonians. These
Hamiltonians have geometrically local interactions of
qubits that are laid out on a lattice. They relate to
systems of interest in condensed matter physics and
chemistry, such as the Fermi-Hubbard model, a proto-
typical model for high temperature superconductivity.
For example, a qubit lattice Hamiltonian is obtained
for the Fermi-Hubbard model when using a locality
preserving mapping (Jiang et al., 2018a; Verstaete
and Cirac, 2005). Haah et al. (2018) made use of
arguments about the speed of information propagation
in lattice systems (Lieb and Robinson, 1972; Osborne,
2006) to obtain a simulation algorithm requiring
O(Mt polylog(Mt/ε)) gates to simulate time evolution
under lattice Hamiltonians. Similar results were recently
obtained by Childs and Su (2019), who proved that a
kth order product formula can simulate time evolution of
an M qubit lattice Hamiltonian using O((Mt)1+ 1

k /ε
1
k )

elementary operations. These algorithms are almost
optimal in terms of gate complexity.

While the advanced Hamiltonian simulation methods
described above are asymptotically more efficient than
Trotterization, the Trotter error bounds appear to be
loose by several orders of magnitude (Babbush et al.,
2015; Poulin et al., 2015). A recent study of spin Hamil-
tonians (Childs et al., 2017) found that while the asymp-
totic scaling of Trotter methods was much worse than the
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qubitization and Taylor series methods, when numerical
simulations were performed, Trotter methods required
lower gate counts than the other methods. Moreover,
the Taylor series method requires elementary logic op-
erations, resulting in a large T gate count when consid-
ering fault-tolerant approaches (although recent work by
Sanders et al. (2019) may help to alleviate this problem).
However, the Taylor series method is required to imple-
ment the most efficient time dependent techniques, such
as the interaction picture. As such, it is not yet possi-
ble to say which method will perform best for chemical
systems.

Despite this progress, all of the methods discussed
above require circuits with a large number of gates. As
a result, these methods are typically assumed to require
fault-tolerance (Jones et al., 2012). As near-term quan-
tum computers will not have enough physical qubits for
error correction, the long gate sequences required by
these algorithms make them unsuitable for near-term
hardware. Consequently, alternative methods are re-
quired for near-future chemistry simulation.

B. Variational algorithms

A highly promising chemistry algorithm for the NISQ
era is the variational quantum eigensolver (VQE), first
proposed and experimentally realised by Peruzzo et al.
(2014), and elaborated on by McClean et al. (2016). The
VQE aims to find the lowest eigenvalue of a Hamilto-
nian, such as that of a molecule. The VQE is a hybrid
quantum-classical algorithm. This means that it only
uses the quantum computer for a classically intractable
subroutine. This exchanges the long coherence times
needed for phase estimation, for a polynomial overhead
due to measurement repetitions and classical optimisa-
tion.

The VQE has been experimentally demonstrated on
most leading quantum architectures (Colless et al., 2018;
Ganzhorn et al., 2018; Hempel et al., 2018; Kandala et al.,
2017; O’Malley et al., 2016; Peruzzo et al., 2014; Santa-
gati et al., 2018; Shen et al., 2017), and shows many desir-
able features. It appears to be robust against errors (Mc-
Clean et al., 2016; O’Malley et al., 2016), and capable of
finding the ground state energies of small molecules us-
ing low depth circuits (Kandala et al., 2017). Despite the
successes of the VQE, several challenges remain – most
notably the difficulty of classical optimisation, the large
number of measurements required, the construction of
suitable quantum circuits, and mitigating the effects of
noise. To date, the VQE has only been applied to second
quantised basis set simulations, and so our discussion of
it will only be concerned with that scenario.

FIG. 6 A schematic of the variational quantum eigensolver
(VQE). The classically intractable state preparation and mea-
surement subroutines (red and blue) are performed on the
small quantum computer. The current energy and parame-
ter values are fed into a classical optimisation routine (green),
which outputs new values of the parameters. The new param-
eters are then fed back into the quantum circuit. The gates
acting on the qubits can be any parametrised gates, e.g. sin-
gle qubit rotations or controlled rotations. Non-parametrised

gates (e.g. X, Y, Z, CNOT) are also allowed. The circuit U(~θ)

and trial wavefunction it produces |ψ(~θ)〉 are both known as
the VQE ansatz. The process is repeated until the energy
converges.

1. Implementation

The VQE relies upon the Rayleigh-Ritz variational
principle (Sakurai and Napolitano, 2017). This states

that for a parametrised trial wavefunction |ψ(~θ)〉

〈ψ(~θ)|H |ψ(~θ)〉 ≥ E0, (52)

where E0 is the lowest energy eigenvalue of the Hamilto-
nian H, and ~θ is a vector of independent parameters,
~θ = (θ1, ..., θn)T . This implies that we can find the
ground state wavefunction and energy by finding the val-
ues of the parameters which minimise the energy expec-
tation value. As classical computers are unable to effi-
ciently prepare, store and measure the wavefunction, we
use the quantum computer for this subroutine. We then
use the classical computer to update the parameters us-
ing an optimisation algorithm. This sequence is shown in
Fig. 6. The qubit register is initialised in the zero state.
We can optionally apply a non-parametrised set of gates
to generate a mean-field or multi-reference state (Bab-
bush et al., 2015; Dallaire-Demers et al., 2018; Sugisaki
et al., 2016, 2018; Tubman et al., 2018; Wang et al., 2008)
describing the chemical system of interest

|ψref〉 = Uprep|0̄〉. (53)

A series of parametrised gates U(~θ) =
UN (θN ) . . . Uk(θk) . . . U1(θ1) are then applied to the
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qubits. Here, Uk(θk) is the kth single or two qubit
unitary gate, controlled by parameter θk. This circuit
generates the trial wavefunction

|ψ(~θ)〉 = U(~θ)|ψref〉. (54)

We refer to |ψ(~θ)〉 as the ansatz state, and U(~θ) as the
ansatz circuit. However, the reader will find that the
word ansatz is typically used interchangeably to describe
both. The set of all possible states that can be created
by the circuit U is known as the ‘ansatz space’.

Once the wavefunction has been generated, we need
to measure the expectation value of the Hamiltonian.
Molecular Hamiltonians in the second quantised basis
set approach can be mapped to a linear combination of
products of local Pauli operators, using the transforms
introduced in Sec. IV.B,

H =
∑
j

hj
∏
i

σji , (55)

where hj is a scalar coefficient, σji represents one of I ,
X , Y or Z, i denotes which qubit the operator acts on,
and j denotes the term in the Hamiltonian. We can then
use the linearity of expectation values to write that

E(~θk) =

N∑
j

hj〈ψ(~θk)|
∏
i

σji |ψ(~θk)〉. (56)

These state preparation and measurement steps should
be repeated many times in order to measure the expec-
tation value of every term in the Hamiltonian to the re-
quired precision. This is known as the Hamiltonian aver-
aging method of calculating the energy (McClean et al.,
2014), and requires O(1/ε2) measurements to determine
the energy to a precision ε (McClean et al., 2016; Romero
et al., 2019). Specifically, it can be shown that the num-
ber of measurements required scales as O(M6/ε2) in a
gaussian orbital basis, and O(M4/ε2) for a plane wave
dual basis (Babbush et al., 2018c; Cao et al., 2018b; Mc-
Clean et al., 2014). The cost of measurement can be re-
duced by a suitable grouping of Hamiltonian into terms
that can be simultaneously measured (Izmaylov et al.,
2018; Kandala et al., 2017; McClean et al., 2016). As
the quantum computer is reinitialised for each repetition,
the required coherence time is dramatically reduced com-
pared to quantum phase estimation.

Once the energy has been measured, it is used as the
input for a classical optimisation routine, together with
the current values of ~θk. The optimisation routine out-
puts new values of the circuit parameters, ~θk+1. These

are used to prepare a new trial state, |ψ(~θk+1)〉, which is
ideally lower in energy. These steps are repeated until the
energy converges to a minimum. While the algorithmic
description of the VQE is simple, effective implementa-
tion can be challenging – even for small chemical systems.

One must select an ansatz appropriate for the capabili-
ties of the available hardware, as well as a suitable clas-
sical optimisation routine. The merits, drawbacks and
implementation of common ansatze are discussed in the
following section. We then summarise previous investi-
gations into classical optimisation routines for use in the
VQE, as well as related methods which aid optimisation.

2. Ansatze

The parametrised circuits, or ‘ansatze’, for the VQE lie
between two extremes; hardware-efficient and chemically
inspired.

a. Hardware efficient ansatze

Hardware efficient ansatze have been in use since
the first VQE experiment by Peruzzo et al. (2014). They
were also independently introduced by Farhi et al. (2014)
for the Quantum Approximate Optimisation Algorithm
(QAOA), which is very similar to the VQE. These ansatze
rely on short circuits, and utilise a limited selection of
gates that are easy to implement on the available hard-
ware. As such, they are well suited to the quantum
computers currently available, which have short coher-
ence times and constrained gate topologies. However
hardware-efficient ansatze are unlikely to be suitable for
large molecules, as they take into account no details of the
chemical system being simulated. One such hardware-
efficient ansatz was used to find the ground state energies
of several small molecules by Kandala et al. (2017).

Recent work by McClean et al. (2018) has shown that
using hardware efficient ansatze with random initial pa-
rameters leads to several problems. The trial states pro-
duced will cluster on a ‘barren plateau’ in Hilbert space,
with energy value close to the average of a totally mixed
state. The gradient is also zero among most directions of
this space, making classical optimisation extremely dif-
ficult. These effects become exponentially more promi-
nent as the number of qubits and circuit depth increases.
This suggests that randomly initialised hardware efficient
ansatze are not a scalable solution for problems in quan-
tum computational chemistry.

Recent work (Barkoutsos et al., 2018) has improved
the suitably of hardware efficient ansatze for chemistry
problems, by considering gates which conserve particle
number, and so permit the use of a Hartree–Fock initial
state. This proposal has been experimentally demon-
strated (Ganzhorn et al., 2018) on a superconducting
system for which the two-qubit number conserving
entangling gates were natural operations.

b. Chemically inspired ansatze
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Chemically inspired ansatze result from adapting
classical computational chemistry algorithms to run ef-
ficiently on quantum computers. These ansatze prepare
a trial state by considering the details of the chemical
system under investigation. Most notably, the coupled
cluster (CC) method discussed in Sec. III.C can be ex-
tended to produce the unitary coupled cluster (UCC)
ansatz (Bartlett et al., 1989; Hoffmann and Simons,
1988). The UCC method creates a parametrised trial
state by considering excitations above the initial refer-
ence state, and can be written as

U(~θ) = eT−T
†
, (57)

where T =
∑
i Ti, and

T1 =
∑

i∈virt,α∈occ
tiαa

†
iaα,

T2 =
∑

i,j∈virt,α,β∈occ

tijαβa
†
ia
†
jaαaβ ,

...

(58)

and occ are occupied orbitals in the reference state, and
virt are orbitals that are initially unoccupied in the ref-
erence state. The UCC method is intractable on classical
computers, but can be efficiently implemented on a quan-
tum computer. It was originally proposed for quantum
computational chemistry by Yung et al. (2014) and Pe-
ruzzo et al. (2014). A comprehensive review of the UCC
method for quantum computational chemistry is given
by Romero et al. (2019).

The UCC method retains all of the advantages of the
CC method, with the added benefits of being fully vari-
ational, and able to converge when used with multi-
reference ground states. As with the CC method, the
UCC ansatz is typically truncated at a given excitation
level – usually single and double excitations (known as
UCCSD). We show a canonical implementation of the
UCC ansatz (as described by (Romero et al., 2019)) in
Sec. VII. The formal gate scaling of this implementation
of the UCC ansatz is approximately O(M3N2) (where
M is the number of spin-orbitals, and N is the num-
ber of electrons) when using the Jordan-Wigner map-
ping (Romero et al., 2019). This assumes that a single
Trotter step can be used, which appears to yield accurate
results (Barkoutsos et al., 2018; Romero et al., 2019).
The number of parameters required scales formally as
O(M2N2). Even for simple molecules, this can quickly
approach thousands of free parameters, making classical
optimisation difficult.

However, it is important to note that in reality the
gate scaling is typically better than the upper bound
given above, as many excitations are forbidden by the
symmetry point groups of molecular orbitals (Hempel
et al., 2018). Moreover, we can use classically tractable
methods to get initial approximations for the remaining

non-zero parameters (O’Malley et al., 2016; Romero
et al., 2019), which makes the classical optimisation step
of the VQE easier. In addition, recent work by Motta
et al. (2018) has reduced the gate scaling of the UCC
ansatz to O(M4) with increasing molecular size, and
O(M3) for a fixed molecular size and increasing basis
set size.

Alternative (often heuristic) variants of the UCC
ansatz have also been proposed for solving problems in
quantum computational chemistry. These include: the
Bogoliubov-UCC ansatz (Dallaire-Demers et al., 2018)
(a quasiparticle variant of UCC that is suitable for
more general Hamiltonians than the UCC ansatz, po-
tentially including pairing terms (superconductivity) or
three body terms (nuclear physics)), the ‘low-depth cir-
cuit ansatz’ (Dallaire-Demers et al., 2018) (which at-
tempts to mimic the aforementioned BUCC ansatz using
a circuit scaling linearly in the number of qubits), qubit
coupled-cluster (Ryabinkin et al., 0) (which produced far
lower gate counts than the UCC ansatz when applied
to several small molecules), and generalised-UCC (Lee
et al., 0) (which constructs a powerful heuristic ansatz
out of a coupled-cluster ansatz which considers pairwise
electron excitations).

c. Hamiltonian variational

There are also variational ansatze that lie between
the two extremes described above. One important exam-
ple is the Hamiltonian variational ansatz (also commonly
referred to as a Trotterized adiabatic state preparation
(TASP) ansatz), proposed by Wecker et al. (2015a). This
ansatz was inspired by adiabatic state preparation and
the QAOA. The idea is to Trotterize an adiabatic path
to the ground state, using a number of Trotter steps that
would be insufficient for accurate results. One can then
variationally optimise the Trotter evolution times to cre-
ate a variational ansatz for the ground state. The num-
ber of parameters in this ansatz scales linearly with the
number of Trotter steps, S.

The introduction of the plane wave based basis
sets (Babbush et al., 2018c) has made the Hamiltonian
variational algorithm more efficient to implement. The
recent work of Kivlichan et al. (2018) showed that for
Hamiltonians in this basis, we can implement Trotter
steps in depth O(M), using O(M2) two qubit gates
(where M is again the number of orbitals or plane waves
in the basis set). This is a significant improvement
over the scaling found by Wecker et al. (2015a), which
was approximately O(M4). Similar improvements in
asymptotic scaling were obtained using the nested de-
composition method introduced by Motta et al. (2018).
The number of gates required to implement a Trotter
step of the Hamiltonian is O(M2log2(M)) with increas-
ing molecular size, and O(M3) for fixed molecular size
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and increasing basis size. Notably, the nested decom-
position method is applicable using the gaussian basis
sets described in Sec. III.D. Fewer basis functions (and
therefore qubits) are needed to describe molecules us-
ing a gaussian basis set than using a plane wave basis set.

3. Classical optimisation

As discussed above, classical optimisation is a crucial
aspect of the VQE. However, finding the global minimum
of a complicated function, in a high dimensional param-
eter space, is in general very difficult. Classical optimi-
sation routines must be both fast and accurate. They
also need to be robust to stochastic noise, which will be
significant in near-term quantum computers.

Classical optimisation algorithms can be broadly di-
vided into two classes; direct search and gradient based
methods. Direct search algorithms do not make use of the
gradient of the objective function, and include: particle
swarm optimisation, Nelder-Mead simplex, and Powell’s
conjugate direction algorithm. Gradient based methods
use the gradient of the objective function in order to de-
termine how to update the parameters. They include:
gradient descent, the simultaneous perturbation stochas-
tic approximation (SPSA) algorithm, and L-BFGS-B.
Direct search algorithms are considered more robust to
noise than gradient based methods, but may require more
function evaluations (Kolda et al., 2006).

In this section we summarise the results of previous
investigations into classical optimisation algorithms used
in quantum computational chemistry. We also discuss
methods to assist the classical optimisation procedure.

a. Previous optimisation studies

Experimental VQE implementations are limited to
small molecules by the number of qubits available. As
a result, the parameter space to optimise over is rela-
tively small, so previous results may not be indicative of
how these optimisation algorithms will perform for large
problems. However, these studies are able to demon-
strate which methods cope best with the high noise rates
of current hardware.

The original implementation of the VQE, by Peruzzo
et al. (2014), used the Nelder-Mead simplex method.
They found this derivative-free algorithm to be superior
to gradient descent, which was unable to converge
to the ground state energy due to high noise rates.
Nelder-Mead was also used successfully (Shen et al.,
2017) and partially successfully (Hempel et al., 2018) in
trapped ion implementations of the VQE. In the latter
case, while Nelder-Mead was able to successfully find
the ground state of the Hydrogen molecule, it became

trapped in local minima when applied to Lithium
Hydride. In order to overcome this, a hybrid algorithm
combining Nelder-Mead with simulated annealing was
used, which gave a better estimate of the ground state
energy. Derivative-free methods were also used by
Colless et al. (2018) and Santagati et al. (2018), who
used VQE based methods to calculate both the ground
and excited states of small molecules. Both works used
particle swarm optimisation, due to its resilience to
noise and avoidance of local minima. The first successful
experimental use of a derivative based method in the
VQE was by Kandala et al. (2017). They used the SPSA
algorithm, because of its purported resilience to noise
and low number of required function evaluations (Spall,
1992). This same algorithm was also used by Ganzhorn
et al. (2018).

To date, there have been several numerical stud-
ies comparing different optimisation algorithms for the
VQE. McClean et al. (2016) compared four direct search
algorithms: Nelder-Mead simplex, and TOMLAB’s glc-
Cluster, LGO, and multiMin algorithms. Their numeri-
cal simulations included measurement noise to determine
the suitability of the algorithms for stochastic objective
functions. They found LGO to have the fastest conver-
gence (up to 1000 times faster than simplex), and glc-
Cluster to converge to the most accurate result, especially
as the measurement precision was increased.

Romero et al. (2019) also compared four optimisation
algorithms: Nelder-Mead simplex, Powell, COBYLA,
and L-BFGS-B (L-BFGS-B is the only gradient based
algorithm of the four). They found that L-BFGS-B out-
performed the other algorithms, converging most rapidly,
and often to the lowest energy value. Simplex performed
very poorly, often not converging, and typically achieving
the worst energy estimate of the four algorithms when it
did converge. These authors found that they were able
to markedly improve the performance of the algorithms
by using a chemically motivated (Möller-Plesset) guess
for the UCC excitation amplitudes. These simulations
neglected both shot and gate noise, supporting the claim
that gradient based methods converge more rapidly than
direct search algorithms in low noise environments.

Heuristic algorithms have also been used in numerical
studies of the VQE. Wecker et al. (2015a) introduced the
‘global variational’ method for optimisation, alongside
their Hamiltonian variational ansatz. They found that
their algorithm converged quickly, but was susceptible
to becoming trapped in local minima. Moreover, they
noted that simulations with a greater number of param-
eters became trapped more often. They attributed this
to motion in the ‘wrong’ direction being more likely in
larger parameter spaces.
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b. Related methods of optimisation

Methods which aid classical optimisation, but that
are not optimisation algorithms in their own right, have
also been proposed. We discuss these methods in the
following section.

Quantum gradient finding
Quantum circuits have been proposed which calculate
the analytic gradient of the energy with respect to one
of the parameters (Dallaire-Demers et al., 2018; Romero
et al., 2019). This avoids the use of finite difference
formulae, which restrict the accuracy of gradient evalua-
tion, as the finite difference considered is limited by the
noise in the energy evaluation. The quantum gradient
method makes use of the differentiability of parametrised
unitary operators. Parametrised unitaries can be written
as exponentials of the parameter and an anti-Hermitian
operator, which are simple to differentiate. A circuit to
obtain the gradient of a toy VQE simulation is shown in
Fig. 7.

Annealed and morphed Hamiltonians
Several works have used concepts from adiabatic quan-
tum computing to aid the classical optimisation proce-
dure. Wecker et al. (2015a) proposed an ‘annealed vari-
ational’ method alongside their Hamiltonian variational
ansatz. They first decompose the molecular Hamiltonian
of interest into

Hs = H0 + sH1, (59)

where H0 is a Hamiltonian that is easy to solve, and
H1 is a difficult Hamiltonian to solve. When s = 1,
the Hamiltonian is equivalent to the problem Hamilto-
nian. As described above, the Hamiltonian variational
ansatz is comprised of a number of Trotter steps. The
annealed variational method works by considering the
S steps as separate, distinct problems. The input state
to the first step is the ground state of Hs=0. The
first step uses the Hamiltonian variational method to
find the solution of Hs=1/S . This state is then the
input into step 2. Step 2 targets the ground state
of Hs=2/S . This process is repeated until the final

|0〉a H • • Rx(π
2

)

|0〉 X Rx(θ) Y

FIG. 7 A quantum circuit to calculate the gradient of a toy
VQE simulation. In this toy problem, the ansatz used is
|ψ〉 = Rx(θ) |0〉, and the Hamiltonian is H = Y . The energy
is given by E(θ) = 〈ψ(θ)|H |ψ(θ)〉 = 〈0|R†x(θ)Y Rx(θ) |0〉.
The energy gradient, ∂E

∂θ
= i

2
(〈0|XR†x(θ)Y Rx(θ) |0〉 −

〈0|R†x(θ)Y Rx(θ)X |0〉). This is the expectation value gen-
erated by the circuit above.

step, which takes the ground state of Hs=(S−1)/S as
its input, and targets the ground state of Hs=1. All
of these steps are then combined, and used as the
starting point for the standard Hamiltonian variational
approach, as described above. This procedure was useful
for avoiding local minima. A similar technique has re-
cently been proposed by Garcia-Saez and Latorre (2018).

Variational imaginary time evolution
Imaginary time evolution under a Hamiltonian, H, is
defined by |ψ(τ)〉 = e−Hτ |ψ(0)〉. If the initial state has
a non-zero overlap with the ground state, the system de-
terministically propagates to the ground state as τ →∞.
As imaginary time evolution is a dissipative process, it
cannot be directly simulated with a unitary quantum
circuit. However, a variational approach has recently
been proposed which simulates imaginary time evolution
on a quantum computer (McArdle et al., 2018a). When
the ansatz used is sufficiently powerful, imaginary time
evolution is able to avoid local minima, and converge
to the ground state of the system. Recent work by
Mitarai and Fujii (2018) has increased the experimental
feasibility of the variational imaginary time algorithm,
by reducing the degree of qubit connectivity required.

Particle-hole transform
Recent work by Barkoutsos et al. (2018) transforms the
Hamiltonian such that it only measures the energy of
excitations above the Hartree-Fock state (the correlation
energy). Because only the correlation energy is calcu-
lated, fewer measurements are required and classical
optimisation becomes easier. Overall, simulated VQE
calculations on small molecules were sped up by a factor
of 2-4 (Barkoutsos et al., 2018).

C. Evaluation of excited states

In this section, we discuss methods used to evaluate
the excited states of molecular Hamiltonians.

1. WAVES

The witness-assisted variational eigenspectra solver
(WAVES) (Santagati et al., 2018) combines the varia-
tional method with phase estimation to find the excited
states of Hamiltonians. The method works as follows.
We first use the circuit shown in Fig. 8(a) alongside
the VQE, to minimise a cost function which depends on
both the energy of the register qubits, E, and the Von-
Neumann entropy, S, of the ancilla qubit.

Fcost = E(~θ) + aS(~θ), (60)

where a is a constant which determines the trade-off be-
tween minimising energy and entropy. Minimising the
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|0〉a H • H

|0̄〉 U(~θ) e−iHst

(a)

|0〉a H • H

|0̄〉 U(~θ) Ue e−iHst

(b)

FIG. 8 Quantum circuits in the WAVES protocol. (a) The
circuit can generate an eigenstate of the Hamiltonian, Hs. (b)
The operator Ue excites the system from its ground state to
a state that is close to an excited state.

entropy forces the system into the ground state of the
Hamiltonian, Hs and we obtain the parameter ~θmin which
gives the ground state.

We then apply the circuit shown in Fig. 8(b), where

the state UeU(~θmin) |0〉 approximates an excited state of

the Hamiltonian. By varying ~θ, we can minimise the
cost function in the limit of a → ∞, and thus obtain an
appproximation of an excited energy eigenstate. We can
then use phase estimation to force the system to collapse
to the true energy eigenstate, and discover its eigenvalue.

The WAVES method has been experimentally demon-
strated using a silicon photonics device (Santagati et al.,
2018). However, it is unlikely to be suitable for near-term
hardware, due to the need to realise the time evolution
operator, e−iHt and phase estimation. Moreover, it is
necessary to use an operator Ue which closely approxi-
mates an excitation from the ground state to the desired
excited state, which may be difficult to determine a pri-
ori.

2. Overlap-based methods

It is possible to use variational algorithms and state
overlap calculations to find excited states (Endo et al.,
2018a; Higgott et al., 2018).

Given the ground state |E0〉 of a Hamiltonian H, we
replace the Hamiltonian with

H ′ = H + α |E0〉 〈E0| , (61)

where α is chosen to be sufficiently large compared to
the energy of the Hamiltonian. The ground state of
the updated Hamiltonian H ′ is no longer |E0〉, but
the first excited state |E1〉 of the original Hamilto-
nian H. This process can be repeated to obtain
higher energy eigenstates. The energy of the up-
dated Hamiltonian, 〈ψ(~θ)|H ′ |ψ(~θ)〉 = 〈ψ(~θ)|H |ψ(~θ)〉 +

α 〈ψ(~θ)|E0〉 〈E0|ψ(~θ)〉 can be obtained by measuring each

term separately. We can measure the first term using the
Hamiltonian averaging procedure described in the previ-
ous section. The second term can be calculated using
circuits to calculate the overlap between the states. This
includes using the SWAP test, which has recently been
modified to use a more shallow circuit (Cincio et al., 2018;
Garcia-Escartin and Chamorro-Posada, 2013).

As this method uses only low depth circuits, has the
potential for error mitigation (Endo et al., 2018a; Higgott
et al., 2018) and uses much of the machinery underlying
the VQE, it is suitable for use with near-future hardware.
This method has recently been numerically investigated
by Lee et al. (0), who also considered the propagation of
errors resulting from only obtaining an approximation of
lower lying eigenstates, rather than the true eigenstates.

3. The folded spectrum method

The folded spectrum method can be used for finding
the excited states of molecular Hamiltonians (McClean
et al., 2016). By replacing the Hamiltonian H with
(H−αI)2, the ground state we obtain becomes the eigen-
state with eigenvalue closest to α. Gradually changing α
allows us to find the energy spectrum of the Hamiltonian
H. When α is equal to an eigenvalue of H, the mini-
mum expectation value of (H −αI)2 is 0, at which point

the trial state |ψ(~θ)〉 is the eigenstate with eigenvalue α.
We note that the folded spectrum method may require
many iterations in order to locate an eigenstate. More-
over, as the energy gaps are not known a priori, it may
be difficult to choose α in such a way that eigenstates
are not missed. Furthermore, measuring the energy of
the operator H2 is notably more costly than measuring
H, which has already been described as prohibitively ex-
pensive (Wecker et al., 2015a). As such, while the folded
spectrum method could be used on near-term hardware,
it is likely far too expensive to be practical.

4. Quantum subspace expansion

The quantum subspace expansion method uses a poly-
nomial number of additional measurements to find the
excited states of a quantum system (McClean et al.,
2017a). The motivation for this method is that the 3-
and 4-particle reduced density matrices (RDM), which
can be used to find the excited eigenstates, can be recov-
ered by expanding the ground state in a subspace.

Those authors consider the linear response subspace
around the fermionic ground state. This subspace is
spanned by the states a†iaj |E0〉 for all possible i, j. This
is designed to target the low-lying excited states, which
are assumed to differ from the ground state by a small
number of excitations.
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The excited states can be found by solving a gener-
alised eigenvalue problem in fermionic Fock space

HQSEC = SQSECE, (62)

with eigenvectors C, and a diagonal matrix of eigenvalues
E. The Hamiltonian projected into the subspace is given
by

HQSE
ij,kl = 〈E0| aia†jHa

†
kal |E0〉 . (63)

The overlap matrix, required because the subspace states
are not orthogonal to each other, is given by

SQSE
ij,kl = 〈E0| aia†ja

†
kal |E0〉 . (64)

We provide more information on the QSE method in
Sec. VI, where we discuss how it can also be used to
mitigate the effects of errors.

VI. ERROR MITIGATION FOR CHEMISTRY

All of the algorithms discussed thus far have ignored
the occurrence of errors in our quantum hardware. If
these errors are not dealt with, they will corrupt the re-
sults of our algorithms, rendering the calculations mean-
ingless (Sawaya et al., 2016). Circuits with a large num-
ber of gates are presumed to require the full machinery
of error correction for protection. However, as discussed
in Sec. II, error correction requires a large qubit overhead
that is beyond the reach of current quantum computers.

New methods have been developed which seek to mit-
igate errors, rather than correct them (Bonet-Monroig
et al., 2018; Endo et al., 2017; Huo and Li, 2018;
Johnson et al., 2017; Li and Benjamin, 2017; McArdle
et al., 2018c; McClean et al., 2017a; Otten and Gray,
2018a,b; Temme et al., 2017). These techniques are only
applicable for low depth circuits. However, the addi-
tional resources required are much more modest than
for full error correction. In general, these techniques
only require a multiplicative overhead in the number of
measurements required, if the error rate is sufficiently
low. We note that many of these techniques were
introduced for use in general NISQ algorithms, and so
can be applied to problems beyond chemistry simulation.

As we are dealing with errors, it becomes necessary to
consider mixed states, rather than just pure states. As
such, we now switch to the density matrix formalism of
quantum mechanics (Nielsen and Chuang, 2002).

We consider a quantum circuit that consists of N uni-
tary gates applied to an initial reference state |0̄〉. The
output state if errors do not occur is given by

ρ0 = UN . . .U2U1(|0̄〉 〈0̄|), (65)

where for a density matrix ρ, U(ρ) = UρU†. We extract
information from the circuit by measuring a Hermitian
observable, O

Ō0 = Tr[ρ0O]. (66)

If each gate is affected by a noise channel Ni, the pre-
pared state becomes

ρ =
∏
i

Ni(Ui(|0̄〉 〈0̄|)), (67)

and the measurement result becomes Ō = Tr[ρO]. In
practice, we cannot recover the noiseless state ρ0 from
the noisy state ρ without error correction. However, the
error mitigation methods discussed below can approxi-
mate the noiseless measurement result Ō0 from the noisy
measurement result, Ō when the error rate is sufficiently
low.

A. Error suppression in the VQE

Even without additional error mitigation techniques,
the VQE is inherently robust to coherent errors, such as
qubit over-rotation (McClean et al., 2016).

Suppose the ansatz for the VQE is described by the
operator U(~θ). Due to the effect of noise, the actual

operation is Ũ(~θ). If there exists a parameter set (~θ+ ~α)

such that ||U(~θ) − Ũ(~θ + ~α)|| < ε for sufficiently small

ε > 0, the classical optimiser will converge to ( ~θmin + ~α),
and we recover the ground state energy. The resilience
of the VQE to coherent noise was observed in O’Malley
et al. (2016).

However, if a coherent error changes a conserved quan-
tity (such as electron number), the argument discussed
above cannot be applied. This problem can be resolved
by optimising the modified cost function

L = H +
∑
j

βj(Qj − qjI)2, (68)

where {Qj} is the set of the operators for conserved quan-
tities, qj is the corresponding ideal expectation value of
Qj , and βj is the penalty coefficient which should be suf-
ficiently large.

B. Extrapolation

The extrapolation method (Li and Benjamin, 2017;
Temme et al., 2017) works by intentionally increasing
the error rate by a factor λ, and inferring the error free
result by extrapolation. We can increase the error rate
using the techniques described by Kandala et al. (2018)
and Li and Benjamin (2017). The technique is based
on Richardson extrapolation (Richardson et al., 1927),
which to first order corresponds to linear extrapolation
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FIG. 9 A comparison of linear (blue) and exponential (green)
extrapolation. The horizontal axis is the error rate of each
gate and the vertical axis is the expectation value of the mea-
sured observable, Ō.

using two points. Alternatively, we can take a linear best
fit with several points. For the former case, the estimated
value of the observable is given by

Ōest
0 =

λŌ(ε0 · · · εn))− Ō(λ(ε0 · · · εn)))

λ− 1
. (69)

While this method can significantly improve the accuracy
of our calculations, it requires additional measurements
in order to keep the variance of our measurements the
same as the non-extrapolated case. The linear extrapo-
lation method has recently been experimentally demon-
strated. Kandala et al. (2018) dramatically improved
the accuracy of their VQE experiments on the molecules
H2 and LiH by using the linear extrapolation method,
achieving results close to chemical accuracy.

Exponential extrapolation was introduced by Endo
et al. (2017) as a more appropriate extrapolation tech-
nique for large quantum circuits. A comparison between
the two extrapolation methods is shown in Fig. 9. Otten
and Gray (2018b) have also extended the extrapolation
method to the scenario where the error rates of different
gates are increased with different factors.

C. Probabilistic error cancellation

The probabilistic error cancellation method introduced
by Temme et al. (2017) works by effectively realis-
ing the inverse of the error channel, N−1, such that
N−1(N (ρ)) = ρ. However, as realising the inverse chan-
nel is an unphysical process, we use the scheme depicted
in Fig. 10 to effectively realise the inverse channel by
focusing only on measurement results.

As an example, we consider the case of a depolarising
error channel,

D(ρ0) =

(
1− 3

4
p

)
ρ0+

p

4
(Xρ0X+Y ρ0Y +Zρ0Z). (70)
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FIG. 10 A schematic of the probabilistic error cancellation
method for a depolarising error resulting from a single qubit
gate. After the gate is applied, there is a noise channel N .
The method works by effectively realising the inverse channel
N−1. This is achieved by randomly applying one of the X,
Y or Z operators with probability p2, or the identity gate
with p1. The expectation values resulting from the circuits
are combined. If one of the Pauli matrices was applied to
realise the inverse channel, the resulting expectation value is
subtracted, rather than added (parity −1). The overhead γ
determines the number of additional measurements required
to keep the variance of the error mitigated result equal to
the variance of the noisy result. This can be generalised to
multi-qubit gates as described in the main text.

The unphysical inverse channel is

D−1(ρ)

=

(
1 +

3p

4(1− p)

)
ρ− p

4(1− p)
(XρX + Y ρY + ZρZ),

= γ[p1ρ− p2(XρX + Y ρY + ZρZ)],
(71)

where, the overhead coefficient γ = (p+ 2)/(2− 2p) > 1,
p1 = (4 − p)/(2p + 4), and p2 = p/(2p + 4) in this case.
The variance in our measurement of O0 is increased by
a factor of γn, where γ is the overhead coefficient, and n
is the number of gates in the circuit.

We cannot directly realise N−1 due to the minus sign
before p2. However, we can consider and correct its effect
on the expectation value. Suppose the expectation value
is O, then the corrected measurement outcome is

O0 = Tr[ON−1(ρ)],

= γ[p1 〈O〉ρ − p2(〈O〉XρX + 〈O〉Y ρY + 〈O〉ZρZ)],

= γ[p1 〈O〉ρ − p2(〈XOX〉ρ + 〈Y OY 〉ρ + 〈ZOZ〉ρ)],
(72)

where 〈O〉ρ = Tr[Oρ]. We can therefore measure O,
XOX, Y OY , ZOZ, and linearly combine the measure-
ment results to effectively realise the inverse channel,
thus obtaining the noiseless measurement result O0.

In practice, it is not possible to exactly measure all
of the possible terms resulting from errors if there are
many gates in the circuit. Instead, we can consider
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only the most important terms, which result from a
small number of errors occurring. If the error rate is
low, then the other terms can be considered negligibly
small. After each single qubit gate, we can apply X,
Y or Z operators with probability p2, or the identity
gate with p1. We repeat that circuit variant many
times to extract the expectation value, and multiply the
expectation value by (−1)Np , where Np is the number
of additional X, Y or Z gates that were applied in
that circuit iteration. We then sum up the values for
several circuit variants and multiply by γ to obtain the
error mitigated result. For example, for two qubit gates
in the depolarising noise model, after each two qubit
gate we insert one of the gates: XI, IX, Y I, IY, ZI, IZ
(parity −1) with probability p2, one of the gates
XX,Y Y,ZZ,XY, Y X,XZ,ZX, Y Z,ZY (parity +1)
with probability p2 and II (parity +1) with probability
p1.

The probabilistic error cancellation method has been
shown to work for general Markovian noise, but is not
suitable for correlated errors (Endo et al., 2017). We note
that the probabilistic error cancellation method requires
full knowledge of the noise model associated with each
gate. This can be obtained from either process tomog-
raphy, or a combination of process and gate set tomog-
raphy. The latter approach reduces the effect of errors
due to state preparation and measurement (Endo et al.,
2017). The probabilistic error cancellation method has
recently been experimentally demonstrated on a super-
conducting processor (Song et al., 2018).

D. Quantum subspace expansion

The quantum subspace expansion (McClean et al.,
2017a) described in Sec. V.C can mitigate errors in the
VQE, in addition to calculating the excited energy eigen-
states. This method is most effective at correcting sys-
tematic errors, but can also suppress stochastic errors.
Suppose that after the VQE, an approximate ground
state |Ẽ0〉 has been discovered. Such a state may de-
viate from the true ground state |E0〉 due to errors in
the whole process. For example, when |Ẽ0〉 = X1 |E0〉,
we can simply apply an X1 gate to recover the correct
ground state.

However, as we do not know which errors have oc-
curred, we can instead consider an expansion in the sub-
space {|PiẼ0〉}, where Pi are matrices belonging to the
Pauli group. Then, one can measure the matrix repre-
sentation of the Hamiltonian in the subspace,

Hij = 〈Ẽ0|PiHPj |Ẽ0〉 . (73)

As the subspace states are not orthogonal to each other,
we should also measure the overlap matrix

Sij = 〈Ẽ0|PiPj |Ẽ0〉 . (74)

By solving the generalised eigenvalue problem

HC = SCE, (75)

with eigenvectors C and diagonal matrix of eigenvalues
E, we can get the error mitigated spectrum of the Hamil-
tonian. In general, when the chosen subspace {|PiẼ0〉}
can represent the full Hilbert space, we can recover the
error free spectrum of the Hamiltonian. This assumes
that there is no error in the measurement of the two ma-
trices Hij and Sij . However, if {|PiẼ0〉} represents the
full Hilbert space, we would need to measure an expo-
nential number of terms. As such, we generally consider
a limited number of Pauli group matrices Pi.

The quantum subspace expansion technique has been
experimentally demonstrated, using a two qubit super-
conducting system to measure the ground and excited
state energies of H2 (Colless et al., 2018). Using the
subspace {|σjẼ0〉} = {|Ẽ0〉 , X |Ẽ0〉 , Y |Ẽ0〉 , Z |Ẽ0〉}, the
spectrum of H2 was calculated to near chemical accuracy.

E. Stabiliser based methods

Recently, a new method of error mitigation has been
introduced, which makes use of stabiliser checks on a suit-
ably constructed second quantised state (Bonet-Monroig
et al., 2018; McArdle et al., 2018c). A key concern for
the VQE is preserving particle number, as states with
electron number far from the true value appear to have
a larger energy variance than those with smaller parti-
cle number errors (Sawaya et al., 2016). Consequently,
we can perform ‘checks’ on quantities which should be
conserved, discarding the results if the measured value
is not as expected. This can be achieved by conduct-
ing suitably constructed stabiliser checks on the regis-
ter using additional ancilla qubits (Bonet-Monroig et al.,
2018; McArdle et al., 2018c), or by taking additional mea-
surements and performing some postprocessing (Bonet-
Monroig et al., 2018). This method of error mitigation
can easily be combined with some of the other techniques
mentioned above, such as extrapolation. Combining the
extrapolation and stabiliser methods was shown to be
considerably more effective than either method in isola-
tion (McArdle et al., 2018c). Bonet-Monroig et al. (2018)
also derived a way to increase the number of errors de-
tected by introducing additional symmetries, or modify-
ing the ansatz circuit.

F. Other methods of error mitigation

QVECTOR
The quantum variational error corrector (QVECTOR),
introduced by Johnson et al. (2017), uses a hybrid
quantum-classical algorithm to construct device-tailored
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error corrected quantum memories, in order to dramat-
ically reduce the number of physical qubits needed to
encode a logical qubit. It was found to be effective in
simulations of a three qubit system, enabling a 6-fold
extension in the T2 time of the system. It was also
found to outperform the five qubit stabiliser code for
a system experiencing amplitude and phase damping
noise (Johnson et al., 2017).

Individual Error Reduction
Otten and Gray (2018a) showed error mitigation is
possible when there are a number of error sources, which
may be reduced individually. They use error correction
to protect a single qubit, while leaving the rest of the
physical qubits subject to noise. They repeat the process
several times, with each physical qubit being protected
in turn. Linearly combining the results produces a more
accurate expectation value than would be obtained
without the mitigation technique.

Error mitigation for temporally correlated noise
Recent work by Huo and Li (2018) has extended the
probabilistic error cancellation method to the case of
temporally correlated errors and low frequency noise.
They introduced a method known as ‘linear operator
tomography’ (LOT), in which quantum gates with
correlated errors are perfectly characterised by a set of
linear operators. The information obtained from LOT
is then used to construct the inverse operation of the
error, so that correlated noise can be suppressed.

VII. ILLUSTRATIVE EXAMPLES

In this section we illustrate many of the techniques de-
scribed in the previous sections of this work, by explic-
itly demonstrating how to map molecular ground state
problems onto a quantum computer. We do this in sec-
ond quantisation for the Hydrogen molecule (H2) in the
STO-3G, 6-31G and cc-PVDZ bases, and Lithium Hy-
dride (LiH) in the STO-3G basis (see Sec. III.D). Across
these examples, we showcase the Jordan–Wigner (JW),
Bravyi–Kitaev (BK) and BK tree mappings (Sec. IV.B),
reduction of active orbitals using the Natural Molecu-
lar Orbital (NMO) basis (Sec. III.E), reduction of qubits
using symmetry conservation (Sec. IV.C) and the UCC
ansatz (Sec. V.B). These examples are designed to fa-
miliarise the reader with the key steps of formulating
a quantum computational chemistry problem. Many of
these techniques are applicable to both ground state and
general chemical problems.
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FIG. 11 Comparing the ground state dissociation curves of
H2 for a range of basis sets.

A. Hydrogen

The first quantised molecular Hamiltonian for H2 is
given by Eq. (16), with two electrons. To convert this
Hamiltonian into the second quantised representation, as
given by Eq. (25), we need to select a basis set. As dis-
cussed in Sec. III.D, this is a discrete set of functions
which are used to approximate the spin-orbitals of the
molecule. By considering a larger number of orbitals, we
are able to recover a larger proportion of the correlation
energy in a molecule, resulting in a more accurate esti-
mate of the ground state energy. Fig. 11 shows the H2

ground state dissociation curves in the STO-3G, 6-31G
and cc-PVDZ bases. We can see that the differences in
energy between the three minima are considerably larger
than chemical accuracy. This highlights that working in
a suitably large basis set is crucial for obtaining accurate
results.

1. STO-3G basis

The STO-3G basis for H2 includes only the {1s} orbital
for each hydrogen atom. The 1s orbital is represented by
a linear combination of three Gaussian functions (GTOs).
Each hydrogen atom contributes one spin-orbital, and
there are two possible spins for each orbital - resulting
in a total of 4 orbitals for STO-3G H2. We denote these
orbitals as

|1sA↑〉, |1sA↓〉, |1sB↑〉, |1sB↓〉, (76)

where the subscript A or B denotes which of the two
atoms the orbital is centred on, and the ↑ / ↓ denotes the
spin of the electron in the orbital. For convenience, we
work in the molecular orbital basis for H2, which is simple
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to construct manually. These single electron molecular
orbitals are given by

|σg↑〉 =
1√
2

(|1sA↑〉+ |1sB↑〉),

|σg↓〉 =
1√
2

(|1sA↓〉+ |1sB↓〉),

|σu↑〉 =
1√
2

(|1sA↑〉 − |1sB↑〉),

|σu↓〉 =
1√
2

(|1sA↓〉 − |1sB↓〉).

(77)

We can write a Slater determinant in the occupation
number basis as

|ψ〉 = |fσu↓ , fσu↑ , fσg↓ , fσg↑〉 , (78)

where fi = 1 if spin-orbital i is occupied, and fi = 0 if
spin-orbital i is unoccupied. We can now calculate the
integrals given in Eq. (26) using these molecular orbitals.
These integrals have been calculated for a large number
of basis sets, and the results can be obtained by using
a computational chemistry package (Frisch et al., 2016;
Muller, 2004; Parrish et al., 2017; Sun et al., 2017). The
resulting second quantised Hamiltonian is (Seeley et al.,
2012)

H = h00a
†
0a0 + h11a

†
1a1 + h22a

†
2a2 + h33a

†
3a3

+ h0110a
†
0a
†
1a1a0 + h2332a

†
2a
†
3a3a2 + h0330a

†
0a
†
3a3a0

+ h1221a
†
1a
†
2a2a1 + (h0220 − h0202)a†0a

†
2a2a0

+ (h1331 − h1313)a†1a
†
3a3a1 + h0132(a†0a

†
1a3a2 + a†2a

†
3a1a0)

+ h0312(a†0a
†
3a1a2 + a†2a

†
1a3a0),

(79)
where the coefficients are given by the electron integrals.
We must map the problem Hamiltonian from being writ-
ten in terms of creation and annihilation operators, to
being written in terms of qubit operators. Using the JW
encoding, we can obtain the 4 qubit Hamiltonian for H2,
given by (Seeley et al., 2012)

H = h0I + h1Z0 + h2Z1 + h3Z2 + h4Z3+

h5Z0Z1 + h6Z0Z2+

h7Z1Z2 + h8Z0Z3+

h9Z1Z3 + h10Z2Z3+

h11Y0Y1X2X3 + h12X0Y1Y2X3+

h13Y0X1X2Y3 + h14X0X1Y2Y3.

(80)

While it is important to understand this procedure,
every step from selecting a basis to producing an
encoded qubit Hamiltonian can be carried out using
a quantum computational chemistry package such
as OpenFermion (McClean et al., 2017b) or Qiskit
Aqua (IBM, 2018).

In the JW encoding, it is simple to construct the
Hartree-Fock (HF) state for the H2 molecule. The HF
state for H2 is given by

ψH2

HF(r1, r2) =
1√
2

(σg↑(r1)σg↓(r2)− σg↑(r2)σg↓(r1)),

(81)
where ri is the position of electron i. In the occupation
number basis, we can write this as

|ψH2

HF〉 = |0011〉 . (82)

The most general state for H2 (with the same spin and
electron number as the HF state) is given by

|ψH2〉 = α |0011〉+ β |1100〉+ γ |1001〉+ δ |0110〉 , (83)

and the ground state of the H2 molecule at its equilibrium
bond distance is given by (Helgaker et al., 2014)

|ψH2
g 〉 = 0.9939 |0011〉 − 0.1106 |1100〉 . (84)

The first determinant in the ground state wavefunction
is the HF state for H2, showing that a mean-field
solution is a good approximation for this molecule at
this interatomic distance. The second determinant
represents the antibonding state, and accounts for
dynamical correlation between the electrons due to
their electrostatic repulsion. While the HF determi-
nant dominates at the equilibrium separation, at large
separation the two determinants contribute equally to
the wavefunction. This is because the bonding and
antibonding configurations become degenerate. We
require both determinants to accurately describe the
state, ensuring that only one electron locates around
each atom. This is an example of static correlation,
which can also be dealt with using multiconfigurational
self-consistent field (MCSCF) methods, as described in
Sec. III.C.1.

As discussed previously, in order to find the ground
state of the H2 molecule (using either the VQE or PEA),
we need to construct the state on the quantum computer.
This can be done using adiabatic state preparation, or
using an ansatz. Here we explicitly derive the UCCSD
ansatz for H2. As discussed in Sec. V.B, the UCCSD
operator we seek to realise is given by

U = e(T1−T †1 )+(T2−T †2 ), (85)

where

T1 =
∑

i∈virt,α∈occ
tiαa

†
iaα,

T2 =
∑

i,j∈virt,α,β∈occ

tijαβa
†
ia
†
jaαaβ ,

(86)

and occ are initially occupied orbitals in the HF state,
virt are initially unoccupied orbitals in the HF state, and
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tiα and tijαβ are variational parameters to be optimised.
For H2, the only operators which do not change the
spin of the molecule when acting upon the HF state are:
a†2a0, a

†
3a1, a

†
3a
†
2a1a0. Other valid operators are equiva-

lent to these operators, and can be combined with them,
such as a†3a

†
0a1a0 = −a†3a1. As a result, the UCCSD

operator takes the form

U = et02(a†2a0−a
†
0a2)+t13(a†3a1−a

†
1a3)+t0123(a†3a

†
2a1a0−a

†
0a
†
1a2a3).
(87)

We can split this operator using Trotterization with a
single Trotter step

U = et02(a†2a0−a
†
0a2)

× et13(a†3a1−a
†
1a3)

× et0123(a†3a
†
2a1a0−a

†
0a
†
1a2a3).

(88)

Using the JW encoding, we find that

(a†2a0 − a†0a2) =
i

2
(X2Z1Y0 − Y2Z1X0)

(a†3a1 − a†1a3) =
i

2
(X3Z2Y1 − Y3Z2X1)

(a†3a
†
2a1a0 − a†0a

†
1a2a3) =

i

8
(X3Y2X1X0 + Y3X2X1X0 + Y3Y2Y1X0 + Y3Y2X1Y0

−X3X2Y1X0 −X3X2X1Y0 − Y3X2Y1Y0 −X3Y2Y1Y0).
(89)

It was shown in Romero et al. (2019) that all Pauli terms
arising from the same excitation operators commute. As
a result, each of the exponentials in Eq. (88) can be sep-
arated into a product of exponentials of a single Pauli
string. For example

et02(a†2a0−a
†
0a2) = e

it02
2 X2Z1Y0 × e

−it02
2 Y2Z1X0 . (90)

In Hempel et al. (2018) the UCCSD operator for H2 was
simplified by implementing the single excitation terms as
basis rotations, and combining terms in the double exci-
tation operator (by considering the effect of each term on
the HF state). We note that this latter technique is only
possible because there is only one double excitation oper-
ator for this molecule, and so is not a scalable technique
in general. The UCCSD operator is simplified to

U = e−iθX3X2X1Y0 . (91)

This can be implemented using the circuit (Whitfield
et al., 2011) shown in Fig. 12.

2. 6-31G basis

As discussed in Sec. III.D, H2 in the 6-31G basis
has a double-zeta representation of the valence elec-
trons. This means we have 8 orbitals to consider in

σg↑ : |1〉 Rx(π
2

) • • Rx(−π
2

)

σg↓ : |1〉 H • • H

σu↑ : |0〉 H • • H

σu↓ : |0〉 H Rz(θ) H

FIG. 12 The circuit for implementing the UCCSD operator
for H2 in the STO-3G basis, as given by Eq. (91). The Rx(π

2
)

and H gates rotate the basis such that the exponentiated
operator applied to the corresponding qubit is either Y or X,
respectively. Single excitation terms are implemented with a
change of basis (Hempel et al., 2018).

total; {1s↑, 1s↓, 1s′↑, 1s′↓} from each atom. Working in
the canonical orbital basis, (obtained by performing a
Hartree–Fock calculation) we show how to construct
Bravyi-Kitaev encoded states of 6-31G H2. The BK
transform matrix for an 8 orbital system is given by

1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0

1 1 1 1 1 1 1 1



. (92)

We order the orbitals such that the first M/2 orbitals are
spin up, and the final M/2 orbitals are spin down. When
the orbitals are ordered in this way, the 4th entry in the
BK encoded vector is the sum (mod 2) of the spin up
occupancies, which sums to the number of spin up elec-
trons. Moreover, the 8th entry is the sum (mod 2) of all
of the orbital occupancies, which sums to the number of
electrons. As these quantities are conserved, we can re-
move these two qubits from the simulation, following the
procedure of Sec. IV.C. We note that if the orbitals are
arranged ‘up-down, up-down’, then while the 8th entry
is still equal to the number of electrons, the 4th entry no
longer necessarily equal to a conserved quantity. The JW
mapped HF state (8 qubits) is given by |00010001〉. Us-
ing the matrix given above, the BK mapped HF state (8
qubits) is |00111011〉. When the two conserved qubits are
removed, the BK mapped HF state (6 qubits) is |011011〉.

3. cc-PVDZ basis

As discussed in Sec. III.D, the cc-PVDZ basis for H2

includes a double-zeta representation of the valence shell,
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and additional polarisation orbitals. Each atom con-
tributes {1s, 1s′, 2px, 2py, 2pz} orbitals, resulting in 20
orbitals in total. In order to reduce our active space,
we first change to the natural molecular orbital (NMO)
basis, using the single particle reduced density matrix
(1-RDM), as discussed in Sec. III.E. We first obtain the
1-RDM for H2 in the cc-PVDZ basis with a classically
tractable configuration interaction singles and double cal-
culation.

We perform a unitary diagonalisation of this ma-
trix, and rotate the orbitals by the same unitary ma-
trix. This constitutes a change of basis to the NMO’s
of the molecule. The diagonalised 1-RDM is given by
diag(1.96588, 0.00611, 0.02104, 0.0002, 0.00001, 0.00314,
0.00314, 0.00016, 0.00016, 0.00016). There are only 10
diagonal entries in this 1-RDM because the spin-up and
spin-down entries for the same spatial orbitals have been
combined. As discussed in Sec. III.E, the diagonal entries
are the natural orbital occupation numbers (NOONs).
We can see that the 5th orbital has a NOON that is 20
times smaller than the next smallest NOON. As a re-
sult, we consider this spatial orbital to always be empty,
and so remove all terms involving it from the Hamil-
tonian. This leaves a Hamiltonian acting on M = 18

spin-orbitals. We now map these into qubits using the
BK-tree method, as M is not a power of 2, so the stan-
dard BK method will leave us unable to remove 2 qubits
using symmetries. We follow a similar procedure to that
described for the LiH molecule in Fig. 13 in order to map
the fermionic orbitals to qubits. The reader will find
that the 9th and 18th orbitals store the number of spin
up electrons and total number of electrons, respectively.
As a result, they can be removed. This reduces the prob-
lem to one of 16 qubits. The lowest energy computa-
tional basis state of cc-PVDZ H2 in the Jordan-Wigner
encoding (18 qubits) is |000000001000000001〉. The cor-
responding BK-tree mapped state (16 qubits) is given by
|0001011100010111〉.

B. Lithium Hydride STO-3G basis

For LiH in the STO-3G basis, we consider
1s, 2s, 2px, 2py, 2pz functions for lithium, and a single
1s orbital for hydrogen. This gives a total of 12 spin-
orbitals, when spin degeneracy is included. We can re-
duce this problem to one of six qubits, as illustrated in
Fig. 13. The canonical orbital 1-RDM from a CISD cal-
culation on LiH (at an internuclear separation of 1.45 Ȧ)
is given by



1.9999 −0.0005 0.0006 0.0000 0.0000 −0.0010

−0.0005 1.9598 0.0668 0.0000 0.0000 0.0084

0.0006 0.0668 0.0097 0.0000 0.0000 −0.0138

0.0000 0.0000 0.0000 0.0017 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0017 0.0000

−0.0010 0.0084 −0.0138 0.0000 0.0000 0.0273


. (93)

There are only 6 diagonal entries in this 1-RDM be-
cause the spin-up and spin-down entries for the same

spatial orbitals have been combined. We diagonalise this
1-RDM, moving to the NMO basis. The NMO 1-RDM
is given by



1.99992 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 1.96206 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.03454 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00005 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00171 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00171


. (94)

The first orbital has a NOON close to two, and so we consider it to always be doubly occupied. We can
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FIG. 13 A pictorial representation of the fermion-to-qubit mapping procedure for LiH in the STO-3G basis. The fermionic nat-
ural molecular orbitals (NMO) are initially arranged ‘spin up, spin down, spin up, spin down, ...’, and have their corresponding
natural orbital occupation number (NOON) below. As the NOON of orbitals 6 and 7 is so small, they can be assumed unfilled,
and removed from the Hamiltonian. As the combined NOON of orbitals 0 and 1 is close to 2, they can be assumed filled, and
removed from the Hamiltonian. We then rearrange the remaining orbitals to be ‘all spin up, all spin down’, and re-label them
from 0 to 7. We then perform the BK-tree mapping by constructing the Fenwick tree, Fen(0,7), as described in Fig. 14. The
value xi is the value of the ith qubit under the BK-tree mapping, while ni is the value of the ith qubit under the JW mapping.
We see that qubit 3 stores the sum

∑3
i=0 ni, and qubit 7 stores the sum

∑7
i=0 ni. As these sums are conserved quantities, these

qubits do not flip throughout the simulation, and so can be removed from the Hamiltonian as described in Sec. IV.C.

then remove any terms containing a†0, a0, a
†
1, a1 from the

Hamiltonian. In contrast, the fourth orbital has a very
small NOON. As a result, we assume that this orbital
is never occupied, and so remove the two corresponding
fermion operators from the Hamiltonian. This leaves a
Hamiltonian acting on 8 spin-orbitals. As the number of
orbitals is now a power of 2, we can use either the BK or
BK-tree mappings to remove the 2 qubits associated with
conservation symmetries. We use the BK-tree mapping
in order to provide an explicit example of Fenwick tree
construction. The Fenwick tree tells us which qubits store
which orbitals in the BK-tree mapping. We denote the
Fenwick tree for the M orbitals as Fen(0,M−1). We can
obtain this data structure using an iterative algorithm,
which we reproduce from Havlicek et al. (2017) below.
The generation of the Fenwick tree for the LiH molecule
using this algorithm is shown in Fig. 14.

Our final Hamiltonian acts on 6 qubits, but differs
in energy from the full 12 qubit Hamiltonian by only
0.2 mHartree. A similar procedure is described in
Hempel et al. (2018).

Algorithm.1 : Fenwick tree generation

Define Fen(L,R)

If L 6= R:

• Connect R to Floor
(
R+L

2

)
;

• Fen
(
L, Floor

(
R+L

2

))
;

• Fen
(
Floor

(
R+L

2

)
+ 1, R

)
.

Else:

• End the current Fenwick tree.

VIII. DISCUSSION AND CONCLUSIONS

In order to draw conclusions about the outlook for the
nascent field of quantum computational chemistry, it
is necessary to first consider the limitations of classical
computational chemistry. We must also consider the
resources required by the different quantum techniques,
and the timeframe over which these resources may
become available. As in previous sections, M denotes
the number of spin-orbitals considered, and N denotes
the number of electrons in the molecule.
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0 1 2 3 4 5 6 7

F(0,7):  7→ 3
F(0,3)
F(4,7) 

F(0,3):  3 → 1
F(0,1)
F(2,3) 

F(0,1):
1 → 0
F(0,0): Fin            
F(1,1): Fin

F(4,7):  7 → 5
F(4,5)
F(6,7) 

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7
F(2,3):
3 → 2
F(2,2): Fin            
F(3,3): Fin

F(4,5):
5 → 4
F(4,4): Fin            
F(5,5): Fin

F(6,7):
7 → 6
F(6,6): Fin            
F(7,7): Fin

FIG. 14 A pictorial representation of the Fenwick tree construction for LiH, shown in Fig. 13. We carry out the BK-tree
mapping by constructing the Fenwick tree, Fen(0,7), as described in Algorithm. 1. The algorithmic steps are shown on the left
hand side of the figure, while the corresponding actions are shown on the right hand side. The notation X → Y means connect
orbital X to orbital Y with an arrow. ‘Fin’ means that the corresponding branch of the Fenwick tree is finished. The finished
Fenwick tree Fen(0,7) is shown at the bottom of the figure.

A. Classical limits

Classical computational chemistry techniques can be
broadly divided into two categories: qualititative meth-
ods, such as Hartree-Fock and density functional the-
ory, which can be applied to systems with hundreds of
atoms (Helgaker et al., 2014), and quantitative tech-
niques such as full configuration interaction (and to a
lesser extent, coupled cluster based methods), which are
limited to molecules containing a small number of atoms.

In the case of FCI, classically storing the wavefunction
requires an amount of memory which scales exponentially
with the number of electrons in the molecule. Conse-
quently, it is only possible to classically store and calcu-
late the FCI ground state wavefunction of single atoms or
small molecules, such as: the nitrogen molecule (N2) in
an accurate basis set using true FCI (Rossi et al., 1999),
or the Cr2 molecule with 24 active electrons in 30 spin-
orbitals (Tubman et al., 2016), or the fluorine atom in
a cc-PV5Z basis with additional basis functions (Booth
and Alavi, 2010). The latter two examples used varia-
tions of quantum Monte Carlo full configuration inter-
action; a powerful approximation of the FCI wavefunc-
tion. However, this method is not without its own limita-
tions, including the infamous ‘sign problem’ (Ortiz et al.,
2001). Tensor product methods, such as density matrix
renormalisation group (DMRG) have also proven effec-
tive for treating systems with large active spaces, includ-
ing some metalloenzyme complexes with active spaces

of over 70 spin-orbitals (Kurashige et al., 2013; Sharma
et al., 2014). Olivares-Amaya et al. (2015) have produced
a comprehensive review of progress in DMRG for quan-
tum chemistry.

It is important to note that being able to accurately
predict the ground state energy of small molecules
leaves us far from our desired goal of designing new
medicines and materials in silico. For example, as noted
by Yamazaki et al. (2018), over 95 % of the approved
drug molecules in DrugBank 5.0 are larger than is
classically simulable using FCI methods. However, in
practice it is not necessary to perform highly accurate
calculations on the entirety of a large molecule or
enzyme. Instead, problem decomposition approaches
can be utilised, whereby the most important part of
the system is accurately simulated, and then integrated
with a potentially less accurate simulation of the less
challenging parts of the system (Bauer et al., 2016;
Kreula et al., 2016; Reiher et al., 2017; Rubin, 2016;
Yamazaki et al., 2018).

If we limit ourselves to a reduced accuracy, and in-
stead consider a classical coupled cluster singles and dou-
bles (CCSD) approach, we are able to simulate larger
molecules. The current state of the art for classical CCSD
calculations is around 400-600 spin-orbitals (Hattig and
Weigend, 2000), which corresponds to the DNA base gua-
nine (C5H5N5O) in a cc-PVTZ basis (Hobza and poner,
2002), or the hydrocarbon octane (C8H18) in a cc-PVTZ
basis (Yamazaki et al., 2018). The classical implemen-
tation of CCSD does not store the wavefunction, as this
would again be exponentially costly (as the CCSD wave-
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function has support on all possible Slater determinants).
Instead, coupled non-linear equations can be derived.
The solution to these equations is the CCSD approxima-
tion to the ground state (Helgaker et al., 2014; Purvis and
Bartlett, 1982). The time taken to solve these equations
scales as O((M − N)4N2) (Purvis and Bartlett, 1982),
while the memory needed to store the molecular integrals
needed scales as O(M4). As discussed in Sec. III.C.4,
the two main limitations of the CC method are that it
is not fully variational, and that it does not work well
when applied to initial states which have significant sup-
port on multiple Slater determinants (states with strong
static correlation). Moreover, the CCSD method itself is
typically not considered accurate enough for truly quan-
titative calculations (Helgaker et al., 2014). Instead, the
CCSD(T) method can be used, which treats the triple ex-
citations pertubatively, and scales in time approximately
as O(M7).

B. Quantum resources: medium to long term

As discussed in Sec. IV.B, quantum computers can
store the FCI wavefunction of M spin-orbitals using only
M qubits. As such, it seems relatively simple to surpass
our current classical capabilities by constructing a de-
vice with 100 qubits, only slightly larger than the devices
currently available. However, as discussed in Sec. II, we
must also take into consideration the qubit overhead of
error correction, which is determined by the error rates
of the gates. It is not feasible to generate the FCI wave-
function by including all possible excitations in the UCC
ansatz, as this would lead to a number of gates which
scales exponentially with the number of electrons in the
molecule. Instead, we can use adiabatic state prepara-
tion, as described in Sec. V.A, with the assumption that
the gap is well behaved (Babbush et al., 2014).

Initial work showed that up to around 1018 gates
would be necessary to simulate a system of around 100
spin-orbitals (excluding the overhead of error correc-
tion) (Wecker et al., 2014), although this estimate was
subsequently reduced through a series of algorithmic op-
timisations (Babbush et al., 2015; Hastings et al., 2015;
McClean et al., 2014; Poulin et al., 2015). Reiher et al.
(2017) used this as the starting point to find the resources
required to carry out a transformative chemistry calcu-
lation. They considered the problem of biological dini-
trogen fixation. Currently, fertiliser is produced from ni-
trogen using the energy intensive Haber-Bosch process,
which consumes up to 2 % of the world’s energy out-
put (Reiher et al., 2017). However, bacteria containing
the nitrogenase enzyme can convert nitrogen into ammo-
nia under ambient conditions. The crux of understand-
ing this enzyme is a small molecule, an iron molybde-
num cofactor (FeMoco), which those authors model with
an active spaces of (54 electrons, 108 spin-orbitals) and

(65 electrons, 114 spin-orbitals) (Reiher et al., 2017) (al-
though recent work has shown that an alternative active
space of 113 electrons in 152 spin-orbitals would produce
more realistic results (Li et al., 2018)). As a bioinorganic
transition metal compound, the ground state of FeMoco
will likely be difficult to identify with existing classical
methods (Podewitz et al., 2011). The authors calculated
the resources required to perform an FCI calculation on
the aforementioned active spaces with an error corrected
quantum computer possessing around 100 logical qubits.
They found that this would require around 200 million
physical qubits, and take on the order of weeks (10 ns to
implement a T gate, including surface code decoding) or
months (100 ns per T gate) (both assuming current best
error rates) (Reiher et al., 2017).

Recent work has carried out similar resource analysis
for other problems (the Fermi-Hubbard model or periodic
systems such as the homogeneous electron gas), using
state of the art techniques for chemistry simulation and
fault-tolerance protocals (Babbush et al., 2018b). The re-
quired resources were on the order of one million physical
qubits, running for a few hours (assuming 1 µs to imple-
ment a T gate, including surface code decoding) (Bab-
bush et al., 2018b).

We note that none of the resource estimation papers
described above consider the problem of initial state
preparation, and instead focus on the phase estimation
aspect of the electronic structure problem. Recent work
by Tubman et al. (2018) has sought to rectify this. Those
authors provide a quantum algorithm for preparation
of arbitrary Slater determinants. They then show that
for many systems of interest in chemistry, physics and
materials science, states that can be efficiently prepared
using their algorithm have a large overlap with the
true ground state, and thus can be tackled using phase
estimation.

Despite these promising results, we note that it may
still be many years before we possess a quantum com-
puter with the resources required to implement these al-
gorithms. Consequently, in order to achieve transforma-
tive chemistry simulations before that time, different ap-
proaches are required. One possible approach is to use
the variational algorithms discussed in Sec. V.B. We dis-
cuss the challenges facing these methods below.

C. Outlook for near-future approaches

For near-future approaches, the greatest remaining
difficulties are designing good ansatze, reducing the
number of measurements required, and mitigating the
effects of errors. In particular, we will discuss the close
relationship between the ansatz circuit and error rates.
As stated previously, near-future approaches are those
suitable for the quantum computers that will become
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available within the next 5-10 years. These machines
will likely possess little or no error correction, rather
than full fault-tolerance.

Both heuristic and chemically motivated ansatze face a
range of challenges, if they are to provide a route to classi-
cally intractable calculations on near-term quantum com-
puters. To date, most heuristic ansatze have only been
numerically tested on small systems, making their scal-
ing unclear. As such, while they may provide a low depth
route to the FCI ground state, further work is needed to
estimate their scaling for problems of interest.

While good, chemically motivated state preparation
routines, such as the UCC ansatz, have been developed,
the gate count requirements may be too large for near-
term quantum computers. Moreover, it is not immedi-
ately clear where the advantage will lie for UCCSD calcu-
lations. As discussed above, the scaling of classical CCSD
is approximately O(M6). The number of gates required
to implement a UCCSD ansatz on a quantum computer
using the best current methods scales as O(M4) with in-
creasing molecular size, and O(M3) for a fixed molecular
size and increasing basis set size (Motta et al., 2018).
However, this naive comparison does not take into ac-
count the cost of classical optimisation in the VQE, con-
stant prefactors in the asymptotic scaling, or the slow
clock speed of quantum computers, compared to classical
hardware. Moreover, as discussed above, classical CCSD
calculations can be applied to systems with 400-600 or-
bitals, meaning that we would need a similar number of
qubits to be directly competitive.

As such, quantum UCCSD calculations are likely best
suited to small system sizes for which classical CCSD
methods are not applicable. As discussed previously,
these are systems with strong static correlation, for which
a multireference initial wavefunction is required. This in-
cludes transition metal complexes, and systems undergo-
ing bonding or bond-breaking (Reiher et al., 2017).

It may require on the order of one million gates to
implement a UCCSD ansatz for a system with 100 spin-
orbitals (Motta et al., 2018). As this does not take into
account the reduction of excitation terms due to molecu-
lar point group symmetries, the number of gates required
may in fact be less than this estimate. For example, the
LiH molecule in an STO-3G basis naively has 200 exci-
tation operators to consider. However, taking into ac-
count symmetries and a reduced active space, one can
achieve accurate results while considering only around
12 excitation operators (Hempel et al., 2018). Never-
theless, a simple calculation demonstrates the necessity
of making ansatz circuits as shallow as possible. If we
assume a discrete error model for our circuit, such that
error events happen probabilistically and independently
following each gate in the circuit, then even with an op-
timistic two qubit gate error rate of 0.01 %, we could
only carry out around 10,000 gates before we would al-

ways expect an error to occur in the circuit. Recent
experimental demonstrations have shown that environ-
mental noise corrupts the results of quantum computa-
tional chemistry calculations (Hempel et al., 2018; Kan-
dala et al., 2017). While the error mitigation techniques
discussed in Sec. VI may enable us to recover accurate
results from a circuit deeper than 10,000 gates, it seems
unlikely that current methods alone would enable more
than a small multiplicative increase in the circuit depth.
There are a few possible ways that one may be able to
tackle this problem.

The first is to develop additional methods of error
mitigation, which ideally could be combined with
existing methods. An alternative proposal is to use a
small error correcting code. While such a code would
not enable fault-tolerant computation, the idea would
be to suppress the error rate to a value low enough
to enable the ansatz circuit to be implemented in an
error-free manner. For example, recent work by Setia
et al. (2018) has shown that the Bravyi-Kitaev superfast
encoding can be modified such that it provides the
ability to correct single qubit errors. A third possibility
is to develop alternative ansatze, or improve existing
ansatze. This could include heuristic ansatze with a
shorter circuit depth (Lee et al., 0), methods to reduce
the depth of existing ansatze (Motta et al., 2018), or
ansatze which are intrinsically resilient to noise (Kim,
2017; Kim and Swingle, 2017).

Another key concern for variational approaches is
the number of measurements required, particularly
when considering molecules. For example, Wecker et al.
(2015a) found that around 108 measurements were
required for each energy evaluation for small molecules.
This rose to 1013 samples per energy evaluation for a 112
spin-orbital molecule such as Fe2S2. This results in a
total gate count for the algorithm of around 1026, which
would take many billions of years (even with a gate
time of 10ns) or an enormous cluster of small quantum
computers working in parallel. While recent work has
reduced the number of measurements required by several
orders of magnitude (Babbush et al., 2018c; Barkoutsos
et al., 2018; Izmaylov et al., 2018; Rubin et al., 2018;
Wang et al., 2018), the number of measurements is still
dauntingly high for molecular simulations.

Despite the challenges discussed above, there are sev-
eral potential avenues for which these problems look
tractable in the near-term.

D. Target problems

One possible target is calculating the energy density
of the 2D uniform electron gas (jellium), which could
then be used in DFT calculations – as suggested by
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Babbush et al. (2018c). This may benefit many research
areas in computational chemistry. The plane wave basis
discussed in Sec. III.D.4 is the natural basis set for
jellium, and as such, simulations could be performed
using shallow circuits, by making use of the Hamiltonian
variational ansatz (Babbush et al., 2018c). A simulation
requiring around 100 physical qubits would suffice to
surpass classical methods, if the circuit depth could be
kept low enough to prevent significant error accumula-
tion (Babbush et al., 2018c).

An alterative simulation target is the Fermi-Hubbard
model. The Fermi-Hubbard model is the prototypical
system for many areas of materials chemistry and con-
densed matter physics, including high temperature su-
perconductivity (Wecker et al., 2015b). However, classi-
cal methods to solve the Fermi-Hubbard model exactly
are limited to around 20 lattice sites (Jiang et al., 2018b).
As such, if we were able to solve a classically intractable
Fermi-Hubbard model problem on a near-term quantum
computer, it would signal a clear quantum advantage over
classical methods.

It has been shown possible to prepare initial states of
the Hubbard model using O(N1.5) gates, and perform
Trotter steps of the Fermi-Hubbard Hamiltonian using
O(N) gates for each Trotter step (Jiang et al., 2018b).
Previous work has shown that the Hamiltonian varia-
tional ansatz performs well for the Fermi-Hubbard model,
achieving good convergence for a 12 site problem with
20 Trotter steps (Wecker et al., 2015a). Recent work
has shown promising results for both finding the ground
state of the Fermi-Hubbard model with the ‘Hamiltonian
variational + VQE’ approach (Reiner et al., 2018a), and
for simulating its dynamics (Reiner et al., 2018b), both
in the presence of realistic noise rates. We note that
these results were obtained using less efficiently scaling
circuits than those described above. There have also been
proposals for simulating the Fermi-Hubbard model on
near-term quantum computers using a hybrid quantum-
classical problem decomposition approach (Bauer et al.,
2016; Dallaire-Demers and Wilhelm, 2016a,b).

All of these results give cause for optimism, and raise
the question of if near-future quantum computers would
be able to solve a classically intractable problem with
around 100 lattice sites (200 qubits). The time required
to solve this problem is only on the order of days (assum-
ing a 1 µs gate time) (Wecker et al., 2015a), and could
be reduced further by taking advantage of the inherent
parallelisability of the VQE. As such, the Fermi-Hubbard
model provides an interesting and computationally feasi-
ble goal to aim for in the near-future.

E. Summary

This review has sought to be accessible to both scien-
tists working on quantum information, and those work-
ing on computational chemistry. We have discussed the
key methods used in classical computational chemistry,
and how these have been incorporated into quantum al-
gorithms. This review has highlighted the key differ-
ences between quantum and classical methods of chem-
istry simulation, and the resulting benefits that quan-
tum computing is widely predicted to bring to the field
of computational chemistry.

However, we have also shown that quantum methods
still face many challenges, not least the high error rates
and low qubit counts of current hardware. As such, it is
important to continue to develop new algorithms, map-
pings, basis sets, and error mitigation techniques. Doing
so will reduce the resources required for transformative
chemistry simulations, enabling us to reap their benefits
on a much shorter timescale.
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J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe, M. B.
Rothwell, J. R. Rozen, M. B. Ketchen, and M. Steffen
(2012), Phys. Rev. Lett. 109, 060501.

Christiansen, O. (2012), Physical Chemistry Chemical
Physics 14 (19), 6672.
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