
ar
X

iv
:q

ua
nt

-p
h/

98
02

06
5v

1
 2

5
Fe

b
19

98

Basics of Quantum Computation

Vlatko Vedral and Martin B. Plenio
Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, U.K.

(February 1, 2008)

Quantum computers require quantum logic, something fundamentally different to classical
Boolean logic. This difference leads to a greater efficiency of quantum computation over its classical
counter–part. In this review we explain the basic principles of quantum computation, including the
construction of basic gates, and networks. We illustrate the power of quantum algorithms using the
simple problem of Deutsch, and explain, again in very simple terms, the well known algorithm of
Shor for factorisation of large numbers into primes. We then describe physical implementations of
quantum computers, focusing on one in particular, the linear ion–trap realization. We explain that
the main obstacle to building an actual quantum computer is the problem of decoherence, which we
show may be circumvented using the methods of quantum error correction.

1

http://arXiv.org/abs/quant-ph/9802065v1

Contents

I Introduction 3

II Computation in Classical and Quantum Physics 4

A Classical Gates . 4
B Quantum Gates . 5
C Quantum Entanglement . 6

III Simple Quantum Networks 6

A Simple Arithmetic . 7
B Plain adder . 7
C Garbage Disposal . 8
D Deutsch’s Problem . 9

IV Outline of Quantum Factorization 10

V How to realize a Quantum Computer 12

A The ion trap quantum computer . 12
B The implementation of the CNOT gate . 13

VI Decoherence and Quantum Computation 15

A Decoherence of entangled states . 15
B A general error model . 16
C Quantum error correction . 17

VII Summary and Future Prospects 19

VIII Acknowledgements 19

2

I. INTRODUCTION

This review is not intended to cover all developments in the quantum information theory and quantum computation.
Our aim is rather to provide the necessary insights for an understanding of the field so that various non-experts can
judge its fundamental and practical importance.

Quantum computation is an extremely exciting and rapidly growing field of investigation [7,33,90,63,62]. An
increasing number of researchers with a whole spectrum of different backgrounds, ranging from physics, via computing
sciences and information theory to mathematics and philosophy, are involved in researching properties of quantum–
based computation. Interplay between mathematics and physics of course has always been beneficial to both types of
human activities. The calculus was developed by Newton and Leibniz in order to understand and describe dynamical
laws of motion of material bodies. In general, geometry and physics have had a long and successful symbiotic
relationship: classical mechanics and Newtonian gravity are based on Euclidean Geometry, whereas in Einstein’s
Theory of General Relativity the basis is provided by non-Euclidean, Riemannian geometry, an important insight
taken from mathematics into physics. Although this link between Physics and Geometry is still extremely strong,
one of the most striking connections today is between Information Theory and Quantum Physics and this will be
investigated in the present review.

Speaking somewhat loosely, we observe a trend to make mathematics “more physical”. What lies behind this
phrase is the realization that the regularities and structures we observe in mathematics are actually deeply rooted
in, and derive from, the experiences of the physical world we happen to inhabit. According to this view, Geometry,
for instance, does not have an independent, as it were Platonic, existence, but has to be inferred from making
actual measurements and observations in Nature. This thesis, that mathematics cannot be “correct” a priori, but
needs to be tested experimentally, was probably first fully realized by Einstein through General Relativity; the most
recent example, however, is in the theory of computation. Computation, based on the laws of classical physics, leads
to completely different constraints on information processing than computation based on quantum mechanics (first
realized by Feynman [35,36] and Deutsch [26]). This is an extraordinary fact: we will show that quantum information
processing is faster, and, in some sense, more efficient than its classical counterpart (for a detailed discussion of the
physical basis of computation see [30]).

Today’s computers are classical, a fact which is actually not entirely obvious and is worth elaborating further. A
basis of modern computers rests on semiconductor technology. Transistors, which are the “neurons” of all computers,
work by exploiting properties of semiconductors. However, the explanation of how semiconductors function is entirely
quantum mechanical in nature: it simply cannot be understood classically. Are we thus to conclude that classical
physics cannot explain how classical computers work?! Or are we to say that classical computers are, in fact, quantum
computers! The answer to both these questions is yes and no. Yes, classical computers are in a certain, restricted,
sense quantum mechanical, because, as far as we understand today, everything is quantum mechanical. No, classical
computers, although based on quantum physics, are not fully quantum, because they do not use “quantumness” of
matter at the information-theoretical level, where it really matters. Namely, in a classical computer information is
recorded in macroscopic, two level systems. Wires conducting electrical current in computers can be in two basic
states: when there is no current flowing through, representing a logical “0”, or else when there is some current flowing
through, representing a logical “1”. These two states form a bit of information. All computation is based on logical
manipulation of bits through logical gates acting on wires representing these bits. Imagine, however, that instead of
wires and currents we use two electronic states of an atom to record information. Let us call these states the ground
state, |0〉, and the excited state, |1〉 (Dirac notation is the most natural for quantum computing). But, since an atom
obeys laws of quantum mechanics, the most general electronic state is a superposition of the two basic states

|Ψ1〉 = a|0〉+ b|1〉 , (1)

called the quantum bit or qubit, for short (this term was coined by Schumacher [77]). We see that in addition to
0 and 1 states, a qubit has, so to speak, all the states “in between”. When we have two bits, than there are four
possibilities: 00, 01, 10, 11. However, this should be contrasted with two qubits which are in general in a state of the
form

|Ψ2〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 . (2)

If for example a = d = 0 and b = c = 1/
√

2, then we have the famous Einstein-Podolski-Rosen (EPR) state [10]

|ΨEPR〉 =
(|01〉+ |10〉)√

2
. (3)

Two qubits in this state display a degree of correlation impossible in classical physics and hence violate the Bell
inequality which is satisfied by all local (i.e. classical) states. This phenomenon is called entanglement and is at the

3

root of the success of quantum computing. We will see how exploitation of a number of entangled qubits can lead to a
considerable computational speed-up in a quantum computer over its classical counterpart. Thus what distinguishes
classical and quantum computing is how the information is encoded and manipulated, i.e. what plays a crucial role
is whether the logical basis is the classical, Boolean logic, or the quantum logic.

It is important to stress that apart from this theoretically–driven curiosity to investigate quantum computation,
there is a practical need to do so, too. This stems from the observation of the rate of technological progress which is
known as Moore’s Law. This law states that the number of transistors per chip (i.e. the complexity of computers)
grows exponentially with time; more precisely, it doubles every year, as depicted in Fig. 1 (the 1997 special issue
of Scientific American is devoted entirely to the technological side of computation [85], including an article about
Moore’s Law). We can see that this law has been obeyed almost precisely in the last 30 years. If this exponential
growth is extrapolated into the near future we see that, at Moore’s rate, a bit of information will be encoded into a
single atom by the year 2017. In fact, even before that, by the year 2012, quantum effects will become very important,
so much so that they will have a considerable effect upon computation and should not be neglected any longer. Thus,
not only our theoretical curiosity, but also technological progress requires that we study and understand quantum
computation.

II. COMPUTATION IN CLASSICAL AND QUANTUM PHYSICS

We have noted that classical computation is based on Boolean logic. This logic can be represented in terms of gates
acting on particular bits of information. In fact, a classical computer can be viewed as a collection of bits and gates
which act on a certain input, i.e. the initial state of bits, to produce via the gate action a certain output, i.e. the final
state of bits. We will review some properties of classical gates in the next subsection, and then see how this picture
differs in the case of a quantum computer.

A. Classical Gates

Let us start with the simplest of logical gates, i.e. one bit gates. What can happen to a single bit? The first
possibility is “nothing”, but this is a trivial gate which of course does not alter the state of the bit. Secondly, the
value of the bit 0 can turn into 1 and 1 into 0, which is called a NOT gate. This exhausts all the possibilities for a
single bit.

Two bits are much more exciting. A usual two bit gate has two input bits and one output bit. Take, for example,
an OR gate: the output of this gate is 0 only if both the input bits are 0, and otherwise it is 1 (see Fig. 2.). This gate
illustrates an important property of classical computers, all of which contain some OR gates. Namely, the OR gate is
irreversible, meaning that given the value of the output bits we cannot reconstruct the values of the input bits. So,
if the output to the OR gate was 1, the input could have been 11, 01 or 10, i.e. it is simply undetermined. Thus this
gate cannot really be run backwards, and hence is called irreversible.

Now, how many two–input–one–output–bit gates are there? Well, there are 4 possible different inputs and each one
can have a different output leading to 42 = 16 possible different gates. However, not all the gates are necessary: there
are sets of gates, called fundamental gates, out of which any other gate can be constructed. For example, using NOT,
OR and AND gates we can construct any other gate. A more striking example is a SHEFFER gate out of which any
other gate can be constructed as proven by Sheffer [79]. If p and q are two bits assuming either 0 or 1 values, i.e. p
and q are two binary variables, then this gate can be written as NOT (p OR q), as in Fig. 2. Since any computation,
i.e. any combination of any gates on any number of bits, can be written in terms of Sheffer gates only, this gate is
called universal.

Another interesting feature of computers based on irreversible gates (i.e. all existing real world computers) is that
they dissipate energy as they run [55]. This energy is actually dissipated in the form of heat when the information
is deleted in the irreversible gates we described above, as discovered by Landauer [55]. In fact, deleting information
always involves investing work and wasting energy [11], as can be illustrated in the following simple example (for a
detailed discussion at a simple level see [37]). Consider a container enclosing a single gas atom, as in Fig. 3 a). If
the atom is in the left hand half of the container, we take this to represent a logical 0, and if the atom is in right
hand half of the container we take this to represent a logical 1. Say that initially we do not know where the atom is.
Since there are two possibilities for the state of the atom, the entropy of the atom is equal to k ln 2, where k is the
Boltzmann constant (this relationship between thermodynamical entropy and information, or uncertainty, was first
explicitly emphasised by Shannon in his celebrated Information Theory [78], although it was Szilard who hinted at
this relationship much earlier [91]). Deleting this information means finding out what the state of the atom is, i.e.

4

confining the atom to the particular (known) half of the container. To do this, we can, for example, push the right
hand wall to the left until the atom is confined entirely to the left hand half, as in Fig. 3 b). If we do this at a
constant temperature T (most computers work at room temperature anyway!) we get a heat loss of kT ln 2 to the
environment. Now the same effect is present in any computer and that is why they heat up as they work (in fact,
they use much more than kT ln 2 per gate: ordinary PCs use about 108kT per gate, but kT ln 2 is the fundamental
thermodynamical limit, as first shown by Landauer [55]).

The reader should be warned, however, that the above example is deceptively simple. The above process can
be thermodynamically reversible, in which case the increase in the entropy of environment is compensated by the
decrease in the entropy of the atom in the box. In computation, on the other hand, logically irreversible operations
are performed on deterministic data, so that the increase in the entropy of the environment is not compensated by a
decrease in the entropy of the system, and hence the operation is also thermodynamically irreversible. The question
that is then important from the fundamental point of view is whether we can manage without this: can we run
computers without any energy dissipation? Surprisingly, the answer is yes! Instead of irreversible gates we have to
use reversible gates; it can be shown that reversible gates can perform without any heat loss [11]. In addition, Bennett
proved that any irreversible computation can be performed using reversible gates only [11]. So, the crucial question
is how to make reversible gates out of irreversible gates.

Let us illustrate the general principle using the OR gate. We emphasised that this gate is irreversible because there
is only one output and two inputs, so that information gets lost in the gate. So, we can decide to add another output
bit which, for example, “saves” the value of the first input bit as in Fig. 4. Thus, with two inputs and two outputs
the resulting gate is reversible. This is, in fact, the general method of constructing reversible out of irreversible gates:
we have to save as much of the input as necessary at the output, so that, given that output, we can unambiguously
determine the value of the input. In this way all the irreversible computation can be made reversible and, at least
in principle, dissipation–free. We stress again that logical reversibility is just a necessary condition for no heat loss,
and we have to make the computation thermodynamically reversible as well. Bennett constructed thermodynamical
models of computers which dissipated arbitrarily little energy if run sufficiently slow [11], and his review of the
field of reversible computation is given in [12]. An interesting model of a billiard ball reversible computer was also
developed by Fredkin and Toffoli [38]. We say that these models are reversible “in principle”, because we know that
thermodynamical reversible processes are quasi-static idealizations of real processes, which are never exactly true
under realistic circumstances.

We will see that this question of reversible computation is not only relevant to heat–free classical computation, but
also is of central importance for quantum computing. Next we explain how.

B. Quantum Gates

For completeness let us start with some basic definitions. A quantum network is a quantum computing device
consisting of quantum logic gates whose computational steps are synchronised in time [26,35,36]. The outputs of some
of the gates are connected by wires to the inputs of others. The size of the network is governed by its number of
gates. The size of the input of the network is governed by its number of input qubits i.e. the qubits that are prepared
appropriately at the beginning of each computation performed by the network. Inputs are encoded in binary form
in the computational basis of selected qubits often called a quantum register , or simply a register . For instance,
the binary form of the number 6 is 110 and loading a quantum register with this value is done by preparing three
qubits in the state |1〉 ⊗ |1〉 ⊗ |0〉. In the following we use a more compact notation: |a〉 stands for the direct product
|an〉 ⊗ |an−1〉 . . . |a1〉 ⊗ |a0〉 which denotes a quantum register prepared with the value a = 20a0 + 21a1 + . . . 2nan.
Computation is defined as a unitary evolution of the network which takes its initial state “input” into some final state
“output” (analogous to classical computation).

The entire quantum computation is thus a unitary transformation, where a measurement is performed at the end
to extract the result. This will be explained in more detail in the next subsections through a couple of examples.
However, a unitary transformation is itself reversible; therefore, we have to use reversible gates introduced previously
in order to be able to implement quantum gates. The difference between reversible and quantum computation is that a
quantum gate acts on superpositions of different basis states of qubits, whereas classically this option is non–existent.
In Fig. 5 we present three basic gates used in quantum computation, the NOT gate, the Controlled NOT gate and
the TOFFOLI gate [5]. Controlled NOT gate (CNOT, for short) is a two qubit gate, where the value of the first qubit
(called control) determines what will happen to the second qubit (called target) qubit. Namely if the control qubit is
1, we apply the NOT gate to the target qubit and otherwise nothing happens to it (hence the name Controlled NOT).
TOFFOLI gate can be understood as Controlled–Controlled NOT. As in classical computation, there are universal
gates in quantum computation. There is, for example, a three qubit gate which is universal, discovered by Deutsch

5

[27], and also a two qubit gate which is universal (e.g. [4]). An extremely useful result of this universality is that any
quantum computation can be done in terms of a Controlled NOT gate and a single qubit gate [29,58] (which varies),
although, of course, it might sometimes be more convenient to use other gates as well [4]. An important one qubit
gate is the so called Hadamard transformation whose action is the following (the normalization is omitted)

|0〉 −→ |0〉+ |1〉 (4)

|1〉 −→ |0〉 − |1〉 (5)

This transformation will be used frequently throughout this review.
Both the input and the output of a quantum computer can be encoded in several registers. Even when f is a

one–to–one map between the input x and the output f(x) and the operation can be formally written as a unitary
operator Uf

Uf |x〉 → |f(x)〉, (6)

we may still need an auxiliary register to store the intermediate data. When f is not a bijection we definitely have

to use an additional register in order to guarantee the unitarity (i.e reversibility) of computation. In this case the
computation must be viewed as a unitary transformation Uf of (at least) two registers

Uf |x, 0〉 → |x, f(x)〉, (7)

where the second register is of appropriate size to accommodate f(x). This uses the same principle demonstrated in
making the OR gate reversible. We now show a simple, but extremely important use of the Controlled NOT gate.

C. Quantum Entanglement

We stressed in the introduction that quantum entanglement is the phenomenon responsible for all the advantages
of quantum computation. Here we show how to create entangled quantum states using the simple quantum gates
introduced previously. This operation is used time and again in various quantum computations as we will see when
reviewing Shor’s quantum algorithm for factorization of natural numbers into primes [80].

To illustrate entanglement we look at the EPR-state of two qubits

|ΨEPR〉 =
(|01〉+ |10〉)√

2
. (8)

We say that a pure state of two qubits is entangled if it cannot be written as a product of the individual states of the
two qubits, such as |ψ1〉⊗|ψ2〉. The EPR state is obviously not decomposable into a direct product of any form, and is
therefore entangled. Of course, both of the states |01〉 and |10〉 are of the direct product form, but their superposition
is not. The interesting question is therefore how to create an EPR state starting from just a disentangled, say, the
|01〉 state. The required quantum computation is very simple: first we apply a Hadamard transformation to the first
qubit, and then a Controlled NOT between the first qubit and the second qubit, where the second qubit is the target.
These two steps can be written as (the normalization is omitted)

|01〉 −→ (|0〉+ |1〉)|1〉 −→ |01〉+ |10〉 . (9)

We see that after the action of the Hadamard transformation the qubits are still disentangled. This is because this
transformation acts on only one of the qubits, i.e. is applied locally and not globally, and therefore cannot create
global features such as entanglement. This is true, in general, implying that no local operation whatsoever can create
an entangled state out of a disentangled one, a principle which has a fundamental place in quantum information
processing (see e.g. [15,95–98]). Only global transformations such as a Controlled NOT can create entanglement.

The above was the first and simplest form of quantum computation involving only two qubits and a few gates. Let
us now look at some slightly more complicated examples.

III. SIMPLE QUANTUM NETWORKS

In this section we present some very simple quantum networks. These networks will provide a basis for the more
complicated Shor’s algorithm [80] reviewed in the next section.

6

A. Simple Arithmetic

Quantum networks for basic arithmetic operations can be constructed in a number of different ways. Although
almost any non-trivial quantum gate operating on two or more qubits can be used as an elementary building block of
the networks [4] we have decided to use the three gates described in Fig. 5, hereafter referred to as elementary gates.
None of these gates is universal for quantum computation; however, they suffice to build any Boolean functions as the
Toffoli gate alone suffices to support any classical reversible computation [92]. The NOT and the Control–NOT gates
are added for convenience (they can be easily obtained from the TOFFOLI gates, an exercise we leave to the reader).

B. Plain adder

The addition of two registers |a〉 and |b〉 is probably the most basic arithmetic operation [94]. In the simplest form
it can be written as

|a, b, 0〉 → |a, b, a+ b〉. (10)

Here we will focus on a slightly more complicated (but more useful) operation that rewrites the result of the compu-
tation into the one of the input registers, which is the usual way additions are performed in conventional irreversible
hardware; i.e.

|a, b〉 → |a, a+ b〉, (11)

As one can reconstruct the input (a, b) out of the output (a, a+ b), there is no loss of information, and the calculation
can be implemented reversibly. To prevent overflows, the second register (initially loaded in state |b〉) should be
sufficiently large, i.e. if both a and b are encoded on n qubits, the second register should be of size n+1. In addition,
the network described here also requires a temporary register of size n− 1, initially in state |0〉, to which the carries
of the addition are provisionally written (the last carry is the most significant bit of the result and is written in the
last qubit of the second register).

The operation of the full addition network is illustrated in Fig. 6 and can be understood as follows:

• We compute the most significant bit of the result a+ b. This step requires computing all the carries ci through
the relation ci ← ai AND bi AND ci−1, where ai, bi and ci represent the ith qubit of the first, second and
temporary (carry) register respectively. Fig. 7i) illustrates the sub–network that effects the carry calculation.

• Subsequently we reverse all these operations (except for the last one which computed the leading bit of the
result) in order to restore every qubit of the temporary register to its initial state |0〉. This enables us to reuse
the same temporary register, should the problem, for example, require repeated additions. During the resetting
process the other n qubits of the result are computed through the relation bi ← ai XOR bi XOR ci−1 and stored
in the second register, where XOR is the Exclusive OR gate: the output is 0 if the inputs are 0, 0 or 1, 1, and
otherwise is 1. This operation effectively computes the n first digits of the sum (the basic network that performs
the summation of three qubits modulo 2 is depicted in Fig. 7ii).)

The addition network has a typical ”V” shape present in any reversible computation which has to dispose of
unneccessary information (i.e. garbage). We show in the next section why this is the case. Another interesting
feature of the adder is that if we reverse the action of the above network (i.e. if we apply each gate of the network in
the reversed order) with the input (a, b), the output will produce (a, a − b) when a ≥ b. So, with the same network
we can also accomplish subtraction! When a < b, the output is (a, 2n+1 − (b − a)), where n + 1 is the size of the
second register. In this case the most significant qubit of the second register will always contain 1 . By checking this
“overflow bit” it is therefore possible to compare the two numbers a and b; we can use this operation to construct
the network for modular addition. The crucial fact is that once we know how to perform a modular addition, we
immediately know how to execute modular multiplication [94], since

a× bmodN = (a+ a . . .+ a
︸ ︷︷ ︸

b times

)modN . (12)

Likewise we can perform modular exponentiation [94], because

axmodN = (a× a . . .× a
︸ ︷︷ ︸

x times

)modN . (13)

7

Thus addition is at the root of all the other simple arithmetic operations: subtraction, (modular) multiplication and
(modular) exponentiation. It should be noted that multiplication (and therefore exponentiation) can be performed
more efficiently than this (see the fastest multiplication algorithm in [76]), however the above will be sufficient for
our purposes. Modular operations will become particularly important when we discuss Shor’s algorithm shortly [94].
Next, however, we consider another important problem, i.e. that of garbage reduction.

C. Garbage Disposal

We have seen that in order to perform more involved arithmetic operations we need to repeat the simpler ones a
number of times. However, each of these simple operations contains a number of additional, auxiliary qubits, which
serve to store the intermediate results, but are not relevant at the end. In order not to waste any unneccesary space,
it is therefore important to reset these qubits to 0 so that we are able to re–use them. A good example of a procedure
which does not generate any garbage is the reversible addition we introduced earlier; all the carry bits were reset to
0 at the end of addition. Quantum mechanically, this reset is even more important. This is because the result of
any quantum computation is always entangled with the auxiliary, garbage qubits. Consider the output of the adder
network, where the carry qubits are auxiliary. It will be in a superposition of different results |ri〉 each one entangled
to a different input |ai〉 and carry |ci〉,

∑

i

|ri〉 ⊗ |ai〉 ⊗ |ci〉 . (14)

For clarity let us consider two terms only,

|r1〉 ⊗ |a1〉 ⊗ |c1〉+ |r2〉 ⊗ |a2〉 ⊗ |c2〉 . (15)

If the garbage is now reduced to |0〉 then the total state becomes

(|r1〉 ⊗ |a1〉+ |r2〉 ⊗ |a2〉) ⊗ |0〉 , (16)

i.e. the garbage is disentangled from the rest. If, however, this is not done, and we completely disregard the state
of the carries in the further computation then the effective state of the rest of result is obtained by tracing over the
states of |c〉 to obtain,

|r1〉〈r1| ⊗ |a1〉〈a1|+ |r2〉〈r2| ⊗ |a2〉〈a2| . (17)

This state is now a mixed state and is completely disentangled. We have already said that as soon as entanglement
disappears, then a quantum computer is no more powerful than a classical computer. Thus resetting the garbage
plays a central importance in quantum computation (classical reversible computation does not suffer from this since
there is no entanglement in the first place!). More generally, a quantum computer will interact with its environment
and become entangled with it in exactly the same way that the carries and the other two registers become entangled.
However, the environment is in general impossible to control and this means that the pure superposition states of a
quantum computer eventually become mixed (and therefore useless from the quantum computational point of view).
This is the most general model of how errors arise in quantum computation, and will be described in more detail
later. Here we first present a universal way of dealing with “garbage bits” that arise during a computational process.

Suppose that we have to compute f4(x) = f(f(f(f(x)))) given x and given that we know how to reversibly perform

|x〉|0〉 −→ |x〉|f(x)〉 . (18)

A naive way would be to prepare five registers in the state |x〉|0〉|0〉|0〉|0〉 and then to execute computation of f four
times

|x〉|0〉|0〉|0〉|0〉 −→ |x〉|f(x)〉|0〉|0〉|0〉 (19)

−→ |x〉|f(x)〉|f(f(x))〉|0〉|0〉 (20)

−→ |x〉|f(x)〉|f(f(x))〉|f(f(f(x)))〉|0〉 (21)

−→ |x〉 |f(x)〉|f(f(x))〉|f(f(f(x)))〉
︸ ︷︷ ︸

“garbage”

|f(f(f(f(x))))〉 . (22)

8

However, we have now generated three (middle) unwanted, garbage registers (see Fig. 8). We were only interested
in computing f4 and we do not need all the intermediate results. So, how do we re–set them to zero? We simply
add another register and bitwise copy our result into it (this is accomplished by a CNOT); then we reverse the whole
computation ending up with

|x〉|0〉|0〉|0〉|0〉|f(f(f(f(x))))〉 . (23)

This trick can be improved even further [13,57], but these improvements are too detailed to be relevant here. The
whole issue of reversibility becomes extremely important in constructing a network for Shor’s algorithm. However,
before we analyse this, the biggest breakthrough in quantum computing we turn to a simpler example, Deutsch’s
problem [34], which illustrates all the basic properties of quantum algorithms.

D. Deutsch’s Problem

Deutsch’s problem is the simplest possible example which illustrates the advantages of quantum computation
through exploiting entangled states. The problem is the following. Suppose that we are given a binary function of a
binary variable f : {0, 1} −→ {0, 1}. Thus, f(0) can either be 0 or 1, and f(1) likewise can either be 0 or 1, giving
altogether four possibilities. However, suppose that we are not interested in the particular values of the function at
0 and 1, but we need to know whether the function is: 1) constant, i.e. f(0) = f(1), or 2) varying, i.e. f(0) 6= f(1).
Now Deutsch poses the following task: by computing f only once determine whether it is constant or varying. This
kind of problem is generally referred to as a promise algorithm, because one property out of a certain number of
properties is initially promised to hold, and our task is to determine computationally which one holds (see also [28,84]
for other similar types of promise algorithms).

First of all, classically this is clearly impossible. We need to compute f(0) and then compute f(1) in order to
compare them. There is no way out of this double evaluation. Quantum mechanically, however, there is a simple
method to achieve this task by computing f only once! Two qubits are needed for the computation. We can imagine
that the first qubit is the input to the quantum computer whose internal (hardware) part is the second qubit. The
computer itself will implement the following transformation on the two qubits

|x〉|y〉 −→ |x〉|y ⊕ f(x)〉 , (24)

where x is the input qubit and y the hardware, as depicted in Fig. 9. Note that this transformation is reversible and
thus there is a unitary transformation to implement it (but we will not pay any attention to that at the moment, as
we are only interested here in the basic principle). Note also that f has been used only once. The trick is to prepare
the input in such a state that we make use of quantum entanglement. Let us have at the input

|x〉|y〉 = (|0〉+ |1〉)(|0〉 − |1〉) , (25)

where |x〉 is the actual input and |y〉 is part of the computer hardware. Thus before the transformation is implemented,
the state of the computer is in an equal superposition of all four basis states, which we obtain by simply expanding
the state in eq. (25),

|Ψin〉 = |00〉 − |01〉+ |10〉 − |11〉 . (26)

Note that there are negative phase factors before the second and fourth term. When this state now undergoes the
transformation in eq. (24), we have the following output state

|Ψout〉 = |0f(0)〉 − |0f(0)〉+ |1f(1)〉 − |1f(1)〉 (27)

= |0〉(|f(0)〉 − |f(0)〉) + |1〉(|f(1)〉 − |f(1)〉) , (28)

where the bar indicates the opposite of that value, so that, for example, 0 = 1. This is an entangled state and now
we see where the power of quantum computers is fully realised: each of the components in the superposition of |Ψin〉
underwent the same evolution of eq. (24) “simultaneously”, leading to the powerful “quantum parallelism” [26]. Let
us look at the two possibilities now.

1. if f is constant then

|Ψout〉 = (|0〉+ |1〉)(|f(0)〉 − |f(0)〉) . (29)

9

2. if f is varying then

|Ψout〉 = (|0〉 − |1〉)(|f(0)〉 − |f(0)〉) . (30)

Note that the output qubit (the first qubit) emerges in two different orthogonal states, depending on the type of f .
These two states can be distinguished with 100 percent efficiency. This is easy to see if we first perform a Hadamard
transformation on this qubit, leading to the state |0〉 if the function is constant, and to the state |1〉 if the function
is varying. Now a single projective measurement in 0, 1 basis determines the type of the function. Therefore unlike
their classical equivalents quantum computers can solve Deutsch’s problem.

It should be emphasised that this quantum computation, although extremely simple, contains all the main features of
successful quantum algorithms: it can be shown that all quantum computations are just more complicated variations of
Deutsch’s problem [22]. Deutsch’s algorithm has now been implemented successfully using nuclear magnetic resonance
methods [48,39]. Of course, the more complicated the computation, the more qubits involved, and the easier it is to
see the difference between quantum and classical computations, especially the greater difference in their efficiency.
The most striking example to date is Shor’s algorithm for the factorization of large numbers into primes, which we
review next (there are other examples of quantum computation being faster than their classical counterpart, see e.g.
[44], however none of them is as decisive as Shor’s algorithm).

IV. OUTLINE OF QUANTUM FACTORIZATION

The algorithm for factorization dates back to the Ancient Greeks (the book by Knuth in [52] is a bible for algorithms,
containing a number of important classical computational problems). It was probably known to Euclid, and it can
be described simply as follows. We wish to find the prime factors of N . This amounts to finding the smallest r such
that ar ≡ 1(modN), where a is chosen to be coprime to N , i.e. so that a and N have no common divisors apart from
1. In other words, we want to determine the period of the function ar(modN). Let us see how this works for, say,
N = 15.

• We choose a=2. Then obviously gcd(2, 15) = 1.

• Next we compute 20, 21, . . . 2i modulo 15, and this gives 1, 2, 4, 8, 1, 2, 4, 8,

• This sequence is periodic with the period r = 4, which also satisfies 24 ≡ 1(mod15).

• Once r is obtained we find the factors of N by computing gcd(ar/2±1, 15), which in our case is gcd(4±1, 15) = 3, 5.

Hence we have factorised 15 into 3× 5. Now this algorithm (or some of its close variants) can be implemented on a
classical or on a quantum computer. To be able to compare their efficiency we need to know that there are two basic
classes of problems:

1. easy problems: the time of computation T is a polynomial function of the size of the input l, i.e. T = cnl
n +

...+ c1l + c0, where the coefficients c are determined by the problem.

2. hard problems: the time of computation is an exponential function of the size of the input (e.g. T = 2cl, where
c is problem dependent).

The size of the input is always measured in bits (qubits). For example, if we are to factorize 15 then we need 4 bits
to store this number. In general, to store a number N we need about l = logN , where the base of the logarithm is 2.
(this is easy to see: just ask yourself how many different numbers can be written with l bits). The easy problems are
considered as computationally efficient, or tractable, whereas the hard problems are computationally inefficient, or
intractable. Now the upshot of this discussion is that, for a given N , there is no known efficient classical algorithm to
factorise it. Let us illustrate how the simplest factorization algorithm performs: suppose that we want to determine
the factors of N by dividing it by 2, then 3 then 4 and so on up to

√
N . So the time of computation (which is

in fact the number of elementary steps) is proportional to the number of divisions we have to perform, and this is√
N = 2l/2, i.e. it is exponential. However, using a quantum computer and the above–described Euclid’s approach to

factorization, we can factor any N efficiently in polynomial time involving a linear number of qubits. This is essence
of Shor’s algorithm.

There are two distinct stages in this algorithm [80] (for an extensive review of this algorithm see [33]). Initially, we
have two registers (plus several other registers containing garbage, but these are irrelevant for explaining the basic
principle of quantum factorization) at the input to the quantum computer. First, we prepare the first register in a

10

superposition of consecutive natural numbers, while leaving the second register in 0 state to obtain (as usual we omit
the normalization)

|Ψ〉 =
M−1∑

n=0

|n〉|0〉 (31)

where M = 2m is some sufficiently large number. Now in the second register we compute the function aimodN . This
can be achieved unitarily and the result is

|Ψ1〉 =
M−1∑

n=1

|n〉|anmodN〉 . (32)

Here again we see famous quantum parallelism in action. This completes the first stage of the algorithm and the trick
now is to extract the period r from the first register. To help us visualize this let us think of our previous example
when N = 15 and a = 2. Then we would have

|Ψ1〉 = |0〉|20mod15〉+ |1〉|21mod15〉+ |2〉|22mod15〉+ |3〉|23mod15〉+
+ |4〉|24mod15〉+ |5〉|25mod15〉 . . .+ |2M−1mod15〉 (33)

= |0〉|1〉+ |1〉|2〉+ |2〉|4〉+ |3〉|8〉+ |4〉|1〉+ |5〉|2〉 . . .+ |2M−1mod15〉 . (34)

Let us recall that we do not need to extract all the values of 2imod15, but just the period of this function. This now
sounds very much like Deutsch’s problem, where only the knowledge of a property of f was important and not both
its values. The solution is likewise similar, but is however much more computationally involved. Suppose that we now
perform a measurement on the second register to determine its state. Suppose further that we obtain 4 as the result.
The remaining state will be

|Ψ2〉 = (|2〉+ |6〉+ |10〉+ . . .)|4〉 (35)

so that the first register contains numbers repeating periodically with the period 4. This is now what we have to
extract by manipulating the first register. To see how this works suppose for simplicity that r divides M exactly. For
general a and N this state is

|Ψ2〉 =

A∑

j=0

|jr + l〉|l〉 (36)

where A = M/r − 1 and the second register is obviously irrelevant. Extracting r involves performing a Fast Fourier
Transform on the first register, so that the final state becomes

|Ψ3〉 =
r−1∑

j=0

exp(2πilj/r)|jM/r〉 (37)

We can now perform a measurement in the y = jM/r basis where j is an integer. Therefore, once we obtain a
particular y we have to solve the following equation y/M = j/r where y and M are known. Assuming that j and r
have no common factors (apart from 1) we can determine r by cancelling y/M down to an irreducible fraction. Once
r is obtained we can easily infer the factors of N .

In general, of course, Shor’s algorithm is probabilistic. This means that r, and hence the factors of N that we
obtain by running the above quantum computation, might sometimes not be the right answer. However, whether the
answer is right or wrong can be easily checked by multiplying the factors to get N . Since multiplication is an easy
computation this can be performed efficiently on a classical computer. If the result is not N , we then repeat the
whole Shor’s algorithm all over again, and we keep doing this until we get the right answer. Shor showed that even
with this random element his algorithm is still efficient. In fact, the most time consuming part is the first one, where
we have to obtain the state in eq. (32). Modular exponentiation takes of the order of (logN)3 elementary gates and
this dominates the whole algorithm [94]. We should say that the memory space, i.e. the number of qubits needed for
the entire computation, is of the order of logN . For completeness we state that all the above networks for addition,
multiplication and exponentiation can be improved using standard computational techniques (see e.g. [3]), however,
this improvement is not substantial and does not change the fundamental conclusion about the efficiency of quantum
factorization.

11

All the computations we have considered thus far are “ideal” in the sense that every gate operation was assumed
to be performed without error, and in addition states of qubits were completely preserved. In reality this is far from
being the case. Quantum information is usually very fragile and easily undergoes errors deriving from the so called
phenomenon of decoherence. Manipulating quantum information also presents a formidable experimental task. This
is the subject of the remainder of our review.

V. HOW TO REALIZE A QUANTUM COMPUTER

In the previous sections we have seen that quantum computation is a fundamentally new concept that promises the
solution of problems which are intractable on a classical computer. In this section we will now address the question
of how to implement such a quantum computer in practise. The interest in the practical realization of a quantum
computer increased substantially after the discovery of Shor’s factorization algorithm [80], which exhibited the great
potential of quantum computation. An important question was whether a quantum computer required fundamentally
new experimental techniques for its realization, or whether already known techniques would be sufficient. In fact,
some of the early proposals for implementations of quantum computers had the disadvantage of using somewhat
’futuristic’ experimental techniques. Then, however, a very beautiful proposal for an ion-trap quantum computer was
made by Cirac and Zoller [20] which employed only experimental methods which were already realized or which were
expected to be realizable in the near future. Subsequently, other realistic suggestions such as quantum computation
based on nuclear magnetic resonance methods have been made [24,39,51,54]. Although these new proposals are very
interesting, we confine ourselves here to the description of the linear ion trap implementation of Cirac and Zoller.
The reason for this is that the ion trap quantum computer exhibits the basic ideas of quantum computation in a
particularly transparent and beautiful way.

A. The ion trap quantum computer

The basic experimental setup for an ion trap quantum computer is given in Fig. 10. In a linear ion trap ac currents
in the electrodes generate a time dependent electric quadrupole field. Ions move in this potential and for suitable ac
currents and ion masses, the ions are trapped. This means that they see an effective force towards the center of the
axis of the linear ion trap. The equilibrium between the trapping force generated by the electrodes and the mutual
electrostatic repulsion of the ions is given when the ions form a string where adjacent ions are separated by a few
wavelengths of light. This separation is large enough to ensure that ions can be addressed individually by a laser.
The idea of a linear ion trap is the same as that of a Paul trap [61] which is already being used to trap single ions
for very long times. Linear ion traps are already working and it is possible to trap strings of 30 ions or more in them
[99]. However, no linear ion trap quantum computer with 30 ions has been realized yet.

What is the reason for that. The practical problem with the implementation of the linear ion trap quantum
computer is the mechanical degree of freedom of the ions. Although the ions are trapped along the axis of the linear
ion trap they are not at rest, but oscillate around their equilibrium position. After having trapped the ions, the next
step is then to cool them using methods of laser cooling which have recently been recognized by the Nobel Prize for
physics [1,47]. While it is fairly standard today to cool ions to temperatures of the order of millikelvin, it is very
difficult to cool them to the necessary ground state of motion, i.e. to a state in which only the unavoidable motion
due to the quantum mechanical uncertainty principle is present. A single ion has been cooled to its ground state of
motion [60] some years ago, while two ions have been cooled to the ground state of motion while we were writing this
review [100]. Experimentalists in this field are optimistic that it will soon be possible to cool a string consisting of a
few ions to the ground state of motion.

As it is so difficult to cool the ions to the ground state of motion, we need to have a good reason to try it. To
see why we want to cool the ions to the ground state of motion one should remember that we want to implement
quantum gates between different qubits. In the ion trap, these qubits are localized and we cannot really move them
from one place to another. If we want to implement a quantum gate between two ions that are separated, e.g. one
at the beginning of the string and one at the end, then we need some ’medium’ that can be used for communication
between these ions. Note that this communication is not classical but has to be quantum mechanical in nature as we
want to establish quantum mechanical coherence between different ions. This communication is achieved by using the
center-of-mass mode of the ions. If we excite the center-of-mass mode of the ions then all of the ions will oscillate in
phase and therefore all of them will feel this oscillation simultaneously. This behaviour is illustrated in Fig. 11a. If
the first ion is excited by a laser and the absorbed photon excites the center-of-mass mode then even the ion at the

12

end of the chain will feel this. Therefore even distant ions can ’communicate’. In the next section we will explain how
we can use the center-of-mass mode to generate a CNOT gate.

B. The implementation of the CNOT gate

This idea of using the center-of-mass mode as a ’bus’ is the key ingredient in the ion trap quantum computer. It
allows the implementation of two-bit gates such as a CNOT gate, for example. In the following we will explain how
one can implement a CNOT gate in a linear ion trap computer. More complicated gates can be constructed, but as
we pointed out in Section II a CNOT gate together with single-qubit rotations are sufficient to implement any unitary
operation between quantum bits. Obviously single-qubit gates do not require the center-of-mass mode as a bus as they
are implemented by manipulating a single ion with a suitably made laser pulse. In a CNOT gate it is essential that
the two qubits (i.e.ions) interact and this is achieved by exciting the center-of-mass mode of all the ions in the linear
ion trap. Therefore, before we describe how to implement a full CNOT gate, we explain briefly how we can excite
the center-of-mass mode of the ions with a standing wave laser field. Let us first have a look at the energy levels of a
single qubit and the center of mass mode which are given in Fig. 12. The vertical axis represents the energy of the
joint system of ion and center-of-mass mode. The two levels {|00〉, |10〉} on the far left are those with no phonons (i.e.
excitations) in the center-of-mass mode. The lower state of the qubit is at energy zero, the upper state has energy
h̄ω where ω is the transition frequency between the qubit levels. The next two energy levels {|01〉, |11〉} represent the
energies of the qubit when one phonon has been excited in the center-of-mass mode. The energy required to excite
the center-of-mass mode is h̄ν and this is usually a very small energy compared to the energy required to excite the
qubit. ν is of the order of MHz as compared to the transition frequency in a qubit which is of the order of 1015Hz.
Before we give the Hamiltonian that describes the interaction between laser, ion and center-of-mass mode, we have a
qualitative look at the dynamics of the system. Imagine that an ion is localized in a standing wave laser field. This
laser drives the qubit transition in the ion. If the laser has a frequency ω (shown by a vertical blue arrow in Fig. 12)
then the laser will most likely induce transitions between the lower and upper state of the qubit without affecting the
center of mass mode. This is simply because all other transitions, e.g. the |00〉 ↔ |01〉 transition, are out of resonance.
If, however, the frequency of the laser is ω − ν (shown by a red arrow in Fig 12), then it predominantly generates
transitions between the upper state of the ion and the vibrational state with n excitations in the center-of-mass mode
(state |1n〉) and the ground state of the ion and the vibrational state with n+1 excitations in the center-of-mass mode
(state |0n+1〉). If both ion and center-of-mass mode are in the ground state, nothing at all happens. In summary we
can see two effects. Firstly, a red detuned laser can change simultaneously the electronic state of the qubit and the
state of the center-of-mass mode. Secondly the dynamics can be conditional on the internal state of the ion, i.e. the
qubit. If the qubit is in the lower state then there is no dynamics, if not then the laser induces transitions. One can
easily see that this would not be possible if the ions were not cooled to the ground state of the motion. If with high
probability there is at least one phonon in the center-of-mass mode then the red detuned laser would always affect
ions that are in the ground state.

This qualitative discussion neglects the importance of the position of the ion in the standing wave laser field. This
is a very important factor, as it can be shown that an ion localized at the anti-node of the standing wave will, in
leading order, interact with the laser without changing the excitation of the center-of-mass mode. If, on the other
hand, the ion is localized at the node of the standing wave then in leading order both the internal degrees of freedom
of the ion as well as the excitation of the center-of-mass mode are changed simultaneously. Qualitatively this can be
understood in the following way. If the ion is at the anti-node of the field then it does not see any photons. Therefore
in order to interact with the field it has to change position and therefore it either has to absorb or emit a photon.
Hence a change in its internal degree of freedom always requires a change in the motional degree of freedom of the
ion. If the ion is localized at the node of the field then it is not necessary for it to move in order to see photons. This
qualitative reasoning can be corroborated by a precise derivation of the interaction Hamiltonian between ion, laser
and center-of-mass mode. However, we refer the reader to the literature for this derivation [23] and only state the
results here.

First we assume that the ion is localized at the node of the standing wave laser field of frequency ω − ν. Then in
leading order the Hamiltonian is given by

H =
η√
N

Ω

2

[
|1〉〈0|aeiφ + |0〉〈1|a†e−iφ

]
, (38)

where N is the number of ions that are in the linear ion trap, Ω is the Rabi frequency of the laser, φ is the phase
of the laser. The Lamb-Dicke parameter η = (2π/λ)

√

h̄/2Mν describes how well the ions are localized and a†, a are
creation and annihilation operator for excitations in the center-of-mass mode. This Hamiltonian is an approximation

13

and represents only the first term in an expansion of the true Hamiltonian in terms of η. In addition, it neglects
the interaction with other modes than the center-of-mass mode such as the one shown in Fig. 11b. These are good
approximations as η is much smaller than unity and because other modes of oscillation have resonance frequencies
different from ν and are therefore out of resonance with the laser.

If the ion is localized at the anti-node of the standing wave laser field of frequency ω then the Hamiltonian is given
by

H =
Ω

2

[
|1〉〈0|eiφ + |0〉〈1|e−iφ

]
. (39)

The motional degree of freedom of the ions remains (in leading order) unchanged during the interaction with the
laser. Again there will be higher order corrections in η and off-resonant coupling terms to modes other than the
center-of-mass mode.

Now let us see how we can implement a CNOT gate [20]. For simplicity we assume that we have only two ions in
the linear ion trap, as the whole procedure generalizes easily to more ions. We split the procedure into two parts, as
it then becomes more transparent. First we show how one can implement a controlled phase gate, i.e. a gate that
flips the phase of the upper state of the target qubit only if the control qubit is in the upper state. Then we show
that one can easily obtain a CNOT gate from this.

It is important that initially the center-of-mass mode is in the ground state. First we place the control qubit at the
node of a standing wave laser filed. The interaction is described by the Hamiltonian Eq. (38). We apply the laser

pulse on the control bit for a time t = π/(Ωη/
√

2) so that it produces a π-pulse. If in |xyz〉, x describes the state of
the control qubit, y the state of the target qubit and z the state of the center-of-mass mode then we find that the
laser pulse has the following effect.

|00〉|0〉 → |00〉|0〉 (40)

|01〉|0〉 → |01〉|0〉
|10〉|0〉 → −i|00〉|1〉
|11〉|0〉 → −i|01〉|1〉 .

Note that the action of the laser depends on the state of the control ion. If the control qubit is in the ground state then
nothing happens, but if it is in the upper state then it goes to the ground state and simultaneously the center-of-mass
mode is excited.

Now we manipulate the target qubit which we place at the node of a standing wave laser field. In this step we
make use of the fact that in a real ion we have many atomic levels available. In Fig. 13 we see the qubit levels 0 and
1 and an additional energy level 2. We now couple the lower level 0 of the qubit to the auxiliary level 2 again using
a Hamiltonian of the form Eq. (38) (only that we replace 1 by 2). We apply the laser for a time t = 2π/(Ωη/

√
2) so

that we effectively perform a full 2π rotation. This means that no population at all ends up in level 2. The effect of
this transition is that the ground state of the target bit flips its phase if the center-of-mass mode is excited. Therefore
we obtain

|00〉|0〉 → |00〉|0〉 (41)

|01〉|0〉 → |01〉|0〉
−i|00〉|1〉 → i|00〉|1〉
−i|01〉|1〉 → −i|01〉|1〉 .

In the next step we apply again a pulse of duration t = π/(Ωη/
√

2) to the control qubit using Hamiltonian Eq. (38).
This results in the total transformation

|00〉|0〉 → |00〉|0〉 (42)

|01〉|0〉 → |01〉|0〉
|10〉|0〉 → |10〉|0〉
|11〉|0〉 → −|11〉|0〉 .

Therefore we have implemented a controlled phase gate. Now let us see why this transformation is really the basic
building block for a CNOT gate. Consider the different set of basis states

|±〉 = (|0〉 ± |1〉)/
√

2 . (43)

14

If we rewrite the state of the target qubit in the basis Eq. (43) then the transformation Eq. (43) reads as

|0+〉|0〉 → |0+〉|0〉 (44)

|0−〉|0〉 → |0−〉|0〉
|1+〉|0〉 → |1−〉|0〉
|1−〉|0〉 → |1+〉|0〉 .

This is the action of a CNOT gate. So, all we need to do is to rotate the {|0〉, |1〉} basis of the target bit into the
{|+〉, |−〉} basis, then perform the controlled phase gate, and finally we rotate the basis back to {|0〉, |1〉}. This
generates a CNOT gate in the {|0〉, |1〉} basis. The rotation between the basis sets can be achieved using the
Hamiltonian Eq. (39), i.e. with a standing wave that has the target ion at its anti-node. For this we just have
to chose the phase of the laser to be φ = −π/2 and perform a π/2 pulse, i.e. a pulse with the length t = π/(2 Ω).
Going back from the {|+〉, |−〉} basis to the {|0〉, |1〉} basis is then done by a −π/2 = 3π/2 pulse. Therefore we
are able to generate a CNOT gate as well as single qubit gates and this is all we need to implement any unitary
transformation between qubits.

In our analysis we have made quite a number of simplifying assumptions some of which we have already mentioned.
The Hamilton operators Eqs. (38,39) are only the leading order terms in an expansion with respect to the Lamb-Dicke
parameter η. In addition we have only taken into account the center-of-mass mode although there are many other
modes that might also get excited. We also neglected any spontaneous emission from the ions and losses of excitations
of the center-of-mass mode. That these are reasonable approximations can be seen most convincingly from the fact
that a CNOT gate has been realized experimentally in an ion trap, albeit by a different scheme using only one ion
[59]. In this realization the main source of noise was technical noise.

If we want to perform many quantum gates on many quantum bits then, however, the effect of errors will become
much more serious. Therefore it is important to analyze the effect of noise on a quantum computer and to find ways
to circumvent or correct them. This problem will be addressed in the next section.

VI. DECOHERENCE AND QUANTUM COMPUTATION

In the last section we saw that in principle, we can implement a quantum computer in a linear ion trap. A single
quantum gate has been demonstrated in this scheme [59] and it is expected that soon a few quantum gate operations
will be performed on a few qubits. However, scaling up this implementation (i.e. implementing large numbers of
quantum gates on many qubits) is not easy because noise from all kind of sources will disturb the quantum computer.
Of course also a classical computer suffers from the interaction with a noisy environment and nevertheless works
very well. The advantage of a classical computer is, however, that it is a classical device in the sense that one bit
of information is represented by the presence or absence of a large number of electrons (108 electrons for example).
Therefore a small fluctuation in the number of electrons does not disturb the computer at all. On the contrary,
in a quantum computer the qubit is stored in the electronic degree of freedom of a single atom. Even worse than
that, a quantum computer crucially depends on the survival of quantum mechanical superposition states which are
notoriously sensitive to decoherence and dissipation [101]. This makes a quantum computer extremely sensitive to
small perturbations from the environment. It has been shown that even rare spontaneous emissions from a metastable
state rule out long calculations unless new ideas are developed [64–66]. However, from classical information theory
we know that it is possible to correct for errors by introducing redundancy [78]. Although initially there were doubts
as to whether it would be possible to generalize these ideas to quantum mechanics, quantum error correction codes
have been developed recently.

In this section we will give an example to illustrate how a quantum mechanical superposition state is very sensitive
to noise using a special example of a noise process. Then we will discuss a general method that can be used to
understand noise and its origin at the quantum level. Finally we explain the ideas of quantum error correction that
have been developed to correct for the detrimental influence of noise in quantum computation.

A. Decoherence of entangled states

To illustrate that entangled states are particularly sensitive to noise we assume that each two-level system interacts
independently with the environment which is usually a very good assumption. The source of errors are so-called phase
errors, represented by the operator

15

σz =

(
1 0
0 −1

)

. (45)

This means that if such an error occurs the phase of the ground state remains unchanged while the excited state flips
its phase, i.e. σz |0〉 = |0〉 and σz |1〉 = −|1〉. Note that σz produces a discrete phase change. In reality we can find
any arbitrary phase change given by the operator

σφ =

(
1 0
0 eiφ

)

. (46)

However, the operator σφ corresponding to this phase change can be reexpressed as a linear combination of the identity
operator and the operator σz . Therefore the analysis using only σz is sufficient. A physical source of phase-noise
can be that the ion that stores the qubit collides with atoms from the background gas. During this event usually no
energy is exchanged but nevertheless the relative phase of states can be changed. We assume that the rate at which a
single two-level system collides with atoms from the background gas is γ. If we prepare the qubit in a superposition
state

|ψ〉 = 1√
2
(|0〉+ |1〉) (47)

then the relative phase will be randomized at a rate γ. After a time t the state will have evolved into a statistical
mixture

ρ =

(
1

2

1

2
e−γt

1

2
e−γt 1

2

)

. (48)

Now let us consider n qubits. We assume that they are prepared in the state

|ψ〉 = (| 0 . . . 0
︸ ︷︷ ︸

n times

〉+ | 1 . . . 1
︸ ︷︷ ︸

n times

〉)/
√

2 . (49)

In our error model, we observe that the relative phase of this highly entangled state is randomized at a rate that is
much higher than γ. After a time t the state is

ρ =

(
1

2

1

2
e−nγt

1

2
e−nγt 1

2

)

. (50)

when it is written in the basis {|0 . . .0〉, |1 . . . 1〉} basis. This accelerated randomization of the relative phase derives
from the fact that an error in any one of the qubits switches the phase of the state Eq. (49). Therefore we have n
possibilities to destroy the phase which results in an effective decoherence rate of nγ.

The state Eq. (49) is a particular example and not all states show the same sensitivity to decoherence. Nevertheless
this example should make clear that a quantum computer is very sensitive to noise and, even worse, it becomes more
and more sensitive to noise the larger the quantum computer becomes.

B. A general error model

After this specific example of an error process, we will now consider a more general method to describe errors in
qubits. In this description we take the state of the environment explicitly into account. In the example given above,
that would mean that we keep track of the state of the background gas atom that has collided with our qubit. This is
extremely difficult in practice but there is no physical principle that forbids it. In the following we will see that after
an interaction with the environment the qubit becomes entangled with the environment. It is the fact that we do not
have any knowledge about the environment that destroys the coherence of our quantum state. This description will
also pave the way to the understanding of methods that are able to correct errors that are generated in a quantum
states.

We assume that the initial state |ψ〉 of our qubit is pure and that the environment is in the pure state |e〉. Initially
the qubit and the environment are completely uncorrelated, i.e. the total state of the combined system is

|ψtot〉 = |ψ〉 ⊗ |e〉 . (51)

16

Now, however, the qubit will interact with the environment. There are many possibilities, such as exchanging energy
in the form of photons or the above mentioned phase errors due to collisions etc. In general the interaction with the
environment is simply a joint unitary transformation between qubit and environment. Such a unitary transformation
can be written in many different ways. A particularly useful way is via the Pauli spin operators which are of the form

σx =

(
0 1
1 0

)

σy =

(
0 i
−i 0

)

σz =

(
1 0
0 −1

)

σ0 =

(
1 0
0 1

)

(52)

After some time the total state of system and environment is then given by [32]

|ψtot〉 = σx|ψ〉Tx|e〉+ σy|ψ〉Ty |e〉+ σz |ψ〉Tz |e〉+ σ0|ψ〉T0|e〉 , (53)

where Tij stand for a unitary transformation acting on the state of the environment |e〉 only. Note that we have four
different errors represented by the operators σi. This stands in contrast to the classical case where we have only one
sort of error, namely the bit flip 0 ↔ 1. Every possible error σi is correlated to a specific state of the environment.
So far we still have a pure state for the entire system including the environment and in principle it would be possible
to recover the initial state of the qubit. Now, however, our ignorance of the state of the environment comes into play.
Obviously, if we have no information about the state of the environment (which is usually the case) then we cannot
find out what error has occurred and therefore we are unable to correct the error in the quantum state.

Now the question arises whether it is possible to correct errors that have occurred when we do not have access to
the states of the environment! Is this possible at all? This question will be answered positively in the next subsection.

C. Quantum error correction

In the previous subsection we have raised the question of whether we can correct errors in qubits as we can in
classical communication and computation. Initially there were doubts that errors in quantum mechanical states can be
corrected, but soon it become clear that this is in fact possible. The first quantum error correction code was discovered
in 1995 by Shor [81] and later a more general theory of quantum error correction was developed [17,32,50,86,87]. This
development has continued and has led to an avalanche of different codes that were optimized in different respects and
adapted to special situations [9,53,56,67,93]. New mathematical techniques have been developed which are particularly
suited to the study of quantum error correction codes [15,17–19,40,41] [42,43,50,70–73] [74,75,83,88].

How does quantum error correction work? Let us reconsider the example in subsection B where a qubit has been
interacting with an environment. This interaction led to a correlation of the qubit with the environment, e.g. if the
qubit collides with a background gas atom, their internal states become correlated. In principle such an error could
be corrected if we could obtain complete knowledge of the joint state of the two systems. The fact that really makes it
impossible to correct the errors is that we usually have no access to the information that is stored in the environment,
e.g. the photon that has been emitted has not been detected by us. We do not know which error has occurred and
therefore we are unable to correct it. So, we see that the source of irreversibility is the combination of entanglement
of the qubit with the environment and the loss of information about the state of the environment.

How can we combat this loss of information? We could for example entangle our information-carrying qubit with
some auxiliary qubits such that we can distribute the information about the information-qubit over many auxiliary
qubits. To understand why this might work imagine the information qubit interacts with the environment and we
have no access to the environment. Of course, the state of the qubit is now perturbed, but luckily this time we have
some additional information about its original state in our auxiliary qubits that we can, unlike the environment, still
access. The idea is now to correct the state of our qubit using this additional information. This is, in a very rough
form, the idea of quantum error correction.

Now we present a simple example of a quantum error correction code that protects one qubit against the occurrence
of a single amplitude error, i.e. the 0↔ 1 bit flip. Obviously, as just pointed out, we need additional qubits so that
we can distribute over many qubits the information that was previously in the state of one qubit. In this case two
additional qubits are necessary and sufficient. This amplitude error correcting code is presented in Fig. 14 where
we have given the quantum network necessary to implement the quantum code and the subsequent error correction.
This code has the property that it encodes the states |0〉 into state |000〉 and |1〉 into state |111〉. A superposition
α|0〉 + β|1〉 is therefore encoded as α|000〉 + β|111〉. When the first bit is in the state |ψ〉 and the second and third
qubit are in the state |00〉 then it is easily checked that this encoding is performed by the network on the left hand
side in Fig. 14. After the encoding, one waits, and an error may occur during that time that is indicated by the box
in Fig. 14. Subsequently we decode our state using two CNOT gates and then the error correction is performed in
the last step using a Toffoli gate. Let us check whether the proposed method really works. Obviously when there has

17

been no error at all then at the end the first qubit is recreated in the right state. What happens if the first bit suffers
an amplitude error, i.e. it suffers the bit flip 0 ↔ 1? It is easy to see that before the application of the Toffoli gate
the state of the three qubits will be (α|1〉+ β|0〉)⊗ |11〉. The second and third bit indicate that an error has occurred
in the first qubit and the subsequent Toffoli gate corrects this error by flipping the first qubit. We can check that for
errors in the second or third qubit the state just before the application of the Toffoli gate will be (α|0〉+ β|1〉)⊗ |10〉
or (α|0〉+ β|1〉)⊗ |01〉. Therefore the Toffoli gate will leave the first bit unaffected. In conclusion we see that a single
amplitude error can be corrected using the additional information about the environment stored in the auxiliary
qubits. Note that we did not need to measure the state of the second and third qubit – all our encoding, decoding
and error correction is performed by unitary transformations. Nevertheless at some point irreversibility catches us.
Indeed if we want to reuse the two auxiliary qubits for the next round of quantum error correction then we have to
prepare them in a standard state, e.g. the state |00〉. That means that we either have to dissipate irreversibly their
energy to the environment, or we have to measure their state and then change their state by a unitary transformation.

On the other hand we could have done the error correction without the Toffoli gate. Instead we could perform a
measurement of the state of the auxiliary quantum bits in the {|0〉, |1〉} basis. If we find the state |11〉 then we invert
the first bit, otherwise we leave it unaffected. Finally have to reset the auxiliary bits to the ground state using a
unitary transformation.

We have seen how to implement an amplitude error correcting code. But amplitude errors are not the only possible
errors in quantum mechanics as we have already seen above – phase errors are a different possibility. Does the above
code work when we have a phase error? A quick check reveals that the network given in Fig. 14 is not able to correct
phase errors at all (Try it!). But one can easily change the network to allow the correction of phase errors. One just
has to observe that the following relation holds

σz =

(
0 1
1 0

)

=
1

2

(
1 1
1 −1

)

·
(

0 1
1 0

)

·
(

1 1
1 −1

)

(54)

This means that if we consider a phase error (σz operator) in a rotated basis then it appears as a amplitude error
and vice versa. This new basis that we obtain from the {|0〉, |1〉} by using a Hadamard transformation is given by

|0̃〉 = (|0〉 + |1〉)/
√

2 and |1̃〉 = (|0〉 − |1〉)/
√

2. In this new basis a phase error has the effect of an amplitude error,
i.e. it has the effect σz|0̃〉 = |1̃〉, σz |1̃〉 = |0̃〉. Therefore instead of encoding the state α|0〉 + β|1〉 as shown above we
encode it as

α|0〉+ β|1〉 → α|0̃0̃0̃〉+ β|1̃1̃1̃〉 . (55)

Therefore we obtain an phase error correcting code using a network as shown in Fig 15. This construction of the
phase error correcting code from the amplitude error correcting code reveals an important principle that can be used
to generate quantum error correcting codes that are able to correct one general error, i.e. one phase errors (σz), one
amplitude errors (σx) or a combination of both which is represented by the operator σy. If we want to achieve this,

we need a code that, looked at in the {|0〉, |1〉} basis, corrects amplitude errors and when written in the {|0̃〉, |1̃〉}
basis is also an amplitude error correcting code. Then the basic idea is first to check in the unrotated basis whether
there has been an amplitude error. Then one rotates the state into the basis {|0̃〉, |1̃〉} and again one checks whether
in this basis we can find an amplitude error. Codes that have these properties can be found (although you need some
knowledge of classical error correction). This approach can be found in much greater detail in [86,87]. This approach
is attractive, as it can be shown that one can construct quantum error correcting codes from classical error correcting
codes. These ideas can be generalized to incorporate the most general quantum error correcting codes but for details
of the mathematical principles behind this construction and actual examples we refer the interested reader to the
literature [86,87,43]. It should also be noted that experimental progress has recently been made. Using a nuclear
magnetic resonance implementation of a quantum computer the simple three bit code presented in subsection VI.C
has been demonstrated recently [25].

So far we have seen that it is possible to use quantum error correction to correct errors that have occurred in a
quantum bit. Errors will of course also appear during the operation of quantum gates. Therefore the question arises of
what happens when errors appear during one of the quantum gates that are performed to generate the error syndrome
and the subsequent error correction. Such an error can make the error correction fail and it would be important to
establish whether it is possible to perform quantum error correction in a ’fault-tolerant’ form. Note also that an error
during the operation of a two-bit gate may actually result in two errors. This can easily be seen at the example
of a CNOT-gate. If the control-qubit suffers an amplitude error before the CNOT gate is performed then after the
CNOT gate both the control and the target bit have suffered an amplitude error, (see Fig. 16) and check. Therefore
errors during gate operations are particularly destructive and obviously methods have to be developed that avoids this
multiplication of errors. In fact, such methods have been developed. However, they are quite involved and it would

18

be beyond the scope of this article to review them. The interested reader is referred for details to the literature on
fault-tolerant quantum computation [2,42,49,82,69,89] and its special case of fault-tolerant quantum error correction
[31].

VII. SUMMARY AND FUTURE PROSPECTS

In this review we have seen that the laws of quantum mechanics imply a different kind of information processing
to the traditional one based on the laws of classical physics. The central difference, as we emphasised, was in the fact
that quantum mechanics allows physical systems to be in an entangled state, a phenomenon non-existent in classical
physics. This leads to a quantum computer being able to solve certain tasks faster than its classical counterpart.
More importantly, factorization of natural numbers into primes can be performed efficiently on a quantum computer
using Shor’s algorithm, whereas it is at present considered to be intractable on a classical computer. However, to
realize a quantum computer (or indeed any other computer) we have to have a physical medium in which to store
and manipulate information. It is here that quantum information becomes very fragile and it turns out that the task
of its storage and manipulation requires a lot of experimental ingenuity. We have presented a detailed account of the
linear ion trap, one of the more promising proposals for a physically realizable quantum computer. Here information
is stored into electronic states of ions, which are in turn confined to a linear trap and cooled to their ground state of
motion. Laser light is then used to manipulate information in the form of different electronic transitions. However,
the uncontrollable interactions of ions with their environment induce various errors known as decoherence (such as
e.g. spontaneous emission in ions) and thus severely limit the power of computation. We have than shown that there
is a method to combat decoherence during computation known under the name of quantum error correction. This
then leads to the notion of fault tolerant quantum computation, which is a method of performing reliable quantum
computation using unreliable basic components (e.g. gates) providing that the error rate in this components is below
a certain allowed limit. Much theoretical work has been undertaken in this area at the moment and there is now a
good understanding of its powers and limitations. The main task is now with the experimentalists to try to build
the first fully functional quantum computer, although it should be noted that none of the present implementations
appear to allow long or large scale quantum computations and a breakthrough in technology might be needed.

Despite the fact that at present large computational tasks seem to lie in the remote future, there is a lot of
interesting and fundamental physics that can be done almost immediately with the present technology. A number
of practical information transfer protocols use methods of quantum computation. One example is teleportation
involving two parties usually referred to as Alice and Bob. Initially Alice and Bob share an entangled state of two
qubits (each one having a single qubit) Alice then receives a qubit in a certain (to her unknown) state which she
wants to “transmit” this state to Bob without actually sending the particle to him. She can do this by performing a
simple quantum computation on her side, and communicating its result to Bob. Bob then performs the appropriate
quantum computation on his side, after which his qubit assumes the state of the Alice’s qubit and the teleportation
is achieved (for details see [14]). It should be noted that this experiment has been performed recently by a group in
Innsbruck who achieved a successful teleportation of a singe qubit [8]. Again, since entangled states are non-existent
in classical physics this kind of protocol is impossible, leading to another advantage of quantum information transfer
over its classical analogue. An extension of this idea leads to more than two users, say N , this time sharing entangled
states of N qubits. If each of the users does a particular quantum computation locally, and then they all communicate
their results to each other, then more can be achieved than if they did not share any entanglement in the first
place. This idea is known as distributed quantum computation and is currently being developed [21,45]. There is a
number of other interesting protocols and applications of quantum computation that have either been achieved or are
within experimental reach , e.g. [16,46]. We hope that quantum factorization and other large and important quantum
computations will be realized eventually. Fortunately, there is a vast amount of effort and ingenuity being applied
to these problems, and the future possibility of a fully functioning quantum computer still remains very much alive.
En route to this realization, we will discover a great deal of new physics involving entanglement, decoherence and the
preservation of quantum superpositions.

VIII. ACKNOWLEDGEMENTS

. This work was supported in part by the European TMR Research Network ERB 4061PL95-1412, the European
TMR Research Network ERBFMRXCT96066, a Feodor Lynen grant of the Alexander von Humboldt Stiftung, the
EPSRC and the Knight trust. The authors would like to thank Peter Knight for helpful comments on the manuscript.

19

[1] C.S. Adams and E. Riis, Prog. Quant. Electr. 21, 1 (1997).
[2] D. Aharonov and M. Ben-Or, e-print quant-ph/9611025.
[3] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, Addison–Wesley (1983).
[4] A. Barenco, Proc. R. Soc. Lond. A, 449, 679 (1995).
[5] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin and H. Weinfurter,

Phys. Rev. A 52, 3457 (1995).
[6] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa, and C. Macchiavello, SIAM J. Comp. 26, 1514 (1997).
[7] A. Barenco, Cont. Phys. 37, 375 (1996).
[8] D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390, 575-579 (1997).
[9] S.L. Braunstein, e-print quant-ph/9711049.

[10] J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge Unicersity Press, 1987).
[11] C. H. Bennett, IBM J. Res. Develop. 17, 525 (1973).
[12] C.H Bennett, IBM J. Res. Dev. 32, 16 (1988).
[13] C.H. Bennett, SIAM J. Comput. 18(4), 766 (1989).
[14] C. H. Benett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).
[15] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, and W.K. Wootters, Phys. Rev. A 54, 3824 (1996).
[16] S. Bose, V. Vedral and P. L. Knight, Phys. Rev. A. 57, 822 (1998).
[17] A.R. Calderbank and P.W. Shor, Phys. Rev. A 54, 1098 (1996).
[18] A. R. Calderbank, E. M Rains, P. W. Shor and N. J. A. Sloane, e-print quant-ph/9608006.
[19] A.R. Calderbank, E.M. Rains, P.W. Shor, and N.J.A. Sloane, Phys. Rev. Lett. 78, 405 (1997).
[20] J.I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[21] J.I. Cirac, A. Ekert, S.F. Huelga, and C. Macchiavello, in preparation.
[22] R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. R. Soc. A 454, 339 (1998).
[23] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications,

John-Wiley & Sons, Inc. New York, 1992.
[24] D.G. Cory, M.D. Price, T.F. Havel, e-print quant-ph/9709001.
[25] D.G. Cory, W. Mass, M. Price, E. Knill, R. Laflamme, W. H. Zurek, T.F. Havel, S.S. Somaroo, e-print quant-ph/9802018
[26] D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).
[27] D. Deutsch, Proc. R. Soc. Lond. A 425, 73 (1989).
[28] D. Deutsch and R. Jozsa, Proc. R. Soc. Lond. A 439, 553 (1992).
[29] D. Deutsch, A. Barenco and A. Ekert, Proc. R. Soc. Lond. A 449 669 (1995).
[30] D. Deutsch, The Fabric of Reality (Viking–Penguin Publishers, London, 1997).
[31] D.P. DiVincenzo and P.W. Shor, Phys. Rev. Lett. 77, 3260 (1996).
[32] A. Ekert and C. Macchiavello, Phys. Rev. Lett. 77, 2585 (1996)
[33] A. Ekert and R. Jozsa, Rev. Mod. Phys. 68, 733 (1996).
[34] A. Ekert, From quantum-codemaking to quantum-codebreaking, lanl gov e-print server no. 9703035 (1997).
[35] R. P. Feynman, Int. J. Theo. Phys. 21, 467 (1982).
[36] R. P. Feynman, Found. Phys. 16, 507 (1986).
[37] R. P. Feynman, Feynman’s Lectures on Computation (Addison-Wesley Publishing Company, Inc., 1996).
[38] E. Fredkin and T. Toffoli, Int. J. Theo. Phys. 21, 219 (1982).
[39] N.A. Gershenfeld and I.L. Chuang, Science 275, 350 (1997).
[40] D. Gottesman, Phys. Rev. A 54, 1862 (1996).
[41] D. Gottesman, Phys. Rev. A 56, 76 (1997).
[42] D. Gottesmann, e-print quant-ph/9702029.
[43] D. Gottesmann, e-print quant-ph/9705052.
[44] L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).
[45] L.K. Grover, e-print quant-ph/9704012.
[46] S.F. Huelga, C. Macchiavello, T. Pellizzari, A.K. Ekert, M.B. Plenio, and J.I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).
[47] W.M. Itano, J.C. Bergquist, J.J. Bollinger, and D.J. Wineland, Phys. Scripta T59, 106 (1995).
[48] J. A. Jones and M. Mosca, Implementation of a Quantum Algorithm to Solve Deutsch’s Problem on a Nuclear Magnetic

Resonance Quantum Computer, submitted to J. Chem. Phys (1998), also e-print quant-ph/9801027.
[49] P.L. Knight, M.B. Plenio and V. Vedral, Phil. Trans. R. Soc. London 355, 2381 (1997).
[50] E. Knill and R. Laflamme, Phys. Rev. A 55, 900 (1997).
[51] E. Knill, I. Chuang, R. Laflamme, e-print quant-ph/9706053.
[52] D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms (Addison-Wesley, New York,

20

http://arXiv.org/abs/quant-ph/9611025
http://arXiv.org/abs/quant-ph/9711049
http://arXiv.org/abs/quant-ph/9608006
http://arXiv.org/abs/quant-ph/9709001
http://arXiv.org/abs/quant-ph/9802018
http://arXiv.org/abs/quant-ph/9702029
http://arXiv.org/abs/quant-ph/9705052
http://arXiv.org/abs/quant-ph/9704012
http://arXiv.org/abs/quant-ph/9801027
http://arXiv.org/abs/quant-ph/9706053

1981).
[53] R. Laflamme, C. Miquel, J.P. Paz, and W.H. Zurek, Phys. Rev. Lett. 77, 198 (1996).
[54] R. Laflamme, E. Knill, W.H. Zurek, P. Catasti, S.V.S. Mariappan, e-print quant-ph/9709025.
[55] R. Landauer, IBM J. Res. Dev. 5, 183 (1961).
[56] S. Lloyd and J.J.E. Slotine, e-print quant-ph/9711021.
[57] R.Y. Levine and A.T. Sherman, SIAM J. Comput. 19(4), 673 (1990).
[58] S. Lloyd, Phys. Rev. Lett. 75, 346 (1995).
[59] C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).
[60] C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland and P. Gould, Phys. Rev. Lett 75, 4011

(1995).
[61] W. Paul, Rev. Mod. Phys. 62, 531 (1990).
[62] ’The physics of quantum information’, Editors D. Bouwmeester, A.K. Ekert and A. Zeilinger, Proceedings of the TMR

network meeting on quantum information theory, Almagro (1997).
[63] M. Plenio, V. Vedral and P.L. Knight, Phys. World 9, 19 (1996).
[64] M.B. Plenio and P.L. Knight, Phys. Rev. A 53, 2986 (1996).
[65] M.B. Plenio and P.L. Knight, Proc. R. Soc. Lond. A 453, 2017 (1997).
[66] M.B. Plenio and P.L. Knight, New Developments on Fundamental Problems in Quantum Physics, edited by M. Ferrero

and A. van der Merwe 1997 (Kluwer, Dordrecht), p. 311.
[67] M.B. Plenio, V. Vedral, and P.L. Knight, Phys. Rev. A 55, 67 (1997).
[68] M.B. Plenio, V. Vedral, and P.L. Knight, Phys. Rev. A 55, 4593 (1997).
[69] J. Preskill, e-print quant-ph/9712048.
[70] E.M. Rains, e-print quant-ph/9612015.
[71] E.M. Rains, e-print quant-ph/9611001.
[72] E.M. Rains, R.H. Hardin, P.W. Shor, and N.J.A Sloane, Phys. Rev. Lett. 79, 953 (1997).
[73] E.M. Rains, e-print quant-ph/9704043.
[74] E.M. Rains, e-print quant-ph/9704042.
[75] E.M. Rains, e-print quant-ph/9703048.
[76] A. Schoenhage and V. Strassen, Computing 7, 281 (1971).
[77] B. Schumacher, Phys. Rev. A 51, 2738 (1995).
[78] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, (University of Illinois Press, Urbana, IL,

1949).
[79] H. M. Sheffer, Trans. Am. Math. Soc. 14, 481 (1913).
[80] P.W. Shor, in Proceedings of the 35th Annual Symposium on the Theory of Computer Science, edited by S. Goldwasser

(IEEE Computer Society Press, Los Alamitos, CA), p.124 (1994).
[81] P.W. Shor, Phys. Rev. A 52, 2493 (1995).
[82] P.W. Shor, e-print quant-ph/9605011.
[83] P.W. Shor and R. Laflamme, e-print quant-ph/9610040.
[84] D.S. Simon, Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser

(IEEE Computer Society Press, Los Alamitos, CA), 16 (1994).
[85] Special issue of Scientific American entitled “Solid state century” (December 1997).
[86] A.M. Steane, Phys. Rev. Lett. 77, 793 (1996).
[87] A.M. Steane, Proc. R. Soc. Lond. A 452, 2551 (1996).
[88] A.M. Steane, Phys. Rev. A 54, 4741 (1996).
[89] A. Steane, Phys. Rev. Lett. 78, 2252 (1997).
[90] A.M. Steane, Rep. Prog. Phys. , (1998).
[91] L. Szilard, Z. Phys. 53, 840 (1929).
[92] T. Toffoli, Math. Systems Theory 14, 13 (1981).
[93] L. Vaidman, L. Goldenberg, and S. Wiesner, Phys. Rev. A 54, 1745 (1996).
[94] V. Vedral, A. Barenco and A. Ekert, Phys. Rev. A 53, 154 (1996).
[95] V. Vedral, M. B. Plenio, M. A. Ripppin and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997).
[96] V. Vedral, M. B. Plenio, K.A. Jacobs and P. L. Knight, Phys. Rev. A 56, 4452 (1997)
[97] V. Vedral, M.A. Rippin and M.B. Plenio, J. Mod. Optics 44, 2185 (1997)
[98] V. Vedral and M. B. Plenio, Phys. Rev. A 57, (1998).
[99] I. Waki, S. Kassner, G. Birkl, and H. Walther, Phys. Rev. Lett. 68, 2007 (1992).

[100] D.J. Wineland, presented at the NASA meeting on quantum computation at Palm Springs, February 1998.
[101] W.H. Zurek, Phys. Today 44, 36 (1991).

21

http://arXiv.org/abs/quant-ph/9709025
http://arXiv.org/abs/quant-ph/9711021
http://arXiv.org/abs/quant-ph/9712048
http://arXiv.org/abs/quant-ph/9612015
http://arXiv.org/abs/quant-ph/9611001
http://arXiv.org/abs/quant-ph/9704043
http://arXiv.org/abs/quant-ph/9704042
http://arXiv.org/abs/quant-ph/9703048
http://arXiv.org/abs/quant-ph/9605011
http://arXiv.org/abs/quant-ph/9610040

FIG. 1. Moore’s Law: the number of transistors on a die or a micro–chip doubles every year

a b a or b

0

0 1

0

01

1 1

0

1

1

1

FIG. 2. The logical OR operation is a two input one output gate. This is a typical example of a classical irreversible gate:
from the knowledge of the output (a OR b) it is impossible to infer the input in general.

22

a)

b)

FIG. 3. a) An atom-in-a-box representation of a bit: if the atom is in the left hand half of the box this represents a logical
0, whereas if it is in the right hand half this represents a logical 1; b) confining the atom to one side, by pushing the piston,
resets the bit to one of the two values thereby dissipating kT ln 2 of heat.

a b a a or b

0 0 0 0

0

0

01 1

111

1 1 1 1
FIG. 4. We can make the OR gate reversible by preserving a part of the input, in the above case the bit a.

23

FIG. 5. Truth tables and graphical representations of the elementary quantum gates used for the construction of more
complicated quantum networks. The control qubits are graphically represented by a dot, the target qubits by a cross. i) NOT

operation. ii) Control–NOT. This gate can be seen as a “copy operation” in the sense that a target qubit (b) initially in the
state 0 will be after the action of the gate in the same state as the control qubit. iii) Toffoli gate. This gate can also be seen
as a Control–control–NOT: the target bit (c) undergoes a NOT operation only when the two controls (a and b) are in state 1.

.

+

.

m
o
d

N

+ +

FIG. 6. Plain adder network. In a first step, all the carries are calculated until the last carry gives the most significant
digit of the result. Then all these operations apart from the last one are undone in reverse order, and the sum of the digits
is performed correspondingly. Note the position of a thick black bar on the right or left hand side of basic carry and sum
networks. A network with a bar on the left side represents the reversed sequence of elementary gates embedded in the same
network with the bar on the right side.

FIG. 7. Basic carry and sum operations for the plain addition network. i) the carry operation (note that the carry operation
perturbs the state of the qubit b). ii) the sum operation.

24

f

0

0

0

0

X

0

0

0

0

f(X)

X

f f
f

f
f

f
f

0

FIG. 8. How to get rid of garbage bits once the computation is performed. The network is the same in the classical and
the quantum case, with the exception that quantum bits can, of course, be in an entangled state. Thick black bars on the left
represent the reverse operation, i.e. the computation of f−1

|x>

|y>

|x>

|y+f(x)>

g

FIG. 9. Quantum network for Deutsch’s algorithm: the second qubit can be treated as a hardware of the quantum computer,
so that there is, in fact, only one input qubit |x〉. The function g leaves the first qubit unchanged whereas the second one
computes y ⊕ f(x)

FIG. 10. Schematic picture of a linear ion trap computer. Electrodes generate a time dependent electric field which generates
an effective potential such that a string of ions (the blue dots in the middle of the trap) is trapped. The motion of the ions,
and in particular the center of mass mode, has to be cooled to its ground state. The center of mass mode then acts as a bus
that allows to generate interactions between any two ions.

25

a) Center-of-mass mode

b) Higher mode

time

time

FIG. 11. In part a) the center-of-mass mode is illustrated. All the ions oscillate with the same phase. In part b) a mode of
higher frequency is given. Here the ions have different phases and their relative distances change.

26

|00>

|10>

|01>

|11>

|12>

|02>

} ∆Ε = νh

FIG. 12. The vertical axis gives the energy while the horizontal axis gives the degree of excitation of the center-of-mass
mode. In |xy〉 the first number x denotes the internal degree of freedom of the ion, while the second number y denotes the
degree of excitation of the center of mass mode.

0

1

2

FIG. 13. The energy levels 0 and 1 represent the two levels of the qubit. The auxiliary level 2 is necessary to implement a
CNOT operation in a linear ion trap.

27

|0

|0

|ψ

>

>

>
1

σx

FIG. 14. The quantum network implementing a amplitude error correcting code. The initial state |ψ〉 is encoded into three
bits using two CNOT gates. If at most one bit flip error occurs, indicated by the box, then the subsequent decoding and error
correction using the Toffoli gate restores the state |ψ〉 of the first qubit completely.

|0

|0

|ψ

>

>

> H

H

H

H

H

H

1

σz

FIG. 15. The quantum network implementing a phase error correcting code. The initial state |ψ〉 is encoded into three
bits using two CNOT gates and subsequent rotation of the basis using Hadamard transformations. If at most one phase error
occurs, indicated by the box, then the subsequent decoding and error correction using the Toffoli gate restores the state |ψ〉 of
the first qubit completely.

=

FIG. 16. The two networks are equivalent. On the left hand side the control qubit has suffered an amplitude error before
the CNOT gate was performed. On the right hand side one observes that this is equivalent to have first a CNOT gate and then
amplitude errors in both qubits. This illustrates that errors in one qubit during quantum gate operations can lead to errors in
all of the involved qubits.

28

