
Tianjin Outline History Present Linear Algebra Programming

Computational Linear Algebra

Peter R. Taylor

Vice-dean for Information Technology
and

Professor of Chemistry

Health Science Platform

Tianjin University

Tianjin, China

pete@tju.edu.cn

November 18–22, 2019

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Computational linear algebra

Some history; processors and vendor roadmaps: current
designs, multicore issues, GPUs, TPUs, FPGAs. Caching and
virtual memory

Review of (mostly real) linear algebra: vectors and matrices,
determinants, matrix/vector operations (BLAS), block matrix
operations.

Programming: languages, libraries (BLAS, LAPACK, etc.),
OpenMP/OpenACC, MPI, CUDA, Scalapack/BLACS.

Standard methods: matrix multiplication, matrix
transformations, Gaussian elimination, matrix diagonalization,
singular value decomposition, Cholesky factorization.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Computational linear algebra

Performance measurement: strategies, code optimization and
debugging packages.

Optimization of functions: first- and second-order methods,
constraints, trust-region methods.

Large systems: linear and nonlinear equations, diagonalization

Factorization methods (Cholesky, resolution of the identity) in
computational chemistry.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Recommended reading

Golub and van Loan “Matrix Computations” (Johns Hopkins,
4th ed).

Strang “Linear Algebra and its Applications” (Brooks Cole,
4th ed [or higher now?]).

Fletcher “Practical Methods of Optimization” (Wiley, 2nd ed).

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Ancient history

1940s/1950s technology: vacuum tubes, mercury delay
lines. . .

1960s: semiconductors — ferrite core memory, tapes
(sequential storage).

1970s: integrated circuits (“chips”), semiconductor memory,
disk/drum storage (random access storage).

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Ancient history

Small memories, slow CPUs.

Really small memories, like
256KB.

Programming priority 1: use as little memory as possible.

Programming priority 2: do as few operations as possible.
Especially arithmetic operations. Especially
floating-point (FP) arithmetic operations. . .

Seymour Cray and the revolution. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Ancient history

Small memories, slow CPUs. Really small memories, like
256KB.

Programming priority 1: use as little memory as possible.

Programming priority 2: do as few operations as possible.

Especially arithmetic operations. Especially
floating-point (FP) arithmetic operations. . .

Seymour Cray and the revolution. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Ancient history

Small memories, slow CPUs. Really small memories, like
256KB.

Programming priority 1: use as little memory as possible.

Programming priority 2: do as few operations as possible.
Especially arithmetic operations.

Especially
floating-point (FP) arithmetic operations. . .

Seymour Cray and the revolution. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Ancient history

Small memories, slow CPUs. Really small memories, like
256KB.

Programming priority 1: use as little memory as possible.

Programming priority 2: do as few operations as possible.
Especially arithmetic operations. Especially
floating-point (FP) arithmetic operations. . .

Seymour Cray and the revolution. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Ancient history

Small memories, slow CPUs. Really small memories, like
256KB.

Programming priority 1: use as little memory as possible.

Programming priority 2: do as few operations as possible.
Especially arithmetic operations. Especially
floating-point (FP) arithmetic operations. . .

Seymour Cray and the revolution. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Seymour Cray

UNIVAC to Control Data: sole interest was creating the
fastest machine around.

CDC6600: pathway to CDC7600. Pipelining

E.g., FP add

Load operands into arithmetic unit
Unpack reals and shift to match exponents
Add
Pack to standard FP form
Store result

Old-skool: complete one add, then start next.

Cray: multi-stage CPU pipeline, start next operation every
clock tick.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

CDC7600

Design processing units to produce one result every clock tick.

Good idea, but not achieved. Potentially (27.5 nS clock)
36 MFLOPS (million floating point operations per second).

In practice, 7 MFLOPS excellent, 10 MFLOPS amazing. . .

Contention for memory, inability to connect adds and
multiplies, small instruction stack.

Cray’s brainwave: the CDC 8600!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The “CDC8600”

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Control Data couldn’t/wouldn’t believe it. . .

Cray left (on good terms) to use his design for his own
company.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The “CDC8600”

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Control Data couldn’t/wouldn’t believe it. . .

Cray left (on good terms) to use his design for his own
company.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The “CDC8600”

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Control Data couldn’t/wouldn’t believe it. . .

Cray left (on good terms) to use his design for his own
company.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The “CDC8600”

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Control Data couldn’t/wouldn’t believe it. . .

Cray left (on good terms) to use his design for his own
company.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The “CDC8600”

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Control Data couldn’t/wouldn’t believe it. . .

Cray left (on good terms) to use his design for his own
company.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Specified in the instruction set, and implemented in libraries
provided to the user.

First machine to achieve (more or less. . .) design/market
specifications. New world for computational science!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Specified in the instruction set, and implemented in libraries
provided to the user.

First machine to achieve (more or less. . .) design/market
specifications. New world for computational science!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Specified in the instruction set, and implemented in libraries
provided to the user.

First machine to achieve (more or less. . .) design/market
specifications.

New world for computational science!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

Design processing units to produce one result every clock tick
and ensure they feed one another so that is sustainably
achieved.

Every clock an add/subtract result, and and a multiply.

Add unit and multiply unit chained — one caould be fed into
the other: still one result per clock period.

Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS
both! (Division more complicated. . .)

Specified in the instruction set, and implemented in libraries
provided to the user.

First machine to achieve (more or less. . .) design/market
specifications. New world for computational science!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600):
factor of 10+!

YES!!!

Well, no. . .

Some codes factor of 4 or 5. Many factor of 2. They were
written wrong!

Had to abandon old ideas about minimizing operation count.

Had to abandon old ideas about memory use!

Had to ensure that all compute-intensive work was
implemented as simple vector loops or as matrix operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600):
factor of 10+! YES!!!

Well, no. . .

Some codes factor of 4 or 5. Many factor of 2. They were
written wrong!

Had to abandon old ideas about minimizing operation count.

Had to abandon old ideas about memory use!

Had to ensure that all compute-intensive work was
implemented as simple vector loops or as matrix operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600):
factor of 10+! YES!!!

Well, no. . .

Some codes factor of 4 or 5. Many factor of 2.

They were
written wrong!

Had to abandon old ideas about minimizing operation count.

Had to abandon old ideas about memory use!

Had to ensure that all compute-intensive work was
implemented as simple vector loops or as matrix operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600):
factor of 10+! YES!!!

Well, no. . .

Some codes factor of 4 or 5. Many factor of 2. They were
written wrong!

Had to abandon old ideas about minimizing operation count.

Had to abandon old ideas about memory use!

Had to ensure that all compute-intensive work was
implemented as simple vector loops or as matrix operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600):
factor of 10+! YES!!!

Well, no. . .

Some codes factor of 4 or 5. Many factor of 2. They were
written wrong!

Had to abandon old ideas about minimizing operation count.

Had to abandon old ideas about memory use!

Had to ensure that all compute-intensive work was
implemented as simple vector loops or as matrix operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600):
factor of 10+! YES!!!

Well, no. . .

Some codes factor of 4 or 5. Many factor of 2. They were
written wrong!

Had to abandon old ideas about minimizing operation count.

Had to abandon old ideas about memory use!

Had to ensure that all compute-intensive work was
implemented as simple vector loops or as matrix operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The CRAY-1

So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600):
factor of 10+! YES!!!

Well, no. . .

Some codes factor of 4 or 5. Many factor of 2. They were
written wrong!

Had to abandon old ideas about minimizing operation count.

Had to abandon old ideas about memory use!

Had to ensure that all compute-intensive work was
implemented as simple vector loops or as matrix operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Vector computing

Over a period of several years, most codes were rewritten as
“vector codes”. At least, those that could be.

Not only got top performance on the Cray, but usually got
significant performance improvement on the older computers!

Rewriting led to cleaner, simpler code that compilers could
more easily optimize, and which usually took more advantage
of optimized vendor libraries.

Many vendors followed: IBM 3090VF, CDC Cyber205, and
Cray went on to produce the multiprocessor X–MP, the
“huge” memory (2GB in 1985) Cray 2, and follow-ons to both.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Vector computing

Over a period of several years, most codes were rewritten as
“vector codes”. At least, those that could be.

Not only got top performance on the Cray, but usually got
significant performance improvement on the older computers!

Rewriting led to cleaner, simpler code that compilers could
more easily optimize, and which usually took more advantage
of optimized vendor libraries.

Many vendors followed: IBM 3090VF, CDC Cyber205, and
Cray went on to produce the multiprocessor X–MP, the
“huge” memory (2GB in 1985) Cray 2, and follow-ons to both.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Vector computing

Over a period of several years, most codes were rewritten as
“vector codes”. At least, those that could be.

Not only got top performance on the Cray, but usually got
significant performance improvement on the older computers!

Rewriting led to cleaner, simpler code that compilers could
more easily optimize, and which usually took more advantage
of optimized vendor libraries.

Many vendors followed: IBM 3090VF, CDC Cyber205, and
Cray went on to produce the multiprocessor X–MP, the
“huge” memory (2GB in 1985) Cray 2, and follow-ons to both.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Vector computing

Over a period of several years, most codes were rewritten as
“vector codes”. At least, those that could be.

Not only got top performance on the Cray, but usually got
significant performance improvement on the older computers!

Rewriting led to cleaner, simpler code that compilers could
more easily optimize, and which usually took more advantage
of optimized vendor libraries.

Many vendors followed: IBM 3090VF, CDC Cyber205, and
Cray went on to produce the multiprocessor X–MP, the
“huge” memory (2GB in 1985) Cray 2, and follow-ons to both.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Nonspecialized vector computing

Designing ever-faster specialized super-expensive hardware
was never sustainable.

Much of the functionality was incorporated into mainstream
processors (e.g., Intel’s AVX) and supported by their libraries.

Physics is against faster and faster processors: power draw
goes as (frequency)3.

Inevitably, then, processor speed plateaus and the only way to
increase performance is to have and use more processors:
parallel computing. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Nonspecialized vector computing

Designing ever-faster specialized super-expensive hardware
was never sustainable.

Much of the functionality was incorporated into mainstream
processors (e.g., Intel’s AVX) and supported by their libraries.

Physics is against faster and faster processors: power draw
goes as (frequency)3.

Inevitably, then, processor speed plateaus and the only way to
increase performance is to have and use more processors:
parallel computing. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Nonspecialized vector computing

Designing ever-faster specialized super-expensive hardware
was never sustainable.

Much of the functionality was incorporated into mainstream
processors (e.g., Intel’s AVX) and supported by their libraries.

Physics is against faster and faster processors: power draw
goes as (frequency)3.

Inevitably, then, processor speed plateaus and the only way to
increase performance is to have and use more processors:
parallel computing. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Nonspecialized vector computing

Designing ever-faster specialized super-expensive hardware
was never sustainable.

Much of the functionality was incorporated into mainstream
processors (e.g., Intel’s AVX) and supported by their libraries.

Physics is against faster and faster processors: power draw
goes as (frequency)3.

Inevitably, then, processor speed plateaus and the only way to
increase performance is to have and use more processors:
parallel computing. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Nonspecialized vector computing

Designing ever-faster specialized super-expensive hardware
was never sustainable.

Much of the functionality was incorporated into mainstream
processors (e.g., Intel’s AVX) and supported by their libraries.

Physics is against faster and faster processors: power draw
goes as (frequency)3.

Inevitably, then, processor speed plateaus and the only way to
increase performance is to have and use more processors:
parallel computing. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Parallel computing

Seemed we’d barely mastered vector computing.. . .

Major complication. Vector computing was largely cleaning up
and reimplementing existing algorithms. Parallel computing
meant new algorithms needed.

Some people gave up.

Some were incredibly inventive, especially coping with
“non-uniform memory access”: local vs remote memory.

Many toolkits like Global Arrays. We will look at some later.

Our task is multilevel parallelism: multicore processors and
multiple processors. Fine- and coarse-grained parallelism.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Parallel computing

Seemed we’d barely mastered vector computing.. . .

Major complication. Vector computing was largely cleaning up
and reimplementing existing algorithms. Parallel computing
meant new algorithms needed.

Some people gave up.

Some were incredibly inventive, especially coping with
“non-uniform memory access”: local vs remote memory.

Many toolkits like Global Arrays. We will look at some later.

Our task is multilevel parallelism: multicore processors and
multiple processors. Fine- and coarse-grained parallelism.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Parallel computing

Seemed we’d barely mastered vector computing.. . .

Major complication. Vector computing was largely cleaning up
and reimplementing existing algorithms. Parallel computing
meant new algorithms needed.

Some people gave up.

Some were incredibly inventive, especially coping with
“non-uniform memory access”: local vs remote memory.

Many toolkits like Global Arrays. We will look at some later.

Our task is multilevel parallelism: multicore processors and
multiple processors. Fine- and coarse-grained parallelism.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Parallel computing

Seemed we’d barely mastered vector computing.. . .

Major complication. Vector computing was largely cleaning up
and reimplementing existing algorithms. Parallel computing
meant new algorithms needed.

Some people gave up.

Some were incredibly inventive, especially coping with
“non-uniform memory access”: local vs remote memory.

Many toolkits like Global Arrays. We will look at some later.

Our task is multilevel parallelism: multicore processors and
multiple processors. Fine- and coarse-grained parallelism.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Parallel computing

Seemed we’d barely mastered vector computing.. . .

Major complication. Vector computing was largely cleaning up
and reimplementing existing algorithms. Parallel computing
meant new algorithms needed.

Some people gave up.

Some were incredibly inventive, especially coping with
“non-uniform memory access”: local vs remote memory.

Many toolkits like Global Arrays. We will look at some later.

Our task is multilevel parallelism: multicore processors and
multiple processors. Fine- and coarse-grained parallelism.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Parallel computing

Seemed we’d barely mastered vector computing.. . .

Major complication. Vector computing was largely cleaning up
and reimplementing existing algorithms. Parallel computing
meant new algorithms needed.

Some people gave up.

Some were incredibly inventive, especially coping with
“non-uniform memory access”: local vs remote memory.

Many toolkits like Global Arrays. We will look at some later.

Our task is multilevel parallelism: multicore processors and
multiple processors. Fine- and coarse-grained parallelism.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Parallel computing

Seemed we’d barely mastered vector computing.. . .

Major complication. Vector computing was largely cleaning up
and reimplementing existing algorithms. Parallel computing
meant new algorithms needed.

Some people gave up.

Some were incredibly inventive, especially coping with
“non-uniform memory access”: local vs remote memory.

Many toolkits like Global Arrays. We will look at some later.

Our task is multilevel parallelism: multicore processors and
multiple processors. Fine- and coarse-grained parallelism.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Today and tomorrow. . .

Multicore “standard” CPUs (x86 64), more and more cores.

Low-power “standard” CPUs (ARM — buy a Raspberry Pi to
get experience. . .).

GPUs! nVIDIA killing both AMD and particularly Intel
(Larrabee, Xeon Phi. . .).

TPUs: are they of use to us?

FPGAs: the way of the future.Always have been, always will
be. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Today and tomorrow. . .

Multicore “standard” CPUs (x86 64), more and more cores.

Low-power “standard” CPUs (ARM — buy a Raspberry Pi to
get experience. . .).

GPUs! nVIDIA killing both AMD and particularly Intel
(Larrabee, Xeon Phi. . .).

TPUs: are they of use to us?

FPGAs: the way of the future.Always have been, always will
be. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Today and tomorrow. . .

Multicore “standard” CPUs (x86 64), more and more cores.

Low-power “standard” CPUs (ARM — buy a Raspberry Pi to
get experience. . .).

GPUs! nVIDIA killing both AMD and particularly Intel
(Larrabee, Xeon Phi. . .).

TPUs: are they of use to us?

FPGAs: the way of the future.Always have been, always will
be. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Today and tomorrow. . .

Multicore “standard” CPUs (x86 64), more and more cores.

Low-power “standard” CPUs (ARM — buy a Raspberry Pi to
get experience. . .).

GPUs! nVIDIA killing both AMD and particularly Intel
(Larrabee, Xeon Phi. . .).

TPUs: are they of use to us?

FPGAs: the way of the future.Always have been, always will
be. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Today and tomorrow. . .

Multicore “standard” CPUs (x86 64), more and more cores.

Low-power “standard” CPUs (ARM — buy a Raspberry Pi to
get experience. . .).

GPUs! nVIDIA killing both AMD and particularly Intel
(Larrabee, Xeon Phi. . .).

TPUs: are they of use to us?

FPGAs: the way of the future.Always have been, always will
be. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Today and tomorrow. . .

Multicore “standard” CPUs (x86 64), more and more cores.

Low-power “standard” CPUs (ARM — buy a Raspberry Pi to
get experience. . .).

GPUs! nVIDIA killing both AMD and particularly Intel
(Larrabee, Xeon Phi. . .).

TPUs: are they of use to us?

FPGAs: the way of the future.

Always have been, always will
be. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Today and tomorrow. . .

Multicore “standard” CPUs (x86 64), more and more cores.

Low-power “standard” CPUs (ARM — buy a Raspberry Pi to
get experience. . .).

GPUs! nVIDIA killing both AMD and particularly Intel
(Larrabee, Xeon Phi. . .).

TPUs: are they of use to us?

FPGAs: the way of the future.Always have been, always will
be. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The day after tomorrow. . .

Quantum computing?

Always just around the corner.

Could be a “game-changer”.

We have to see. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The day after tomorrow. . .

Quantum computing?

Always just around the corner.

Could be a “game-changer”.

We have to see. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The day after tomorrow. . .

Quantum computing?

Always just around the corner.

Could be a “game-changer”.

We have to see. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The day after tomorrow. . .

Quantum computing?

Always just around the corner.

Could be a “game-changer”.

We have to see. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

The day after tomorrow. . .

Quantum computing?

Always just around the corner.

Could be a “game-changer”.

We have to see. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Typical x86

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Points to note

Managing memory becomes very tricky: multiple cache levels,
RAM, virtual memory; access from multiple cores.

Cannot leave any of this to users: need appropriate
firmware/hardware.

Need lightweight “threads” of execution as tasks: quite
different from traditional UNIX/Linux fork/exec.

“Hyperthreading” to maximize use of cores:
workload-dependent.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Points to note

Managing memory becomes very tricky: multiple cache levels,
RAM, virtual memory; access from multiple cores.

Cannot leave any of this to users: need appropriate
firmware/hardware.

Need lightweight “threads” of execution as tasks: quite
different from traditional UNIX/Linux fork/exec.

“Hyperthreading” to maximize use of cores:
workload-dependent.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Points to note

Managing memory becomes very tricky: multiple cache levels,
RAM, virtual memory; access from multiple cores.

Cannot leave any of this to users: need appropriate
firmware/hardware.

Need lightweight “threads” of execution as tasks: quite
different from traditional UNIX/Linux fork/exec.

“Hyperthreading” to maximize use of cores:
workload-dependent.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Points to note

Managing memory becomes very tricky: multiple cache levels,
RAM, virtual memory; access from multiple cores.

Cannot leave any of this to users: need appropriate
firmware/hardware.

Need lightweight “threads” of execution as tasks: quite
different from traditional UNIX/Linux fork/exec.

“Hyperthreading” to maximize use of cores:
workload-dependent.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Points to note

Managing memory becomes very tricky: multiple cache levels,
RAM, virtual memory; access from multiple cores.

Cannot leave any of this to users: need appropriate
firmware/hardware.

Need lightweight “threads” of execution as tasks: quite
different from traditional UNIX/Linux fork/exec.

“Hyperthreading” to maximize use of cores:
workload-dependent.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Vectors

Vector space {xk}

α(xi +xj) = αxi +αxj.

k-dimensional vector space.

k need not be finite.

Linear independence:

∑
i

αix
i = 0 ⇒ αi = 0 ∀ i.

Otherwise the set is linearly dependent.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Vectors

Write as columns

x=


x1
x2
...

xk


for a k-dimensional vector space.

Transpose is a row vector

xT = (x1 x2 · · · xk)

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Scalar product

Two vectors x and y:

x ·y ≡ 〈x|y〉= xTy = ∑
p

xpyp.

x ·x≥ 0.

Orthonormal vector space:

xi ·xj = δij.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Matrices

Array of elements

A=


A11 A12 · · · A1n
A21 A22 · · · A2n

...
...

...
...

Am1 Am2 · · · Amn

 .

m rows, n columns. m×n matrix.

“Square matrix” if m = n.

Symmetric if square and all Apq = Aqp.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Matrix properties

Consider as a set of n m-dimensional column vectors, or m
n-dimensional row vectors.

Span, rank, kernel.

Matrix multiplication AB:

Cpq = ∑
r

AprBrq,

matrices must be compliant: A m× k, B k×n, so C m×n.

Holds also for vectors: scalar and matrix product.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Norms

Vector p-norms

||x||p =

(
∑
k

xp
k

) 1
p

.

||x||2 = xTx.

||x||∞ = max |xi|.
Cauchy-Schwarz inequality

|xTy| ≤ ||x||2 ||y||2.

Special case of Hölder’s inequality.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Norms

Matrix p-norms can be defined analogous to vector p-norms,
e.g.,

||A||∞ = max |Aij|.

Frobenius norm

||A||F =

(
∑

i
∑

j
|Aij|2

) 1
2

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Determinants

Many definitions, e.g.,

det(A)≡ |A|=
n

∑
j=1

(−1)(j+1)A1j det(A1j),

recursively for an n×n matrix A.

This is “expanding along the top row”.

det(A1j) is a minor of A, and (−1)(j+1)det(A1j) is cofactor,
or signed minor.

Key property: if det(A) = 0, the matrix A is singular: it has
no inverse.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Determinants

“Proper formula”, attributed to Leibniz

det(A) = ∑
P

σP ∏
i

AiP(i) ≡∑
P

σP ∏
i

AP(i) i,

where P runs over all permutations of the integers 1 . . .n, and
σP is the sign, or parity of the permutation, according to
whether it comprises an odd or even number of transpositions.

For anyone with a background in group theory, this is a
projection operator for the alternating, or antisymmetric
irreducible representation.

Leads to other related quantities — consider costs for
evaluation.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Determinants

“Proper formula”, attributed to Leibniz

det(A) = ∑
P

σP ∏
i

AiP(i) ≡∑
P

σP ∏
i

AP(i) i,

where P runs over all permutations of the integers 1 . . .n, and
σP is the sign, or parity of the permutation, according to
whether it comprises an odd or even number of transpositions.

For anyone with a background in group theory, this is a
projection operator for the alternating, or antisymmetric
irreducible representation.

Leads to other related quantities — consider costs for
evaluation.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Block operations

Recursive generalization of matrix operations. E.g., matrices
A and B which have a block structure

A=



A11 · · · A1l A1(l+1) · · · A1n
...

...
...

...
...

...
Ak1 · · · Akl Ak(l+1) · · · Akn

A(k+1)1 · · · A(k+1)l A(k+1)(l+1) · · · A(k+1)n
...

...
...

...
...

...
Am1 · · · Aml Am(l+1) · · · Amn


,

where for same-sized square blocks (not necessary) 2k = m
and 2l = n.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Block operations

Write this as

A=

(
A11 A12

A21 A22

)
.

Then e.g., C= AB becomes

C=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
.

This blocking can be any number, not just 2×2. Very
valuable in computer implementations (often hidden from
users).

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Vector and matrix operations

The BLAS: Basic Linear Algebra Subprograms.

Fortran source, but often optimized in vendor libraries.

BLAS1: vector operations that go as n. Dot product,
multiplication by a scalar, addition. . .

BLAS2: matrix/vector operations that go as n2, like
matrix/vector multiplication, or matrix addition.

BLAS3: matrix/matrix operations that go as n3, like matrix
multiplication.

Kernels to build more complicated linear algebra operations.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Keep in mind. . .

Floating-point (FP) arithmetic is finite-precision.

Read the IEEE standards if you’re interested. . .

Note that for 64-bit floating point the processor is required to
work in at least 128 bits, and return initially and 80-bit result
(all transparent to the user).

If you feel you need quad-precision (128-bit FP), your
algorithm is probably a bad approach. . .

FP arithmetic is not associative! This can impact exploiting
parallelism — don’t get exactly the same results.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Keep in mind. . .

Floating-point (FP) arithmetic is finite-precision.

Read the IEEE standards if you’re interested. . .

Note that for 64-bit floating point the processor is required to
work in at least 128 bits, and return initially and 80-bit result
(all transparent to the user).

If you feel you need quad-precision (128-bit FP), your
algorithm is probably a bad approach. . .

FP arithmetic is not associative! This can impact exploiting
parallelism — don’t get exactly the same results.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Keep in mind. . .

Floating-point (FP) arithmetic is finite-precision.

Read the IEEE standards if you’re interested. . .

Note that for 64-bit floating point the processor is required to
work in at least 128 bits, and return initially and 80-bit result
(all transparent to the user).

If you feel you need quad-precision (128-bit FP), your
algorithm is probably a bad approach. . .

FP arithmetic is not associative! This can impact exploiting
parallelism — don’t get exactly the same results.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Machine language

Brutal, lowest-level programming. Typing instructions into the
machine like

34612

Meaning: add the two floating-point numbers in registers 1
and 2 and put the result in register 6.

Note that you already have had to make sure the desired
operands were in registers 1 and 2!

And that you know what to do with the result in register 6. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Machine language

Brutal, lowest-level programming. Typing instructions into the
machine like

34612

Meaning: add the two floating-point numbers in registers 1
and 2 and put the result in register 6.

Note that you already have had to make sure the desired
operands were in registers 1 and 2!

And that you know what to do with the result in register 6. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Machine language

Brutal, lowest-level programming. Typing instructions into the
machine like

34612

Meaning: add the two floating-point numbers in registers 1
and 2 and put the result in register 6.

Note that you already have had to make sure the desired
operands were in registers 1 and 2!

And that you know what to do with the result in register 6. . .

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Assembly language

Much more sophisticated. Instead of
34612

you could type
FX6 X1 + X2
. . .

This was nothing more than a neater “shorthand”.

Still required you understood (completely!) the structure of
the processor/machine.

Simply not credible for a larger user community.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Assembly language

Much more sophisticated.

Instead of
34612

you could type
FX6 X1 + X2
. . .

This was nothing more than a neater “shorthand”.

Still required you understood (completely!) the structure of
the processor/machine.

Simply not credible for a larger user community.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Assembly language

Much more sophisticated. Instead of
34612

you could type
FX6 X1 + X2

. . .

This was nothing more than a neater “shorthand”.

Still required you understood (completely!) the structure of
the processor/machine.

Simply not credible for a larger user community.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Assembly language

Much more sophisticated. Instead of
34612

you could type
FX6 X1 + X2
. . .

This was nothing more than a neater “shorthand”.

Still required you understood (completely!) the structure of
the processor/machine.

Simply not credible for a larger user community.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Assembly language

Much more sophisticated. Instead of
34612

you could type
FX6 X1 + X2
. . .

This was nothing more than a neater “shorthand”.

Still required you understood (completely!) the structure of
the processor/machine.

Simply not credible for a larger user community.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Assembly language

Much more sophisticated. Instead of
34612

you could type
FX6 X1 + X2
. . .

This was nothing more than a neater “shorthand”.

Still required you understood (completely!) the structure of
the processor/machine.

Simply not credible for a larger user community.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Assembly language

Much more sophisticated. Instead of
34612

you could type
FX6 X1 + X2
. . .

This was nothing more than a neater “shorthand”.

Still required you understood (completely!) the structure of
the processor/machine.

Simply not credible for a larger user community.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Higher-level languages

What we have today (Fortran, C/C++, etc.). Possible to
write in a more natural “human” way.

Continual development and incorporation of more advanced
features.

Still requires some understanding of target machine.

Interpreted languages: preeminently Python. Easy and good
for prototyping.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Higher-level languages

What we have today (Fortran, C/C++, etc.). Possible to
write in a more natural “human” way.

Continual development and incorporation of more advanced
features.

Still requires some understanding of target machine.

Interpreted languages: preeminently Python. Easy and good
for prototyping.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Higher-level languages

What we have today (Fortran, C/C++, etc.). Possible to
write in a more natural “human” way.

Continual development and incorporation of more advanced
features.

Still requires some understanding of target machine.

Interpreted languages: preeminently Python. Easy and good
for prototyping.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Higher-level languages

What we have today (Fortran, C/C++, etc.). Possible to
write in a more natural “human” way.

Continual development and incorporation of more advanced
features.

Still requires some understanding of target machine.

Interpreted languages: preeminently Python. Easy and good
for prototyping.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Use libraries! Ignore all comments about “hand-tuned” or
“hand-optimized” code. The vendors have already done it!

MKL library from Intel (AMD’s ACML no longer supported),
nVIDIA’s CUDA libraries.

Vendor LAPACK, or ATLAS for e.g., ARM.

In general, don’t reinvent, exploit!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Use libraries! Ignore all comments about “hand-tuned” or
“hand-optimized” code. The vendors have already done it!

MKL library from Intel (AMD’s ACML no longer supported),
nVIDIA’s CUDA libraries.

Vendor LAPACK, or ATLAS for e.g., ARM.

In general, don’t reinvent, exploit!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Use libraries! Ignore all comments about “hand-tuned” or
“hand-optimized” code. The vendors have already done it!

MKL library from Intel (AMD’s ACML no longer supported),
nVIDIA’s CUDA libraries.

Vendor LAPACK, or ATLAS for e.g., ARM.

In general, don’t reinvent, exploit!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Use libraries! Ignore all comments about “hand-tuned” or
“hand-optimized” code. The vendors have already done it!

MKL library from Intel (AMD’s ACML no longer supported),
nVIDIA’s CUDA libraries.

Vendor LAPACK, or ATLAS for e.g., ARM.

In general, don’t reinvent, exploit!

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Stick with standards, and vendor-written/supported, or large
user base-written/supported languages and libraries.

Loop-level parallelism: OpenMP.

GPU parallelism: OpenACC.

Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.

Avoid approaches that depend on a few authors, or one group,
or that are supported only by a single vendor. Long-term risks
are too great.

Hyperthreading requires care.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Stick with standards, and vendor-written/supported, or large
user base-written/supported languages and libraries.

Loop-level parallelism: OpenMP.

GPU parallelism: OpenACC.

Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.

Avoid approaches that depend on a few authors, or one group,
or that are supported only by a single vendor. Long-term risks
are too great.

Hyperthreading requires care.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Stick with standards, and vendor-written/supported, or large
user base-written/supported languages and libraries.

Loop-level parallelism: OpenMP.

GPU parallelism: OpenACC.

Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.

Avoid approaches that depend on a few authors, or one group,
or that are supported only by a single vendor. Long-term risks
are too great.

Hyperthreading requires care.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Stick with standards, and vendor-written/supported, or large
user base-written/supported languages and libraries.

Loop-level parallelism: OpenMP.

GPU parallelism: OpenACC.

Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.

Avoid approaches that depend on a few authors, or one group,
or that are supported only by a single vendor. Long-term risks
are too great.

Hyperthreading requires care.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Stick with standards, and vendor-written/supported, or large
user base-written/supported languages and libraries.

Loop-level parallelism: OpenMP.

GPU parallelism: OpenACC.

Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.

Avoid approaches that depend on a few authors, or one group,
or that are supported only by a single vendor. Long-term risks
are too great.

Hyperthreading requires care.

Computational Linear Algebra USP, November, 2019

Tianjin Outline History Present Linear Algebra Programming

Lower-level tasks

Stick with standards, and vendor-written/supported, or large
user base-written/supported languages and libraries.

Loop-level parallelism: OpenMP.

GPU parallelism: OpenACC.

Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.

Avoid approaches that depend on a few authors, or one group,
or that are supported only by a single vendor. Long-term risks
are too great.

Hyperthreading requires care.

Computational Linear Algebra USP, November, 2019

	Tianjin
	Outline
	History
	Linear Algebra
	Programming

