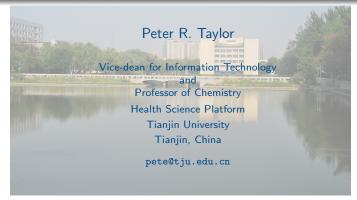
Computational Linear Algebra



November 18-22, 2019

Computational linear algebra

- Some history; processors and vendor roadmaps: current designs, multicore issues, GPUs, TPUs, FPGAs. Caching and virtual memory
- Review of (mostly real) linear algebra: vectors and matrices, determinants, matrix/vector operations (BLAS), block matrix operations.
- Programming: languages, libraries (BLAS, LAPACK, etc.),
 OpenMP/OpenACC, MPI, CUDA, Scalapack/BLACS.
- Standard methods: matrix multiplication, matrix transformations, Gaussian elimination, matrix diagonalization, singular value decomposition, Cholesky factorization.

Computational linear algebra

- Performance measurement: strategies, code optimization and debugging packages.
- Optimization of functions: first- and second-order methods, constraints, trust-region methods.
- Large systems: linear and nonlinear equations, diagonalization
- Factorization methods (Cholesky, resolution of the identity) in computational chemistry.

Recommended reading

- Golub and van Loan "Matrix Computations" (Johns Hopkins, 4th ed).
- Strang "Linear Algebra and its Applications" (Brooks Cole, 4th ed [or higher now?]).
- Fletcher "Practical Methods of Optimization" (Wiley, 2nd ed).

- 1940s/1950s technology: vacuum tubes, mercury delay lines...
- 1960s: semiconductors ferrite core memory, tapes (sequential storage).
- 1970s: integrated circuits ("chips"), semiconductor memory, disk/drum storage (random access storage).

Ancient history

• Small memories, slow CPUs.

- Small memories, slow CPUs. *Really small memories*, like 256KB.
- Programming priority 1: use as little memory as possible.
- Programming priority 2: do as few operations as possible.

- Small memories, slow CPUs. *Really small memories*, like 256KB.
- Programming priority 1: use as little memory as possible.
- Programming priority 2: do as few operations as possible.
 Especially arithmetic operations.

- Small memories, slow CPUs. Really small memories, like 256KB.
- Programming priority 1: use as little memory as possible.
- Programming priority 2: do as few operations as possible.
 Especially arithmetic operations. Especially floating-point (FP) arithmetic operations...

- Small memories, slow CPUs. Really small memories, like 256KB
- Programming priority 1: use as little memory as possible.
- Programming priority 2: do as few operations as possible.
 Especially arithmetic operations. Especially floating-point (FP) arithmetic operations. . .
- Seymour Cray and the revolution...

Seymour Cray

- UNIVAC to Control Data: sole interest was *creating the fastest machine around*.
- CDC6600: pathway to CDC7600. Pipelining
- E.g., FP add
 - Load operands into arithmetic unit
 - Unpack reals and shift to match exponents
 - Add
 - Pack to standard FP form
 - Store result
- Old-skool: complete one add, then start next.
- Cray: multi-stage CPU pipeline, start next operation every clock tick.

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).
- In practice, 7 MFLOPS excellent, 10 MFLOPS amazing...

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).
- In practice, 7 MFLOPS excellent, 10 MFLOPS amazing...
- Contention for memory, inability to connect adds and multiplies, small instruction stack.

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).
- In practice, 7 MFLOPS excellent, 10 MFLOPS amazing...
- Contention for memory, inability to connect adds and multiplies, small instruction stack.
- Cray's brainwave: the CDC 8600!

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).
- In practice, 7 MFLOPS excellent, 10 MFLOPS amazing...

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).
- In practice, 7 MFLOPS excellent, 10 MFLOPS amazing...
- Contention for memory, inability to connect adds and multiplies, small instruction stack.

- Design processing units to produce one result every clock tick.
- Good idea, but not achieved. Potentially (27.5 nS clock)
 36 MFLOPS (million floating point operations per second).
- In practice, 7 MFLOPS excellent, 10 MFLOPS amazing...
- Contention for memory, inability to connect adds and multiplies, small instruction stack.
- Cray's brainwave: the CDC 8600!

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.
- Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS both! (Division more complicated...)

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.
- Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS both! (Division more complicated...)
- Control Data couldn't/wouldn't believe it...

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.
- Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS both! (Division more complicated...)
- Control Data couldn't/wouldn't believe it...
- Cray left (on good terms) to use his design for his own company.

The CRAY-1

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.
- Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS both! (Division more complicated...)

ianjin Outline **History** Present Linear Algebra Programmin_i

The CRAY-1

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.
- Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS both! (Division more complicated...)
- Specified in the instruction set, and implemented in libraries provided to the user.

The CRAY-1

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.
- Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS both! (Division more complicated...)
- Specified in the instruction set, and implemented in libraries provided to the user.
- **9**

• First machine to achieve (more or less. . .) design/market specifications.

The CRAY-1

- Design processing units to produce one result every clock tick and ensure they feed one another so that is sustainably achieved.
- Every clock an add/subtract result, and and a multiply.
- Add unit and multiply unit chained one caould be fed into the other: still one result per clock period.
- Clock 12.5 ns: 80 MFLOPS add or multiply, 160 MFLOPS both! (Division more complicated...)
- Specified in the instruction set, and implemented in libraries provided to the user.
- **9**

• First machine to achieve (more or less...) design/market specifications. New world for computational science!

The CRAY-1

• So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600): factor of 10+!

The CRAY-1

 So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600): factor of 10+! YES!!!

The CRAY-1

- So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600): factor of 10+! YES!!!
- Well, no...
- Some codes factor of 4 or 5. Many factor of 2.

The CRAY-1

- So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600): factor of 10+! YES!!!
- Well, no...
- Some codes factor of 4 or 5. Many factor of 2. They were written wrong!

The CRAY-1

- So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600): factor of 10+! YES!!!
- Well, no...
- Some codes factor of 4 or 5. Many factor of 2. They were written wrong!
- Had to abandon old ideas about minimizing operation count.

The CRAY-1

- So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600): factor of 10+! YES!!!
- Well, no...
- Some codes factor of 4 or 5. Many factor of 2. They were written wrong!
- Had to abandon old ideas about minimizing operation count.
- Had to abandon old ideas about memory use!

The CRAY-1

- So we get 160 MFLOPS, instead of 7 to 10 (CDC 7600): factor of 10+! YES!!!
- Well, no...
- Some codes factor of 4 or 5. Many factor of 2. They were written wrong!
- Had to abandon old ideas about minimizing operation count.
- Had to abandon old ideas about memory use!
- Had to ensure that all compute-intensive work was implemented as simple vector loops or as matrix operations.

Vector computing

• Over a period of several years, most codes were rewritten as "vector codes". At least, those that could be.

Vector computing

- Over a period of several years, most codes were rewritten as "vector codes". At least, those that could be.
- Not only got top performance on the Cray, but usually got significant performance improvement on the older computers!

Vector computing

- Over a period of several years, most codes were rewritten as "vector codes". At least, those that could be.
- Not only got top performance on the Cray, but usually got significant performance improvement on the older computers!
- Rewriting led to cleaner, simpler code that compilers could more easily optimize, and which usually took more advantage of optimized vendor libraries.

Vector computing

- Over a period of several years, most codes were rewritten as "vector codes". At least, those that could be.
- Not only got top performance on the Cray, but usually got significant performance improvement on the older computers!
- Rewriting led to cleaner, simpler code that compilers could more easily optimize, and which usually took more advantage of optimized vendor libraries.
- Many vendors followed: IBM 3090VF, CDC Cyber205, and Cray went on to produce the multiprocessor X–MP, the "huge" memory (2GB in 1985) Cray 2, and follow-ons to both

Nonspecialized vector computing

• Designing ever-faster specialized super-expensive hardware was never sustainable.

- Designing ever-faster specialized super-expensive hardware was never sustainable.
- Much of the functionality was incorporated into mainstream processors (e.g., Intel's AVX) and supported by their libraries.

- Designing ever-faster specialized super-expensive hardware was never sustainable.
- Much of the functionality was incorporated into mainstream processors (e.g., Intel's AVX) and supported by their libraries.
- Physics is against faster and faster processors: power draw goes as (frequency)³.

- Designing ever-faster specialized super-expensive hardware was never sustainable.
- Much of the functionality was incorporated into mainstream processors (e.g., Intel's AVX) and supported by their libraries.
- Physics is against faster and faster processors: power draw goes as (frequency)³.
- Inevitably, then, processor speed plateaus and the only way to increase performance is to have and use more processors: parallel computing. . .

Parallel computing

• Seemed we'd barely mastered vector computing....

- Seemed we'd barely mastered vector computing....
- Major complication. Vector computing was largely cleaning up and reimplementing existing algorithms. Parallel computing meant new algorithms needed.

- Seemed we'd barely mastered vector computing....
- Major complication. Vector computing was largely cleaning up and reimplementing existing algorithms. Parallel computing meant new algorithms needed.
- Some people gave up.

- Seemed we'd barely mastered vector computing....
- Major complication. Vector computing was largely cleaning up and reimplementing existing algorithms. Parallel computing meant new algorithms needed.
- Some people gave up.
- Some were incredibly inventive, especially coping with "non-uniform memory access": local vs remote memory.

- Seemed we'd barely mastered vector computing....
- Major complication. Vector computing was largely cleaning up and reimplementing existing algorithms. Parallel computing meant new algorithms needed.
- Some people gave up.
- Some were incredibly inventive, especially coping with "non-uniform memory access": local vs remote memory.
- Many toolkits like Global Arrays. We will look at some later.

- Seemed we'd barely mastered vector computing....
- Major complication. Vector computing was largely cleaning up and reimplementing existing algorithms. Parallel computing meant new algorithms needed.
- Some people gave up.
- Some were incredibly inventive, especially coping with "non-uniform memory access": local vs remote memory.
- Many toolkits like Global Arrays. We will look at some later.
- Our task is multilevel parallelism: multicore processors and multiple processors. Fine- and coarse-grained parallelism.

Today and tomorrow...

• Multicore "standard" CPUs (x86_64), more and more cores.

- Multicore "standard" CPUs (x86_64), more and more cores.
- Low-power "standard" CPUs (ARM buy a Raspberry Pi to get experience...).

- Multicore "standard" CPUs (x86_64), more and more cores.
- Low-power "standard" CPUs (ARM buy a Raspberry Pi to get experience...).
- GPUs! nVIDIA killing both AMD and particularly Intel (Larrabee, Xeon Phi...).

- Multicore "standard" CPUs (x86_64), more and more cores.
- Low-power "standard" CPUs (ARM buy a Raspberry Pi to get experience...).
- GPUs! nVIDIA killing both AMD and particularly Intel (Larrabee, Xeon Phi...).
- TPUs: are they of use to us?

- Multicore "standard" CPUs (x86_64), more and more cores.
- Low-power "standard" CPUs (ARM buy a Raspberry Pi to get experience...).
- GPUs! nVIDIA killing both AMD and particularly Intel (Larrabee, Xeon Phi...).
- TPUs: are they of use to us?
- FPGAs: the way of the future.

- Multicore "standard" CPUs (x86_64), more and more cores.
- Low-power "standard" CPUs (ARM buy a Raspberry Pi to get experience...).
- GPUs! nVIDIA killing both AMD and particularly Intel (Larrabee, Xeon Phi...).
- TPUs: are they of use to us?
- FPGAs: the way of the future. Always have been, always will be...

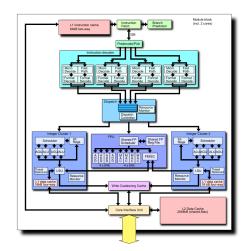
• Quantum computing?

- Quantum computing?
- Always just around the corner.

- Quantum computing?
- Always just around the corner.
- Could be a "game-changer".

- Quantum computing?
- Always just around the corner.
- Could be a "game-changer".
- We have to see. . .

Typical x86



Points to note

Points to note

• Managing memory becomes very tricky: multiple cache levels, RAM, virtual memory; access from multiple cores.

Points to note

- Managing memory becomes very tricky: multiple cache levels, RAM, virtual memory; access from multiple cores.
- Cannot leave any of this to users: need appropriate firmware/hardware.

Points to note

- Managing memory becomes very tricky: multiple cache levels, RAM, virtual memory; access from multiple cores.
- Cannot leave any of this to users: need appropriate firmware/hardware.
- Need lightweight "threads" of execution as tasks: quite different from traditional UNIX/Linux fork/exec.

Points to note

- Managing memory becomes very tricky: multiple cache levels, RAM, virtual memory; access from multiple cores.
- Cannot leave any of this to users: need appropriate firmware/hardware.
- Need lightweight "threads" of execution as tasks: quite different from traditional UNIX/Linux fork/exec.
- "Hyperthreading" to maximize use of cores: workload-dependent.

Vectors

• Vector space $\{\mathbf{x}^k\}$

$$\alpha(\mathbf{x}^i + \mathbf{x}^j) = \alpha \mathbf{x}^i + \alpha \mathbf{x}^j.$$

k-dimensional vector space.

- k need not be finite.
- Linear independence:

$$\sum_{i} \alpha_{i} \mathbf{x}^{i} = 0 \Rightarrow \alpha_{i} = 0 \ \forall \ i.$$

• Otherwise the set is linearly dependent.

Vectors

Write as columns

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{pmatrix}$$

for a k-dimensional vector space.

• Transpose is a row vector

$$\mathbf{x}^T = (x_1 \ x_2 \ \cdots \ x_k)$$

Scalar product

• Two vectors x and y:

$$\mathbf{x} \cdot \mathbf{y} \equiv \langle \mathbf{x} | \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \sum_p x_p y_p.$$

- $\mathbf{v} \cdot \mathbf{x} \geq 0.$
- Orthonormal vector space:

$$\mathbf{x}^i \cdot \mathbf{x}^j = \delta_{ij}$$
.

Matrices

Array of elements

$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{pmatrix}.$$

m rows, n columns. $m \times n$ matrix.

- "Square matrix" if m = n.
- Symmetric if square and all $A_{pq} = A_{qp}$.

Matrix properties

- Consider as a set of n m-dimensional column vectors, or m n-dimensional row vectors.
- Span, rank, kernel.
- Matrix multiplication AB:

$$C_{pq} = \sum_{r} A_{pr} B_{rq},$$

matrices must be *compliant*: **A** $m \times k$, **B** $k \times n$, so **C** $m \times n$.

Holds also for vectors: scalar and matrix product.

Norms

Vector p-norms

$$||x||_p = \left(\sum_k x_k^p\right)^{\frac{1}{p}}.$$

- $||x||_2 = \mathbf{x}^T \mathbf{x}$.
- $\bullet ||x||_{\infty} = \max |x_i|.$
- Cauchy-Schwarz inequality

$$|\mathbf{x}^T \mathbf{y}| \le ||x||_2 ||y||_2.$$

Special case of Hölder's inequality.

Norms

• *Matrix p-norms* can be defined analogous to vector *p*-norms, e.g.,

$$\|\mathbf{A}\|_{\infty} = \max |A_{ii}|.$$

Frobenius norm

$$\|\mathbf{A}\|_F = \left(\sum_i \sum_j |A_{ij}|^2\right)^{\frac{1}{2}}$$

Determinants

Tianiin

Many definitions, e.g.,

$$\det(\mathbf{A}) \equiv |\mathbf{A}| = \sum_{j=1}^{n} (-1)^{(j+1)} A_{1j} \det(\mathbf{A}_{1j}),$$

recursively for an $n \times n$ matrix **A**.

- This is "expanding along the top row".
- $\det(\mathbf{A}_{1j})$ is a *minor* of \mathbf{A} , and $(-1)^{(j+1)}\det(\mathbf{A}_{1j})$ is *cofactor*, or signed minor.
- Key property: if $det(\mathbf{A}) = 0$, the matrix \mathbf{A} is *singular*: it has no inverse.

Determinants

• "Proper formula", attributed to Leibniz

$$\det(\mathbf{A}) = \sum_{P} \sigma_{P} \prod_{i} A_{iP(i)} \equiv \sum_{P} \sigma_{P} \prod_{i} A_{P(i)i},$$

where P runs over all permutations of the integers 1...n, and σ_P is the sign, or parity of the permutation, according to whether it comprises an odd or even number of transpositions.

njin Outline History Present **Linear Algebra** Programmin_i

Determinants

• "Proper formula", attributed to Leibniz

$$\det(\mathbf{A}) = \sum_{P} \sigma_{P} \prod_{i} A_{iP(i)} \equiv \sum_{P} \sigma_{P} \prod_{i} A_{P(i)i},$$

where P runs over all permutations of the integers 1...n, and σ_P is the sign, or parity of the permutation, according to whether it comprises an odd or even number of transpositions.

- For anyone with a background in group theory, this is a projection operator for the alternating, or antisymmetric irreducible representation.
- Leads to other related quantities consider costs for evaluation.

Block operations

Recursive generalization of matrix operations. E.g., matrices
 A and B which have a block structure

$$\mathbf{A} = \begin{pmatrix} A_{11} & \cdots & A_{1l} & A_{1(l+1)} & \cdots & A_{1n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{k1} & \cdots & A_{kl} & A_{k(l+1)} & \cdots & A_{kn} \\ \hline \\ A_{(k+1)1} & \cdots & A_{(k+1)l} & A_{(k+1)(l+1)} & \cdots & A_{(k+1)n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ A_{m1} & \cdots & A_{ml} & A_{m(l+1)} & \cdots & A_{mn} \end{pmatrix},$$

where for same-sized square blocks (not necessary) 2k = m and 2l = n.

Block operations

Write this as

$$\mathbf{A} = \left(\begin{array}{cc} \mathbf{A}^{11} & \mathbf{A}^{12} \\ \mathbf{A}^{21} & \mathbf{A}^{22} \end{array} \right).$$

• Then e.g., **C** = **AB** becomes

$$\mathbf{C} = \begin{pmatrix} \mathbf{A}^{11} \mathbf{B}^{11} + \mathbf{A}^{12} \mathbf{B}^{21} & \mathbf{A}^{11} \mathbf{B}^{12} + \mathbf{A}^{12} \mathbf{B}^{22} \\ \mathbf{A}^{21} \mathbf{B}^{11} + \mathbf{A}^{22} \mathbf{B}^{21} & \mathbf{A}^{21} \mathbf{B}^{12} + \mathbf{A}^{22} \mathbf{B}^{22} \end{pmatrix}.$$

• This blocking can be any number, not just 2×2 . Very valuable in computer implementations (often hidden from users).

Tianiin

Vector and matrix operations

- The BLAS: Basic Linear Algebra Subprograms.
- Fortran source, but often optimized in vendor libraries.
- BLAS1: vector operations that go as *n*. Dot product, multiplication by a scalar, addition. . .
- BLAS2: matrix/vector operations that go as n^2 , like matrix/vector multiplication, or matrix addition.
- BLAS3: matrix/matrix operations that go as n^3 , like matrix multiplication.
- Kernels to build more complicated linear algebra operations.

Keep in mind...

- Floating-point (FP) arithmetic is finite-precision.
- Read the IEEE standards if you're interested...
- Note that for 64-bit floating point the processor is required to work in at least 128 bits, and return initially and 80-bit result (all transparent to the user).

Keep in mind...

- Floating-point (FP) arithmetic is finite-precision.
- Read the IEEE standards if you're interested...
- Note that for 64-bit floating point the processor is required to work in at least 128 bits, and return initially and 80-bit result (all transparent to the user).
- If you feel you need quad-precision (128-bit FP), your algorithm is probably a bad approach...

Keep in mind...

- Floating-point (FP) arithmetic is finite-precision.
- Read the IEEE standards if you're interested...
- Note that for 64-bit floating point the processor is required to work in at least 128 bits, and return initially and 80-bit result (all transparent to the user).
- If you feel you need quad-precision (128-bit FP), your algorithm is probably a bad approach...
- FP arithmetic is not associative! This can impact exploiting parallelism — don't get exactly the same results.

Machine language

- Brutal, lowest-level programming. Typing instructions into the machine like 34612
- Meaning: add the two floating-point numbers in registers 1 and 2 and put the result in register 6.

Machine language

- Brutal, lowest-level programming. Typing instructions into the machine like 34612
- Meaning: add the two floating-point numbers in registers 1 and 2 and put the result in register 6.
- Note that you already have had to make sure the desired operands were in registers 1 and 2!

Machine language

- Brutal, lowest-level programming. Typing instructions into the machine like 34612
- Meaning: add the two floating-point numbers in registers 1 and 2 and put the result in register 6.
- Note that you already have had to make sure the desired operands were in registers 1 and 2!
- And that you know what to do with the result in register 6...

Assembly language

Assembly language

Much more sophisticated......

Assembly language

 Much more sophisticated....... Instead of 34612
 you could type
 FX6 X1 + X2

Assembly language

 Much more sophisticated...... Instead of 34612
 you could type
 FX6 X1 + X2

Assembly language

- Much more sophisticated..... Instead of 34612
 you could type
 FX6 X1 + X2
 ...
- This was nothing more than a neater "shorthand".

Assembly language

Much more sophisticated....... Instead of 34612
 you could type
 FX6 X1 + X2
 ...

- This was nothing more than a neater "shorthand".
- Still required you understood (completely!) the structure of the processor/machine.

Assembly language

Much more sophisticated....... Instead of 34612
 you could type
 FX6 X1 + X2
 ...

- This was nothing more than a neater "shorthand".
- Still required you understood (completely!) the structure of the processor/machine.
- Simply not credible for a larger user community.

Higher-level languages

• What we have today (Fortran, C/C++, etc.). Possible to write in a more natural "human" way.

Higher-level languages

- What we have today (Fortran, C/C++, etc.). Possible to write in a more natural "human" way.
- Continual development and incorporation of more advanced features.

Higher-level languages

- What we have today (Fortran, C/C++, etc.). Possible to write in a more natural "human" way.
- Continual development and incorporation of more advanced features.
- Still requires some understanding of target machine.

Higher-level languages

- What we have today (Fortran, C/C++, etc.). Possible to write in a more natural "human" way.
- Continual development and incorporation of more advanced features.
- Still requires some understanding of target machine.
- Interpreted languages: preeminently Python. Easy and good for prototyping.

Lower-level tasks

 Use libraries! Ignore all comments about "hand-tuned" or "hand-optimized" code. The vendors have already done it!

- Use libraries! Ignore all comments about "hand-tuned" or "hand-optimized" code. The vendors have already done it!
- MKL library from Intel (AMD's ACML no longer supported), nVIDIA's CUDA libraries.

- Use libraries! Ignore all comments about "hand-tuned" or "hand-optimized" code. The vendors have already done it!
- MKL library from Intel (AMD's ACML no longer supported), nVIDIA's CUDA libraries.
- Vendor LAPACK, or ATLAS for e.g., ARM.

- Use libraries! Ignore all comments about "hand-tuned" or "hand-optimized" code. The vendors have already done it!
- MKL library from Intel (AMD's ACML no longer supported), nVIDIA's CUDA libraries.
- Vendor LAPACK, or ATLAS for e.g., ARM.
- In general, don't reinvent, exploit!

Lower-level tasks

• Stick with standards, and vendor-written/supported, or large user base-written/supported languages and libraries.

- Stick with standards, and vendor-written/supported, or large user base-written/supported languages and libraries.
- Loop-level parallelism: OpenMP.

- Stick with standards, and vendor-written/supported, or large user base-written/supported languages and libraries.
- Loop-level parallelism: OpenMP.
- GPU parallelism: OpenACC.

- Stick with standards, and vendor-written/supported, or large user base-written/supported languages and libraries.
- Loop-level parallelism: OpenMP.
- GPU parallelism: OpenACC.
- Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.

- Stick with standards, and vendor-written/supported, or large user base-written/supported languages and libraries.
- Loop-level parallelism: OpenMP.
- GPU parallelism: OpenACC.
- Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.
- Avoid approaches that depend on a few authors, or one group, or that are supported only by a single vendor. Long-term risks are too great.

- Stick with standards, and vendor-written/supported, or large user base-written/supported languages and libraries.
- Loop-level parallelism: OpenMP.
- GPU parallelism: OpenACC.
- Coarse-grained parallelism: MPI, or SCALAPACK/BLACS.
- Avoid approaches that depend on a few authors, or one group, or that are supported only by a single vendor. Long-term risks are too great.
- Hyperthreading requires care.

