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1. INTRODUCTION AND OVERVIEW
The transfer and transport of electrons through biological
matter is one of the key steps underlying cellular energy
harvesting, storage, and utilization, enabling virtually all cellular
activity. The two most important and well-established examples
of electron transfer (ET) in biology, which are at the origin of
our very own existence, are the reactions catalyzed by the redox
protein machinery in photosynthetic cells, converting sunlight
into reduction equivalents (Figure 1A),1−3 and the electron
transport chain in the mitochondria, catalyzing the trans-
formation of reduction equivalents in readily usable energy
(ATP) (Figure 1B).4−6 In recent years we have seen
compelling evidence that biological ET is not restricted to
intracellular processes. Certain microbes have developed an
extraordinary type of respiration in response to conditions of
low oxygen concentration. In a process known as extracellular
respiration they oxidize organic matter inside the cell and
transport the electrons generated across the cellular envelope to
extracellular space for reduction of insoluble transition-metal
oxides, effectively “breathing rocks” in place of oxygen (Figure
1C).7−9

In addition, there is currently strong activity worldwide to
exploit the exquisite redox properties of naturally evolved
metalloenzymes for production of renewable fuels in
bioelectrochemical cells, e.g., hydrogenase for H2 oxidation
and production, see Figure 2A,10−18 and CO-dehydrogenase for
CO oxidation and CO2 reduction, Figure 2B.18−22 Further-
more, bionanoelectronic devices are being designed for sensing,
signaling, electronic communication, and possible incorpora-
tion in living systems. For instance, protein containing filaments
evolved in “rock breathing” microbes have been recently
incorporated in a biological field effect transistor exhibiting
charge mobilities comparable to the ones of organic semi-
conducting materials (Figure 2C−E).23
In parallel to these exciting recent developments on the

experimental front, it becomes increasingly important to further
our theoretical understanding of biological ET so as to improve
our ability (i) to explain experimental observations, (ii) to
predict new phenomena and mechanisms, and (iii) to guide the
design of new experiments, new redox active biological
materials, and devices. From a theoretical perspective, the
most fascinating characteristics of biological ET are probably
the length and time scales at which this phenomenon occurs:
from picoseconds (ps) for charge separation in reaction center
proteins to milliseconds (ms) for long-range ET in
cytochromes,24−26 and from nanometer electron tunneling
between cofactors24−26 to electron transport on the centimeter
scale in long, filamentous bacteria that form living electrical
cables in sediments.27 What are the mechanisms at work that
allow for the realization of such disparate time and length
scales? Why is biological ET so efficient, specific, and often so
remarkably reversible? How does protein structure determine
redox function? Can we develop computational tools that will
allow us to control and tailor biological ET through targeted
mutations?
The field has come a long way from the early ideas of bridge-

mediated electron tunneling, at first proposed by Halpern et al.
in the early 1960s,28 and the square barrier tunneling model of
Hopfield in the 1970s.29 These structureless models of the
physicists were subsequently replaced by more refined models

of physical chemists, honoring for the first time the existence of
the atomic structure of biomolecules. In the late 1980s Beratan
and co-workers proposed the idea that electrons tunnel along
specific pathways connecting electron donating and accepting
cofactors, thereby capturing a potentially complicated multi-
electron quantum mechanical process in a human-accessible,
comprehensible picture.30,31 Now, in the era of computational
molecular science and high performance computing, these
elegant models are becoming increasingly complemented,
informed, or replaced by numerical data as obtained by solving,
though approximately, the most fundamental equations of
quantum mechanics (many-electron Schrödinger equation) in
combination with ensemble averaging over the strongly
fluctuating structures of biomolecules.
The aim of this review is to give a critical account of both

analytical and numerical methods that have been developed to
investigate, characterize, quantify, and explain biological ET
reactions; see Figure 3 for an outline. Analytical ET theories
(blue box in Figure 3) have been and remain of central interest
as they are the condensed extracts of physical insight and they
are of some generality within certain, well-defined limits.
Nowadays, theories are increasingly informed by computer
simulation methods that provide numerical estimates for ET
parameters that enter the rate equations (green box in Figure
3). Moreover, atom-scale simulation methods allow one to
understand and interpret these parameters in terms of
microscopic protein structure and dynamics. Yet, any analytic
ET theory is the result of a number of simplifying assumptions.
Direct charge propagation schemes can be used to test some of
these assumptions (red box in Figure 3). These methods are, in
principle, very powerful and may lead to entirely new pictures
for ET in situations where existing theories do not apply.
Moreover, they can provide benchmark data for the
formulation of new analytic theories in such regimes.
While focus is firmly placed on theoretical and computational

methods, a brief summary of experimental approaches that have
prompted many of the theoretical/computational develop-
ments is given in section 2. In section 3, I review the traditional
picture of single step ET reactions and summarize the very
basic theoretical concepts and established ET rate expressions. I
believe this tutorial-style section gives the nonexpert readers the
necessary background to understand the more advanced
concepts in section 5. The expert reader may skip section 2
and may proceed directly to section 4, where approaches are
described for the calculation of the ET parameters, electron
coupling matrix elements, reorganization free energy, and
driving force. Modern quantum mechanics (QM) based
computational techniques are reviewed such as constrained
and fragment orbital density functional theory as well as QM/
molecular mechanics (MM) and classical molecular dynamics
(MD) for the calculation of free energies. Focus is placed
throughout on atomistic simulation methods. Continuum
electrostatic methods, while undoubtedly useful in many
situations, are not treated here, and I refer to the literature
instead.32−34

Section 5 is the centerpiece of this review. I reexamine and
critically discuss four topics of burgeoning interest that have
attracted, and are very likely to continue to attract, much
attention in the field. The first topic (section 5.1) concerns the
proposal of a new mechanism for multistate biological ET
across a chain of biological redox active units, denoted the
flickering resonance (FR) mechanism.35 Recently suggested by
Beratan, Skourtis and co-workers, I will review the physical
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picture and the rate expression for this mechanism and make a
comparison with the established superexchange (SE) and

hopping models. The second topic (section 5.2) is on methods
that deal with ultrafast ET, such as the nonergodicity correction

Figure 1. Biological electron transfer in native systems. (A) Primary steps of photosynthesis.366 (B) Aerobic respiration.367 (C) Extracellular
respiration. Reprinted with permission from ref 347. Copyright 2015 The Royal Society.

Figure 2. Examples for biological electron transfer in (nano)biotechnological applications. (A) Production of H2 from protons and electrons,
catalyzed by hydrogenase adsorbed on an electrode. Protein structure adapted with permission from ref 18. Copyright 2014 Royal Society of
Chemistry. (B) Reduction of CO2 by the enzyme carbon-monoxide dehydrogenase, adsorbed on a metal oxide particle. Adapted with permission
from ref 20. Copyright 2011 Royal Society of Chemistry. (C) Two bacterial cells from Shewanella oneidensis MR-1 connected by an electronically
conducting biological nanowire. Adapted with permission from ref 9. Copyright 2014 National Academy of Sciences. (D) Field effect transistor made
of a nanowire similar to the one shown in (C). Adapted from ref 23. Copyright 2013 American Chemical Society. (E) Crystal structure of the deca-
heme protein MtrF (PDB code 3PMQ),257 a member of a family of multi-heme cytochromes thought to confer electronic conductivity to the
nanowires shown in (C) and (D).
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recently proposed by Matyushov and co-workers36 and the
explicit nonadiabatic charge propagation schemes implemented
by Kubar,̌ Elstner, and co-workers.37,38 With the third topic
(section 5.3) I will review the recent suggestion that
nonergodic effects, such as the dynamical arrest of slow protein
conformational transitions, accelerate biological ET rates.36 A
simple modification of the linear free energy relationship is
reexamined that may be able to describe this phenomenon
quantitatively. The fourth topic (section 5.4) is on recent
developments of path-integral methods, specifically ring-
polymer molecular dynamics for rigorous calculation of ET
rates that include nuclear quantum effects.39,40

In section 6 I review a few selected computational studies on
ET in proteins and DNA to illustrate some of the concepts and
methods that are presented in sections 4 and 5. I discuss the
performance of QM/MM-type and classical MD simulations
for the calculation of reorganization free energy in Ru-modified
proteins and in cytochrome c oxidase. These systems can be
considered as the “fruit flies” of biological ET for which
experimental ET data is available, thanks to the longstanding
efforts of Gray, Dutton, and others. Some of the critical issues
that are important for successful calculation of this quantity are
discussed. Possible ET mechanisms in multi-heme cytochromes
are reexamined, specifically the SE, FR, and hopping models
with parameters obtained from QM/MM and classical MD
simulations. Ultrafast hole transfer studies in DNA are then
briefly reviewed, focusing on a recent reinterpretation of
experimental results in terms of the FR model and summarizing
the results obtained from explicit nonadiabatic charge
propagation schemes in short DNA strands. Application of
the latter method to DNA photolyase is also briefly reviewed as
an example where the assumption of equilibrium statistical
mechanics gives qualitatively incorrect results.
This review is concluded in section 7 with suggestions for

further tests of the novel concepts and mechanisms described
in section 5 and with a perspective on future opportunities for
computational biological ET. I hope it will complement other
reviews and perspectives in the field that have appeared some
time ago24−26,41−48 and more recently.36−38,49−59 Related
topics not covered here are proton transfer coupled ET (see
refs 60−66 for recent reviews), photoinitiated biological ET
reactions (reviewed in ref 67), excitation energy transfer
(reviewed in ref 68), and electrochemical ET between
electrodes and biomolecules (reviewed in refs 10, 13, 18, 69,
and 70).

2. EXPERIMENTAL APPROACHES
Perhaps one of the most remarkable aspects of biological ET
reactions is the wide range of time scales on which these
reactions occur: from picoseconds (ps) for primary charge
separation in photosynthetic reactions centers to milliseconds
(ms) for long distance tunneling in cytochromes and blue
copper proteins. A number of different experimental
approaches were developed over the past decades to probe
biological ET over these vastly different time scales, including
optical spectroscopy,26,71−75 NMR (ref 76 and references
therein), pulsed radiolysis,77−81 and electrochemical techni-
ques.10,13,18,22,69,70,82−87 Moreover, conductive atomic force
microscopy (AFM) and scanning tunneling microscopy (STM)
techniques have been recently developed, to probe charge
transport across multiple cofactors in single proteins88,89 and in
micrometer-long bacterial nanowires.90 In the following I
summarize some of the optical techniques whose applications

to ET proteins have prompted the development of many
theoretical concepts and modern computational tools, some of
which I shall discuss in later sections.
In their pioneering work in the 1980s, Gray and co-workers

developed a laser flash-quench triggering method for the
measurement of ET rates in small Ru-modified metalloproteins
including cytochromes and azurin.26,91 A photosensitizer,
typically an inorganic Ru complex, is attached to a His residue
at the surface of the protein. Upon photoexcitation of Ru2+ by a
short laser flash, a quencher (Q) is reduced in a bimolecular ET
reaction, triggering intramolecular ET from the transition metal
containing protein cofactor to the oxidized Ru3+ label.
Reduction of the cofactor by the quencher closes the cycle.
During the reaction sequence the oxidation state of the metal
center is monitored by transient absorption spectroscopy and
the rate constant for ET is extracted from the absorption decay.
A number of different photoexcitable electron donors have
been developed also by other groups and successfully applied to
study ET in metalloproteins.74,75,92

Gray, Winkler, and co-workers showed that 20 Å coupling
limited Fe(II) to Ru(III) and Cu(I) to Ru(III) electron
tunneling in Ru-modified cytochromes and azurins can occur
on the microsecond time scale both in solutions and in
crystals.26,91 Measurements for proteins with different distances
between protein metal center and Ru label yielded estimates for
the distance decay of electronic coupling in proteins, and the
use of high-potential Ru complexes enabled the experimental
estimation of reorganization free energies for protein ET (to be
defined in section 3). More recently, evidence was found for
tryptophan-accelerated multistep electron tunneling (hopping)
in Re-modified azurins93 and across a protein−protein
interface.94 Several reviews by this group are available to
which I refer for a detailed summary and discussion.26,56,91,95

Their measurements on small cytochromes and azurins have
obtained benchmark status and provided a very fertile ground
for theoretical and computational developments in the past 30
years;30,31,96−106 see, e.g., section 6.1.
Non-light driven protein ET that is faster than microseconds

is rather unusual, but was shown to occur between heme a and
heme a3 in cytochrome c oxidase. This terminal ET step is
coupled to O2 reduction and proton pumping across the
mitochondrial membrane. The experimental approach for rate
measurement starts from the mixed-valence complex with the

Figure 3. Overview of electron transfer theories and computational
methods discussed in this review.
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reduced heme a3 ligated by CO. A laser flash initiates CO
photolysis resulting in a change of heme a3 redox potential and
subsequent ET to heme a. In the early 1990s, using this method
with microsecond instrumentation, a 3 μs ET equilibrium was
reported.107,108 But in 2001 optical spectroscopy measurements
by Verkhovsky et al. revealed first indications that this reaction
is much faster, on the time scale of nanoseconds.109 This was
confirmed a few years later by Pilet et al.72 and Jasaitis et al.,110

who, using transient absorption spectroscopy with femtosecond
time resolution, reported an ultrafast, nanosecond tunneling
rate for heme a → heme a3 ET. Similarly fast rates were
reported subsequently, for the bacterial homologue cytochrome
bo3.

111 These results have sparked a controversy as to whether
the ultrafast tunneling is a consequence of unusually small
reorganization free energy or high electronic coupling. A
number of computational investigations have been carried out
in search for an explanation, and I shall discuss them in section
6.2.
At the ultrafast end of biological ET reactions is the 3 ps

light-initiated primary charge separation from the special pair P
to the bacteriopheophytin HA in reaction center proteins,
measured again by pump−probe femtosecond transient
absorption techniques.71,112 The experimental results have
posed a number of serious challenges for theory: (i) the
reaction rate increases with decreasing temperature2 (see also
refs 48, 113 and references therein), (ii) the kinetics is
multiexponential, (iii) the dependence of rate with respect to
driving force is not consistent with the temperature depend-
ence (see ref 112 and references therein), (iv) the reaction
could proceed sequentially via a two-step mechanism involving
the intermediate BA

− or directly via superexchange,114,115 and
(v) although there are two quasi-symmetric branches for the
reaction (L and M), only the L branch supports ET.
These observations cannot be understood in terms of

“standard” ET theories. To address (i), Parson and
Warshel48,113,116 devised a scheme where the ET dynamics is
obtained by integrating a stochastic Liouville equation following
excitation of the system with a short pulse of light and using
MD simulation for model parametrization. Moreover, quantum
dynamical schemes were developed that aim at solving the
time-dependent Schrödinger equation in a product basis of
electronic and nuclear wave functions.117 To account for (ii)
and (iii), Woodbury and co-workers,112 and subsequently
Chaudhury et al.,118 modeled the experimental population
decay with the diffusion-reaction equation, which was originally
developed by Sumi and Marcus119 (see also ref 120). To
address (iv), Marchi and co-workers extended the spin-boson
model to handle three diabatic states that are coupled to a
harmonic bath (=protein environment), respectively.114,115 I
shall discuss more recent theoretical developments for the
treatment of ultrafast ET reactions in section 5.2.1.
Proteins are not the only biomolecules supporting charge

transfer. Since the 1990s a large number of studies have been
carried out to characterize and understand hole transport
properties of DNA;44,73,121−125 see recent reviews refs 37 and
38 and references therein. Such processes are of interest
because they play a crucial role in the radiative damage of DNA.
A remarkable experiment was reported in 2001 by Giese et al.
on the kinetics of hole transfer in DNA strands.121 The authors
found that the hole transfer rate between two guanine (G)
bases separated by a adenine−thymine (A−T) “bridge”
decreases exponentially with the number of A−T base pairs
(i.e., the length of the bridge) only up to three A−T base pairs

but exhibits a much weaker distance dependence for longer
bridges. This was interpreted as a change of mechanism from
superexchange at short distances to hole hopping at longer
distances.
Lewis et al. observed a similar change in the distance

dependence for hole transfer in stilbene-capped DNA hair-
pins.73 For this system the crossover occurred already for
bridges comprised of two A−T units. In the latter study,
combining femtosecond broadband pump−probe spectrosco-
py, nanosecond transient absorption spectroscopy, and pico-
second fluorescence decay measurements, a ≈2 ps hole transfer
rate was reported for tunneling across a single A−T bridge,
rivaling primary charge separation in photosynthetic systems
(although the hole transfer rate dropped quickly to about 1 ns
for longer bridges).
An alternative interpretation of the above results on DNA in

terms of the recently suggested flickering resonance mechanism
for charge transfer across multiple redox sites is reviewed in
section 5.1.2. The fast time scale for charge migration poses a
serious challenge to rate theories, however, and has motivated
the development of direct charge propagation schemes such as
the nonadiabatic molecular dynamics method developed by
Elstner and co-workers; see section 5.2.3. Applications of this
method to DNA and DNA photolyase are discussed in sections
6.4 and 6.5.

3. ESTABLISHED ET THEORY
Since the seminal work of Marcus in 1956,126,127 several
expressions for the rate of ET reactions have been derived for
certain limits using classical, semiclassical, and quantum
mechanical formalisms. Excellent reviews on the subject have
been written in the 1980s and 1990s,41−46 to which I refer for a
detailed treatment. Here I review the basic concepts of ET
theory for readers less acquainted with the theoretical
formalism and present the most important rate expressions
that are frequently in use and that will be referred to in later
sections.

3.1. Diabatic and Adiabatic States

In this review I shall consider electron transfer (ET) reactions
between two ionizable groups (e.g., cofactors, amino acids, or
DNA bases)

→RO OR (1)

where RO denotes the donor−acceptor complex with the
electron donor in the reduced state (R) and the electron
acceptor in the oxidized state (O), and vice versa for OR. The
initial ET state RO and the final ET state OR are referred to as
states a and b, respectively.
Experimental ET measurements can be induced in different

ways. For instance, for intramolecular ET reactions leading to a
stable product OR, the reactant state RO can be prepared by a
laser flash and the decay of the RO state and/or the rise of the
OR state monitored with a probe that is sensitive to the redox
state of donor and/or acceptor (pump−probe experiment).
Therefore, the natural starting point is to describe states a and b
by two charge localized or diabatic electronic states with
energies Ea(R

N) and Eb(R
N). The dependence of these energies

on the nuclear coordinates is made explicit, with RN denoting
the 3N dimensional configuration vector of all N atoms of the
system. Diabatic states are reminiscent of the resonance
structures of valence bond theory (see, e.g., ref 41 and
references therein). They are not unique (they depend on the
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experimental preparation of the initial state) and they do not
diagonalize the electronic Hamiltonian, which takes the form

=
⎛
⎝⎜⎜

⎞
⎠⎟⎟

E H

H E
a ab

ba b (2)

in the diabatic representation, where Hab is the electronic
coupling matrix element. In eq 2 it is assumed that the diabatic
states are orthogonal.43 Diagonalization of  gives the adiabatic
electronic ground and charge-transfer excited states, E0 and E1,
respectively:

=
+

± Δ + | |

E
E E

E H

R
R R

R R

( )
( ) ( )

2
1
2

( ) 4 ( )

N
N N

N N

0/1
a b

2
ab

2
(3)

where on the right-hand side (RHS) of eq 3 the minus sign is
for the ground state and the plus sign for the excited state, and
ΔE is the vertical diabatic energy gap:

Δ = −E E ER R R( ) ( ) ( )N N N
b a (4)

Most readers are probably more familiar with the adiabatic
states as these are the ones that are usually obtained from
electronic structure calculations. E0 is, e.g., readily obtained
from density functional theory (DFT) and E1, e.g., readily
obtained from time-dependent DFT calculations. In fact, often
the adiabatic states are computed first and then rotated to
obtain the diabatic states. See refs 43 and 128−132 for
discussion of various diabatization procedures and the recent
work of Migliore, who clarified some of the associated technical
details.133

3.2. Established Picture of ET Reactions

To describe ET reactions, one needs to define a suitable
reaction coordinate, ξ(RN). In solid state problems this
coordinate is usually identified with a phonon mode or a
combination of phonon modes that promote the ET. For ET
reactions between solvated molecules with the solvent treated
at the continuum level as done by Marcus, a similar choice can
be made by considering the normal modes of the donor−
acceptor complex and the dielectric polarization function of the
solvent. In modern computer simulations of the energetics of
ET reactions also the environment is treated at full atomistic
detail. This has the added advantage that ET in highly
heterogeneous media, which are difficult to describe with
continuum models, can be realistically treated, e.g., protein
solutions. In these systems a very large number of modes due to
protein residues and solvent couple to ET, which makes the
choice of a good reaction coordinate difficult. Moreover, the
energy landscape of biomolecules is rather smooth on the
thermal energy scale. This means that the modes promoting ET
are expected to have a large amplitude and it may no longer be
safe to treat them in the harmonic approximation.
In their pioneering works in the early 1980s, Zusman134 and

Warshel135 addressed this problem by using the diabatic energy
gap eq 4 as a reaction coordinate for ET reactions in solutions,
ξ = ΔE. The energy gap is a measure for the energetic
preference of the electron to be on the donor rather than
acceptor site, and as such depends on and is a sensitive measure
of the atomic configuration of D and A and the dipolar
orientation of the environment. The energy gap coordinate has
been successfully used in many early classical MD stud-
ies,136−142 and more recently in DFT-based molecular

dynamics simulations of redox reactions.143−152 It also stood
the test set by more elaborate kinetic theories. For instance, a
recent transition path sampling investigation has shown that the
energy gap is an excellent reaction coordinate for the ferrous−
ferric electron self-exchange reaction.153

This brings us to the generally accepted picture of
(nonadiabatic) ET reactions, which draws on the concepts of
transition state theory of chemical reactions154 and Landau−
Zener theory for electronic transitions.155,156 At first one
defines the two diabatic energies for initial and final states as a
function of the energy gap, Ea(ΔE) and Eb(ΔE), respectively, as
indicated by the pair of curves in blue in Figure 4. (Note, the

corresponding free energy curves are shown in Figure 4 as
explained in section 3.3; here I assume for simplicity that
energy and free energy curves are similar.) For positive values
of ΔE, the configuration of the D−A pair and environment
(indicated in green) is such that the ET initial state is more
favorable, and vice versa for negative values. ET occurs when
thermal fluctuations are large enough that the system, initially
at the bottom of the well of the initial state, reaches the point
where initial and final states cross, referred to as transition state.
This is where the electron can “jump” from the initial to the
final diabatic state with a probability given by the Landau−
Zener formula.155,156 After thermal relaxation, the system ends
up at the bottom of the final state.
In Figure 4 the pair of adiabatic energy curves are indicated

in red. In the bottom of the well for the initial state, the energy
gap is typically orders of magnitude larger than electronic
coupling, ΔE ≫ Hab. Hence, according to eq 3 diabatic and
adiabatic states are virtually identical, Ea ≃ E0, Eb ≃ E1, and
similarly for the bottom of the final state, −ΔE≫ Hab and Eb ≃
E0, Ea ≃ E1. However, when the diabatic states are degenerate,
ΔE = 0, the ground adiabatic state is lowered to E0 = Ea − Hab
and the energy of the first excited ET state is raised to E1 = Ea +
Hab. Moreover, at this point both adiabatic wave functions are
delocalized over donor and acceptor (+ and − combination),

Figure 4. Free energy curves for electron transfer between electron
donor (D) and acceptor (A) in a dielectric environment (solution or
protein). Diabatic free energy curves are shown in blue for λ = λa = λb
= 1 eV, ΔA = −0.1 eV (eqs 11, 12), and adiabatic free energy curves
are shown in red for a constant electronic coupling value Hab ≡ ⟨|
Hab|

2⟩ΔE
1/2 = 0.07 eV (eq 10). See sections 3.5 and 4.2 for definition of

quantities indicated. Finite temperature fluctuations and reorganization
of the dielectric environment along the ET reaction coordinate are
indicated by green chevrons.
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whereas the diabatic wave functions remain, per definition,
localized on donor and acceptor, respectively.
3.3. ET Free Energy Curves

As mentioned above, the energy landscape of biological systems
is smooth compared to the thermal energy and as a
consequence of this many nuclear configurations RN can
produce the same value of the reaction coordinate ΔE(RN).
This means entropic effects are important and diabatic and
adiabatic energy curves should be replaced by the correspond-
ing free energy curves, also termed Landau free energies AM:

Δ = − Δ +A E k T p E( ) ln ( ) constM MB (5)

δΔ = ⟨ Δ ′ − Δ ⟩p E E ER( ) ( ( ) )M
N

M (6)

where pM is the probability distribution of ΔE, δ is the Dirac
delta function, and the brackets ⟨···⟩M denote the thermal
(Boltzmann) average over configuration space on the diabatic
electronic potential energy surfaces M = a, b or the adiabatic
potential energy surfaces eq 3, M = 0, 1. As in my previous
works I use Helmholtz rather than Gibbs free energies, because
most of the molecular simulations that will be discussed in later
sections are run at constant volume. For aqueous solutions the
difference between the two free energies is usually vanishingly
small due to their small compressibility.
A pair of diabatic free energy curves are shown in Figure 4 in

blue and red, respectively. They are characterized by two
important free energies. The vertical difference between the
minima of the two curves is the free energy difference or driving
force ΔA, which is proportional to the ratio of configurational
partition sums for Ea and Eb. Their curvatures are related to the
reorganization free energies λa and λb. λa is defined as the free
energy required to change the equilibrium configuration for
diabatic state a to the equilibrium configuration of diabatic state
b while remaining on the diabatic free energy curve a, and
similarly for λb:

λ = Δ − ΔA E A E( ) ( )a a b
min

a a
min

(7)

λ = Δ − ΔA E A E( ) ( )b b a
min

b b
min

(8)

where ΔEMmin is the position of the minimum of the diabatic free
energy curve of M. It is thus a measure for the difference in
nuclear and electronic polarization between the equilibrium
states a and b, which can depend on the electronic state under
consideration (hence, λa and λb instead of a single λ).
An important property of the diabatic free energy curves

defined in eq 5 is the linear free energy relation141

Δ − Δ = ΔA E A E E( ) ( )b a (9)

This perhaps surprising identity, equating free energy with
energy gaps, can be easily derived by substituting Eb by ΔE + Ea
in the definition of Ab in eq 5 and noting that ΔE is constant
due to the δ function in the integrand. It is important to note
that eq 9 is exact for any distribution pM(ΔE) (i.e., not specific
to Gaussian distributions) as long as the full equilibrium
average over the canonical ensemble is taken. The equivalence
of free energy and energy gaps as expressed in eq 9 is solely a
consequence of taking the energy gap as reaction coordinate. It
is no longer generally true for other reaction coordinates.
Finally, it may be useful to express the adiabatic free energy

profiles A0/1 in terms of the diabatic free energy profiles Aa/b. If
one assumes that electronic coupling Hab is constant, which is
commonly referred to as the Condon approximation,157 or

depends only on the reaction coordinate ΔE, one can use the
linear free energy relation eq 9 to substitute Eb in eq 3 by ΔE +
Ea and write A0/1 exactly in terms of the diabatic free energies
Aa/b. However, in general the electronic coupling will depend
on all coordinates, not only on ΔE. In this case the thermal
averaging is approximated by substituting |Hab|

2(RN) in eq 3 by
⟨|Hab|

2⟩ΔE, where the subscript ΔE denotes thermal averaging
over all configurations that give the energy gap ΔE. Then the
adiabatic free energy profiles take the form

Δ ≃
Δ + Δ

± Δ + ⟨| | ⟩Δ

A E
A E A E

E H

( )
( ) ( )

2
1
2

4 E

0/1
a b

2
ab

2
(10)

Hence, if one averages separately over diabatic energies and
electronic couplings, the adiabatic energies in eq 3 can be
simply replaced by the corresponding Landau free energies.
3.4. Linear Response Approximation

In the linear response (LR) or harmonic approximation one
assumes that the equilibrium distribution eq 6 is Gaussian for a
given diabatic state, e.g., for a, pa = const(exp[−(ΔE −
⟨ΔE⟩a)2/(2σa2)]). The free energy curve for a is then parabolic
according to eq 5. Insertion of the parabolic free energy curve
for a in the linear free-energy relation eq 9 and using the
definitions for reorganization free energy eqs 7 and 8 and
driving force, one, obtains the following analytic expressions:

λ
λ= Δ − Δ +A E A

1
4

( ( ))a
2

(11)

λ
λ= Δ − Δ − + ΔA E A A

1
4

( ( ))b
2

(12)

and the following identities hold:

λ λ λ≡ =a b (13)

Δ ≡ ⟨Δ ⟩ = ΔE E EM M M
min

(14)

λ = Δ − ΔE E( )/2a b (15)

Δ = Δ + ΔA E E( )/2a b (16)

Thus, in case of Gaussian statistics, which is one crucial
assumption in Marcus theory, the diabatic free energies are
parabolas with equal reorganization free energies and equal
force constants, k = 1/(2λ) . Furthermore, the reorganization
free energy is equal to half of the difference of the mean energy
gaps, and the driving force is equal to the average mean energy
gaps. These latter identities are very useful for numerical
computation of λ and ΔA. Importantly, due to the simple
harmonic shape, the ET activation free energy at the crossing
point of the two diabatic state parabolas eqs 11 and 12 can be
expressed in analytic form and is given by

λ
λ

Δ = + Δ‡A
A( )

4na

2

(17)

where the subscript “na” stands for nonadiabatic (see section
3.5). The activation free energy on the adiabatic curves can be
obtained by inserting eqs 11 and 12 in eq 10. One obtains

Δ ≃ Δ = − Δ = Δ − Δ‡ ‡A A E A E A( 0) ( )0 0 a na (18)
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λ λ

Δ = ⟨| | ⟩

+
+ Δ − + Δ + ⟨| | ⟩

H

A A H( ) 4

2

ab
2

TS
1/2

2
ab

2
a

(19)

where ΔAna
‡ is given by eq 17. The second term on the right-

hand side (RHS) of eq 18 (Δ) is a correction that becomes
important when electronic coupling is large. The first term on
the right-hand side of eq 19 is the difference between adiabatic
and diabatic free energy surface at the transition state (TS, ΔE
= 0), and the second term is the corresponding difference at the
bottom of the initial state. (Note that in deriving eqs 18 and 19
I have assumed that the position of the minima and transition
state on the adiabatic free energy profiles are at the same
“horizontal” position as on the diabatic free energy profiles,
which is not exactly the case but typically a very good
approximation.) Equations 15−19 reflect the importance of the
average vertical energy gap eq 14 as a key quantity in linear
response ET theory, allowing us to quantify simultaneously the
thermodynamics (ΔA, eq 16) and together with electronic
coupling the kinetics of ET reactions (λ, eq 15; ΔA‡, eq 18).
3.5. ET Rates for Classical Nuclei

In the simplest case, one assumes that the nuclei can be treated
as classical (c) particles, as was already implicitly asserted in the
treatment of free energies in sections 3.3 and 3.4. This should
give a reasonably good description in the limit of high
temperature where nuclear quantum effects are expected to be
less important. Combining classical transition state theory
(TST) in the harmonic approximation154,157 and Landau−
Zener theory (LZT) for the probability of electronic transitions
between initial and final diabatic ET states,155−157 one obtains
the following expression for the rate of ET in the donor−
acceptor complex:41,43,157,158

κ ν= − Δ ‡⎛
⎝⎜

⎞
⎠⎟k

A
k T

expc el n
B (20)

In eq 20, κel is the electronic transmission coefficient, νn is an
effective nuclear frequency along the reaction coordinate, and
ΔA‡ is the ET activation free energy eq 18. The electronic
transmission coefficient is given by41

κ
λ

λ
= +

Δ ≥ −

− Δ < −

⎧
⎨⎪

⎩⎪

P
P

A

P P A

2
1

if

2 (1 ) if
el

LZ

LZ

LZ LZ (21)

πγ= − −P 1 exp( 2 )LZ (22)

πγ
π

ν λ
=

⟨| | ⟩H
h k T

2
3/2

ab
2

TS

n B (23)

where PLZ is the Landau−Zener transition probability for a
single crossing event from the initial to the final diabatic state
surface, λ is the reorganization free energy given by eq 13 or 15,
and h is Planck’s constant. The electronic transmission
coefficient in eq 21 accounts for multiple uncorrelated passages
through the intersection region assuming steady state
populations of four intermediate species just before and after
the crossing point.41 Note, the resulting expression differs for
normal (ΔA ≥ − λ) and inverted Marcus regime (ΔA < −λ).
The nuclear frequency is related to the force constant of the
diabatic free energy curves, i.e., to λ, through 2πνn = (2λm)−1/2,

where m is the effective mass for motion along the reaction
coordinate. The effective nuclear frequency can be obtained
from MD simulation by spectral deconvolution of reorganiza-
tion free energy (see section 4.2.1 for details).
The LZ transition probability eq 22 was originally derived for

crossing between diabatic energy curves with constant
electronic coupling. That is, the dependence of electronic
coupling on nuclear geometry is disregarded (Condon
approximation).155,156 The thermal averaging over configu-
rations, as indicated by the brackets ⟨...⟩TS on the RHS of eq 23,
is often not explicitly considered.41,43,158 Here, the effect of
finite temperature fluctuations on the LZ transition probability
is included in eqs 22 and 23 by replacing the velocity along the
reaction coordinate by the thermal average and the electronic
coupling matrix element by a thermal average over all transition
state configurations at the crossing point region. This is, of
course, an approximation to the exact thermal average.
However, Troisi, Nitzan, and Ratner showed that, for
nonadiabatic ET reactions (see definition below) with
fluctuating electronic couplings, the rate constant can be
expressed as a series of contributions with decreasing
importance, with the leading term coinciding with the standard
nonadiabatic expression except that |Hab|

2 is replaced by the
thermal average ⟨|Hab|

2⟩TS;
159 see eq 24. Hence, the use of ⟨|

Hab|
2⟩TS on the RHS of eq 23 is expected to give a good

approximation. See also ref 159 for further discussion.
I would like to emphasize that all assumptions underlying

TST and LZT as well as their range of validity carry over to eq
20. One of the key assumptions is that ET is assumed to be
slow compared to the slowest mode coupling to ET (see ref
157). If the time scale assumption is not valid, the initial state is
no longer Boltzmann populated, which can give rise to a
number of complexities such as a distribution of rate constants
and nonexponential kinetics. For a discussion of theories that
go beyond the time scale separation (i.e., fast ET reactions), I
refer the reader to section 5.2. Furthermore, I would like to
point out that eq 20 describes ET in the nonadiabatic, adiabatic,
and intermediate regimes. These regimes are defined by the
adiabaticity parameter 2πγ, eq 23. If 2πγ ≪ 1 the reaction is
nonadiabatic (na) and the exponent in eq 22 can be expanded
in a Taylor series and truncated after the first order term, giving
PLZ = 2πγ and κel = 2PLZ. Insertion of this result into eq 20 gives
the nonadiabatic ET rate157,160

π=
ℏ

⟨| | ⟩k H
2

FCc,na ab
2

TS c (24)

πλ= −
Δ−

‡⎛
⎝
⎜⎜

⎞
⎠
⎟⎟k T

A
k T

FC (4 ) expc B
1/2 na

B (25)

where FCc is the classical Franck−Condon factor and ΔAna
‡ the

activation free energy, eq 17. In this regime the mixing of the
initial and final diabatic ET states is weak for any configuration
along the reaction coordinate, including the transition state.
Thus, when the diabatic states become degenerate in the
crossing region, and the change from diabatic state a to b occurs
with probability PLZ, the electron jumps abruptly (that is,
nonadiabatically) from the donor to the acceptor.
In the opposite limit 2πγ ≫ 1 the ET is adiabatic (ad) and

PLZ and κel approach unity. The rate expression is the same as
for “standard” chemical reactions in the classical transition state
approximation; i.e., the prefactor depends only on the
frequency along the reaction coordinate:157
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ν= − Δ ‡⎛
⎝⎜

⎞
⎠⎟k

A
k T

expc,ad n
B (26)

In this case the mixing of the initial and final diabatic ET states
along the reaction coordinate is strong and the reaction occurs
on the adiabatic ground state potential energy surface.
As we will see in later sections, for biological ET reactions

electronic coupling is typically very small and the vast majority
of reactions are nonadiabatic, i.e., described by eq 24. Though
there may be cases where the adiabaticity parameter 2πγ is close
to unity or larger (as one may expect for ET between stacked
DNA base pairs in a low-dielectric medium), in which case the
more general eq 20 should be used.

3.6. ET Rates for Quantum Mechanical Nuclei

At low temperature or when ET is strongly coupled to high
frequency vibrational motions, nuclear quantum effects become
significant. In this case one can relax the restriction to classical
nuclear motion and use a quantized rate equation instead of eq
20. Assuming that the nuclear motion coupling to ET can be
modeled by a collection of quantized harmonic oscillators, Song
and Marcus obtained the following expression for the quantized
(q) nonadiabatic ET rate.161

π=
ℏ

| |k H
2

FCq,na ab
2

q (27)

∫

∫
π

π
ω

ω
ω

ω ω
ω

=

− + Δ −
ℏ

ℏ − ℏ
ℏ

−∞

+∞

∞⎧⎨⎩
⎫⎬⎭

k T
R

k T R k T A

J k T R k T
k T

FC
1

2
d

exp [1/(2 ) i /( )]
2

d

( ) cosh( /(2 )) cosh(i /( ))
sinh( /(2 ))

q
B

B B
0

2
B B

B
(28)

where J(ω) is the spectral density function. The latter can be
obtained either from experimental spectra161 or from computer
simulation via the cosine transform of the time correlation
function of the vertical energy gap ΔE.145

∫ω ω δ δ ω= ⟨ Δ Δ ⟩
∞

J
k T

t E E t t( )
2

d (0) ( ) cos
B 0 (29)

where ΔE is defined in eq 4 and δΔE = ΔE − ⟨ΔE⟩. A simpler
version of eq 28 was derived longer ago, by quantization of only
a single (“effective”) mode.162

π′ =
ℏ

| | ′k H
2

FCq,na ab
2

q (30)

ω
′ =

ℏ
+ +

− +

n n I S n n

S n

FC
1

( 1/ ) (2 ( ( 1)) )

exp[ (2 1)]

P
Pq

/2 1/2

(31)

where S = λ/(ℏω), P = ΔA/(ℏω), n = 1/[exp(ℏω/(kBT) −
1)], and IP is the modified Bessel function of the first kind of
order P. In the classical limit ℏ → 0, the quantized FC factors
given by eqs 28 and 31 reduce to the classical FC factor eq 25.

4. COMPUTATIONAL APPROACHES FOR ET
PARAMETERS

4.1. Electronic Coupling Matrix Element

The electronic coupling matrix element between an electron
donor and an electron acceptor is defined by

= ⟨Ψ| |Ψ ⟩Hab a b (32)

where Ψa and Ψb are the N-electron wave functions of the
initial and final diabatic states a and b, respectively, is the N-
electron Hamilton operator for fixed positions of the nuclear
coordinates, and N is the total number of electrons of the
system including donor, acceptor, and the medium (protein,
solvent). Direct calculation of Hab using high-level ab initio
methods would of course be the most desirable method.
However, there are two problems one faces in practical
calculations. First, appropriate high-level ab initio methods for
ET, such as multireference configuration interaction
(MRCI),163−165 or N-electron valence state perturbation theory
(NEVPT2)166−168 are due to their unfavorable scaling with
particle number still limited to very small donor−acceptor
systems of about 10 second-row atoms.169,170 Second, for long-
distance biological ET the sheer smallness of Hab makes a direct
calculation impractical. According to estimates by Hopfield and
later by Moser and Dutton (see below), one can expect that
electronic couplings are on the order of 10−1−10−4 meV (1−
10−3 cm−1) for typical donor−acceptor separations found in
proteins, 10−20 Å. This is well below basis set convergence and
numerical noise of present-day electronic structure calculations.
However, a number of indirect methods for estimation of Hab

have been developed over the last 30 years, which I briefly
review in sections 4.1.1−4.1.5. These are empirical or
semiempirical models where a certain tunneling mechanism is
assumed a priori and where is replaced by a simple but
physically motivated model Hamiltonian; see Figure 5A−D.
(Semi)empirical models have proved very useful for a
qualitative and sometimes semiquantitative understanding of
the tunneling process. This is not to say that biological ET is a
lost case for more rigorous electronic structure calculations. In
many situations ET occurs over smaller donor−acceptor
distances (<10 Å) where Hab is significantly larger and where
smaller model systems can be employed for computations
(schematically shown in Figure 5E). In section 4.1.6 I briefly
mention these methods and focus in sections 4.1.7 and 4.1.8 on
two approaches that have recently gained much attention,
constrained density functional theory (CDFT) and fragment
orbital DFT (FODFT).

4.1.1. Packing Density (or Square Barrier) Model. In
this simplest possible approach that goes back to the pioneering
work of Hopfield,29 the tunneling medium (protein, solvent,
ions, or vacuum) is modeled by a square barrier with an
effective barrier height U; see Figure 5A. Solving the one-
dimensional Schrödinger equation for this problem, one finds
that the coupling matrix element between the initial and final
wave function decays exponentially with distance R − R0 with a
decay constant β proportional to the barrier height U:

β= − −H A R Rexp[ ( )/2]ab 0 (33)

β = Um2( )eff
1/2

(34)

=A wU Um( )eff
1/2

(35)
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where meff is the effective mass of the electron and w is the
width of the potential well on donor and acceptor (see, e.g., ref
171 for a derivation, expression given there for A contains a
typographical error and should be replaced by eq 35). The
simple square-barrier tunneling model combined with a suitable
decay constant gives a surprisingly good description for
biological ET. Moser and Dutton adopted Hopfield’s semi-

classical rate expression with a specific choice of reorganization
energy and effective temperature.24,25 They observed that
experimental rates, when adjusted to optimal driving force ΔA
= −λ, can be modeled to good accuracy by the tunneling
expression

ρ= − − −k R Rlog 13 (1.2 0.8 )( )ET 0 (36)

with values R0 = 3.6 Å and ρ = 0.76.172 In eq 36 ρ is referred to
as the packing density of the medium, which is equal to the
fraction of the volume between cofactors that is within the
united van der Waals radius of intervening atoms, and R0 is the
van der Waals contact distance. Inserting eq 33 in eq 24 and
comparing with eq 36, one obtains

β ρ= −ln 10(1.2 0.8 ) (37)

π
πλ= ℏ⎛

⎝⎜
⎞
⎠⎟A k T

10
2

(4 )
13 1/2

B
1/4

(38)

which gives numerical values β = 1.39 Å−1 and A = 22 meV for
ρ = 0.76, λ = 0.7 eV, and T = 300 K. Insertion of eq 37 in eq 34
gives the relationship between ρ and the effective tunneling
barrier U. The packing density model of Moser and Dutton was
shown to capture the physics of the tunneling pathway model,
which was published a year earlier31 (see section 4.1.2), and the
equivalence of the electronic coupling factor in the two models
was proven in ref 173.
The analysis of experimentally measured ET rates in the

framework of eq 36 is subject to a few uncertainties. First, while
driving forces are well-known for many ET reactions,
reorganization free energies are usually not well-known.
Hence, a numerical value for λ often needs to be assumed to
correct the measured rate constant to correspond to ΔA = −λ.
A particularly interesting case in this regard is ET between
heme a and heme a3 in cytochrome c oxidase (cco). The value
of λ used to be highly uncertain, and depending on the actual
value used, the ET was either very well described or 2−3 orders
overestimated by eq 36. I will discuss this reaction in more
detail in section 6.2. Second, the distance between donor and
acceptor groups is not uniquely defined. For instance, for ET
between metal containing π-conjugated rings (e.g., hemes) one
could choose the distance between the two metals or between
an atom pair of the conjugated ring as a distance metric. This
issue has been recently investigated in some detail.172 Using the
shortest edge-to-edge distance between macrocycles as a
metric, it was found that most of the measured ET rates,
spanning distances from about 4 to 20 Å, fall within an order of
magnitude on the straight line described by eq 36.172

4.1.2. Pathway Tunneling Model. In the pathway model
proposed by Beratan, Onuchic, and Hopfield,30,31 the atomistic
structure of the tunneling medium is recognized; see Figure 5B.
Tunneling is assumed to be mediated by consecutive electronic
interactions between atoms connecting donor with acceptor.
Electronic coupling along a given pathway connecting donor
and acceptor is written as a product of a (hypothetical) closest
contact term, Hab

0 , times an attenuation factor ϵ that is a
product of decay factors for consecutive tunneling across
covalent bonds (ϵi

c), hydrogen bonds (ϵj
hb), or vacuum (ϵk

ts, ts
for “through space”):

= ϵH Hab ab
0

(39)

Figure 5. Electronic coupling matrix elements for biological electron
transfer from models of varying complexity (A)−(D) and from direct
electronic structure calculations (E). Each method is illustrated by the
same donor (D)−bridge−acceptor(A) system with the bridge
comprised of an OH, NH, and CH3 group. One-electron energy
levels are indicated in black lines. (A) Packing density model, section
4.1.1. (B) Pathway model, section 4.1.2. (C) Superexchange model,
section 4.1.4 (D) Tunneling current model, section 4.1.5. (E)
Schematic of the initial and final diabatic state wave functions, Ψa
and Ψb, obtained from direct electronic structure calculations, section
4.1.6.
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∏ ∏ ∏ϵ = ϵ ϵ ϵ
i

i
j

j
k

k
c hb ts

(40)

where ϵi
c = 0.6, ϵj

hb = 0.36 exp[−1.7(r/Å − 2.8)], and ϵk
ts = 0.6

exp[−1.7(r/Å − 1.4)] and r is the distance between heavy
atoms. The through-bond decay parameter ϵi

c is a renormalized
parameter, drawn from experiment. The through-space decay
parameter ϵj

ts was discussed and downsized in the study of ref
173. I note that the pathway model is an empirical version of
the superexchange model which will be discussed in section
4.1.4.
Obviously, there are many paths in a protein that connect

donor and acceptor. In practice one prunes the protein to the
region between donor and acceptor and/or uses efficient search
algorithms to calculate the attenuation factor for a large number
of paths. The path with the largest ϵ is then selected as the
preferred path. It is worth noting that the pathway model
predicts relative Hab values, thus allowing for the prediction of
relative rates between identical or at least very similar pairs of
donor−acceptor cofactors. Estimation of absolute Hab values
and rates (or relative Hab values between different pairs of
donor−acceptor cofactors) would require specific electronic
structure calculations to determine the cofactor-dependent
closest contact term Hab

0 .
The pathway model predicts that the influence of structure is

to cause scatter of rate data about 2 orders of magnitude around
any single average exponential decay line. Thus, the influence of
protein structure was predicted (and validated experimentally)
to cause scatter of about 100-fold around average tunneling
decay line. The appeal and popularity of the pathway model is
due to the qualitative insight it offers. Likely tunneling paths
and ET mediating protein residues can be relatively easily
identified46,51,100,104,174,175 and possibly subjected to mutation
studies in investigations aiming to interfere with protein ET.
4.1.3. Packing Density vs Pathway Model. The pathway

model recognizes the atomistic structure of the protein, in
contrast to the packing density model, where the protein is fully
coarse grained and described by just a single parameter ρ (see
section 4.1.1). The issue whether an average medium
description is adequate and biological ET is purely a matter
of donor−acceptor distance (eq 36), or whether proteins have
evolved to form specific electron tunneling paths (eq 40 has
been hotly debated over the years.104,174,176 The fact that a
large number of free energy optimized biological ET reactions
fall within an order of magnitude within a straight exponential
decay line for a suitably chosen distance metric (edge-to-edge)
is a strong support for the packing density model.172 On the
other hand, if a metal-to-metal distance metric is used, the
pathway model can explain resultant anomalous ET rates well
assuming orientation dependent electronic couplings.104 In this
respect it is interesting to note that recent electronic structure
calculations have indicated strong anisotropy in heme−heme
electronic couplings at van der Waals distances177,178 (see also
below), which may persist over longer distances through the
protein medium. Further support for the pathway model is the
significantly lower exponential distance decay constant reported
by Gray and Winkler for beta-strand proteins like azurins (β =
1.1 Å−126) compared to the average value of β = 1.3−1.4 Å−1.
All of this implies that for long-range biological ET (>10 Å)
distance is the single most important parameter, but for a more
quantitative understanding atomistic protein structure needs to
be considered, too.

What is less clear is whether the packing density model gives
a reliable estimate at short distances (3.6−10 Å), where the
space between donor and acceptor is mostly empty. It is well-
known that “through empty space” electronic coupling does not
only depend on distance but, due to the complicated nodal
shape of the relevant wave functions, can also be strongly
dependent on the orientation of donor and acceptor. Indeed,
for ET between closely spaced heme pairs it was shown that
electronic coupling can vary by orders of magnitude for
different heme−heme orientations at fixed donor−acceptor
distance.177,178 Thus, I expect that eq 36 should be less reliable
for shorter distances where the effect of cofactor orientation
becomes important. Indeed, recent electronic structure
calculations on a bacterial multi-heme protein did not give a
simple monoexponential distance decay for short distances, but
one that should be described by two decay constants depending
on the particular heme−heme orientation.178 See section 6.3
for further discussion of these calculations.

4.1.4. Superexchange Model. In the superexchange
model for electron transfer, it is assumed that electron
tunneling between donor and acceptor is mediated by
unoccupied atomic orbitals of the medium (also termed
“bridge”); see Figure 5C. The bridge is considered to enhance
electron tunneling with respect to vacuum, but it does not carry
a significant excess electron population at any time. In the limit
of weak perturbation, where the difference in energy between
unoccupied bridge orbitals (Hii

B) and donor/acceptor frontier
orbitals (HDD/HAA) is large compared to electronic couplings
(Hij

B), one can derive the following expression for the effective
coupling matrix element:157

∑= − −
=

H H ES G H ES( ) ( )
i j

N

i i ij j jab
, 1

D D
B

A A
(41)

= − −  E( )B B B 1
(42)

where SDi and HDi are the overlap and coupling matrix
elements, respectively, between the donor orbital and the
atomic orbital i of the bridge, Gij

B are the matrix elements of the
Green’s function of the bridge, B, B, and B are the overlap
and Hamiltonian matrices, respectively, of the bridge, E is the
tunneling energy, and N is the number of bridge sites. The
dominant term on the RHS of eq 41, G1N

B , can be written in
terms of a Dyson expansion. Keeping only the lowest-order
term, neglecting the overlap elements in eq 41 and setting the
tunneling energy E equal to the energy at the transitions state,
ED/A, one obtains

≈H H G HN Nab D1 1
B

A (43)
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N
ii

ii NN
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B
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1

B
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B

D/A
B

(44)

Thus, the effective electronic coupling eq 41 is given by a
product of nearest-neighbor couplings from the donor along
the bridge to the acceptor divided by the energy difference
between bridge sites and donor/acceptor at the transition state
configuration. For a discussion of overlap effects in the Green’s
function coupling analysis I refer to ref 179. Equation 44
justifies the pathway model eq 40 where the coupling matrix
elements HDi, Hii+1

B , and HjA are approximated by simple
distance dependent decay constants ϵi. Similar to the pathway
model, important amino acids forming the bridge between
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donor and acceptor need to be selected. Several methods have
been developed for this purpose including artificial intelligence
search.97−99

Alternatively to ET superexchange, charge transfer could
occur via hole transfer (HT) superexchange. In this case a
bridge site close to the oxidized acceptor donates an electron to
the acceptor and the resultant hole tunnels through occupied
bridge states to the donor, in which case both the donor and
acceptor are reduced during the tunneling process. A
combination of electron and hole tunneling is also possible.
Thus, both electron and hole tunneling states should be
included when constructing the bridge Hamiltonian. In early
studies involving periodic alkane bridges, Beratan and Hopfield
showed that both electron and hole mediated propagation
could be included without making a Dyson-expansion
approximation, and the simple product forms for the decay
are captured.180 Calculations in the literature have employed
Hartree−Fock and DFT calculations as well as extended
Hückel calculations to approximate the Hamiltonian.97−99,181

The latter are computationally very efficient and cannot be
expected to yield quantitative estimates, but, similar to the
pathway model, can capture effects of the protein structure and
dynamics.
4.1.5. Method of Tunneling Currents. Like the pathway

model, the method of tunneling currents describes the
tunneling process at an atomistic resolution. However, instead
of empirically searching for the best pathways, explicit
electronic structure calculations are carried out and analyzed
in the framework of interatomic tunneling currents to identify
the atoms mediating the tunneling process; see Figure 5 D. As
shown in refs 182 and 183, for a nonstationary electronic state
the tunneling current between two atoms m and n is given by

∑ ∑=
ℏ

*J H c c
2

Immn
i j

mi nj nj mi,
(45)

where Hmi,nj is the Hamiltonian matrix element in the atomic
orbital basis, cmi and cnj are the expansion coefficients of the
wave function, and the summation is over all atomic orbitals i
on atom m and orbitals j on atom n (see also review ref 184).
Importantly, the initial diabatic state of ET theory is a
nonstationary state that evolves in time to the final diabatic
state and returns to the initial state at the Rabi frequency Hab/ℏ
(when the energies of initial and final diabatic states are the
same). This establishes the link between Jmn and the electronic
coupling Hab. The final working expression reads

∑ ∑= −ℏ
∈ ∉

H J
m S n S

mnab

D D (46)

where SD is the volume of space that comprises the donor
complex. The expression for the electronic coupling matrix
element has been rederived recently using a Golden Rule
approach.185 The tunneling current method has been applied to
Ru-modified proteins (reviewed in ref 184), and to the
photosynthetic reaction center protein.186 In the latter study
the method was used in combination with molecular
configuration sampling to assess the existence of quantum
interferences among tunneling routes. More recently, applica-
tions were reported to electron tunneling in respiratory
complex I187,188 and a ubiquinol:cytochrome c oxidoreductase
model complex.185

4.1.6. Direct Electronic Structure Methods. In this
section I review electronic structure methods that give direct

access to the diabatic state wave functions and the
corresponding coupling matrix element, as indicated schemati-
cally in Figure 5E. There exist a large number of different
approaches. They differ (i) in the way how the diabatic states of
ET theory are defined and obtained in practical calculations and
(ii) in the level of theory used for the actual calculation. I would
like to briefly expand on the first point. The ET diabatic states
can be viewed as ground states of two separate noninteracting
Hamiltonians, one for the donor and one for the acceptor. At a
time t the interaction terms between donor and acceptor are
switched on, and the diabatic states are no longer stationary but
start to oscillate as governed by the time-dependent
Schrödinger equation, causing an electron to transfer from
donor to acceptor. While this is a well-defined theoretical
concept, the problem in actual calculation is that the former,
noninteracting state is an idealized state that is, unlike the
stationary adiabatic states of the full interacting Hamiltonian,
not uniquely defined. This is similar to the situation where one
is free to choose the initial conditions for a time-dependent
problem. The issue of initial state preparation is particularly
important in the case of low barrier ET as pointed out by
Skourtis and Nitzan.189

Several physically motivated definitions of diabatic states
have been suggested and implemented such as block
diagonalization of the adiabatic electronic Hamilto-
nian,128,129,190 generalized Mulliken−Hush method (GMH),
where the adiabatic states of the interacting Hamiltonian are
rotated to obtain charge-localized diabatic states that
diagonalize the dipole moment operator,129,191 fragment charge
difference,192 fragment energy difference,193 fragment orbital
DFT (FODFT),177,194−199 projection methods,103,200,201 con-
strained DFT (CDFT)52,130,202−207 and frozen density
embedding.208 I refer to publications in the literature131,132

and references therein for a review of diabatization methods.
With regard to the issue of level of theory used, I note that the
latter is not always independent from the electronic structure
method used for diabatization and ranges from full config-
uration interaction (FCI) to MRCI, NEVPT2, CASPT2,
CDFT, and density functional tight binding (DFTB).

4.1.7. Constrained Density Functional Theory. In the
CDFT method developed by Van Voorhis and co-work-
ers130,202 the diabatic states are obtained from DFT calculations
with the excess electron or hole constrained to either the donor
(state A) or acceptor (state B), respectively; see Figure 6 for an
illustration. This is achieved by adding an external potential
term Vw(r) to the usual Kohn−Sham (KS) equations

ϕ ϕ− ∇ + + = ϵ⎜ ⎟
⎛
⎝

⎞
⎠v Vwr r r r

1
2

( ) ( ) ( ) ( )i i ir
2

KS (47)

and adjusting the height of the potential, V, so that the charge
difference between donor and acceptor group is equal to a
specified value, e.g., Nc,A for state A:

∫ ρ =w Nr r r( ) ( ) d c,A (48)

The weight function w(r) is chosen to be negative at the donor
site and positive at the acceptor site, which leads to localization
of the excess electron at the site with the lower potential
(donor if V is positive). In practice one solves the KS equation
eq 47 for an initial guess of V (also referred to as undetermined
Lagrange multiplier) to obtain the ground state density ρ of the
constraint state, which is used for the calculation of the charge
constraint on the left-hand side (LHS) of eq 48. If the LHS of
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eq 48 is not equal to Nc,A, one iterates V
202 and solves eq 47 for

the new value of V. The iteration in V is repeated until eq 48 is
fulfilled. This gives a set of Kohn−Sham orbitals that can be
used to form a N-electron determinant for the initial ET state,
ΨA. In order to obtain the determinant for the final ET state B,
ΨB, the charge constraint is changed to Nc,B (usually |Nc,B −
Nc,A| = 2 corresponding to the transfer of one electron from the
donor to the acceptor) and the same iterative procedure in V is
carried out to localize the electron on the acceptor. In case of
electron self-exchange reactions, the magnitude of the final
value for V is the same for both states A and B, and differs only
in the sign.
The CDFT calculations generate states that are not

orthogonal, which is why they are denoted here in capital
letters. Thus, the electronic coupling matrix element in the
nonorthogonal A, B basis, HAB′ , is given by43,194,205,209

′ =
−

−H
S

H S H
1

1
( )AB

AB
2 AB AB BB

(49)

where = ⟨Ψ | |Ψ ⟩HAB A B
KS

B and SAB = ⟨ΨA|ΨB⟩. The Hamil-
tonian in the nonorthogonal basis is in general not Hermitian;
therefore HAB ≠ HBA* . This problem has been addressed on an
ad hoc basis by symmetrizing the two off-diagonal ele-
ments.43,194,205,209 The consequences of nonorthogonality on
the two-state ET dynamics has been described in detail in ref
133; see also ref 210. Alternatively, the states ΨA and ΨB can be
transformed to the orthogonal states Ψa and Ψb by a similarity
transformation of the 2 × 2 Hamiltonian. The off-diagonal
element of the resultant Hermitian Hamiltonian, Hab, is then
the electronic coupling matrix element between the orthogonal
states. See also ref 205 for further details. The difference
between HAB′ and Hab is often negligibly small.171,205

A crucial issue in CDFT calculations is the sensitivity of the
results on the functional form chosen for the weight function w.
A recent investigation of this issue found that Hab can vary by
up to about 30% for a relatively broad range of weight functions
and that the sensitivity decreases with increasing donor−
acceptor separation distance.171,205 The most suitable choice
appears to be real-space charge definitions according to
Hirshfeld or Becke.130,205,206,211 The performance of CDFT
in predicting electronic couplings for databases of π-conjugated
organic dimer cations169 and anions170 was recently scrutinized
by comparison to the results of high-level ab initio calculations
(NEVPT2 and SCS-CC2, respectively). It was found that
CDFT in combination with a GGA functional (PBE)
overestimates the ab initio benchmarks by 38.7%169 and
60.8%,170 respectively, due to slightly too large excess charge
delocalization over both donor and acceptor fragments (despite
the charge constraint being fulfilled, but which acts only on the
total electron density). Inclusion of 50% Hartree−Fock
exchange in the density functional gave best results for both
cations and anions, reducing the errors to 5.3169 and 8.2%,170

respectively. This error is negligibly small for all practical
purposes. From these studies it was concluded that functionals
containing about 50% Hartree−Fock exchange are expected to
give the best performance for CDFT electronic coupling
calculations on π-conjugated (bio)organic systems. While
theory-to-theory benchmarks are extremely useful, the utility
of the machinery described above will finally be decided by its
linkage to experimental benchmarks. In this regard, calculations
on Paddon-Row donor−bridge−acceptor systems,212 for which
experimental coupling estimates are available, are currently
being carried out by de la Lande, Elstner, Blumberger, and co-
workers.
The CDFT method, at first developed in the present form by

Wu and Van Voorhis,130,202 has been implemented in a number
of codes using either localized basis sets (NWChem,130,202,213

Q-Chem,214 deMon2k206,215), numerical basis functions
(CONQUEST),207 , 216 or a plane-wave basis set
(CPMD204,205,217). Recently, de la Lande and co-workers
applied CDFT to problems in biological ET. In their initial
study the authors attempted to reparametrize the through-space
and hydrogen-bond tunneling decay factors that are used in the
Beratan−Onuchic pathway model.206 Refined parameters were
suggested that take into account the dependence of the
coupling on the orientation of the donor−acceptor pair. An
application to ET between methyl amine dehydrogenase and
amicyanin followed.218 More recently, the same authors
combined CDFT with QM/MM and computed the coupling

Figure 6. Illustration of CDFT and FODFT methods for the
calculation of electronic coupling matrix elements, Hab. In the upper
panel, the Ru2+−Ru3+ ion pair is shown, solvated in a box of water (Ru,
green; O, red; H, white). Two isosurfaces of the external potential
w(r) are drawn, one for a negative (blue) and one for a positive value
of the weight function w (red). In the first CDFT calculation (charge
difference constraint Nc,A = −1) the excess electron, depicted
schematically by the isosurfaces of the highest molecular orbital
(HOMO), is localized on the donor, and in the second CDFT
calculation (Nc,B = 1) it is localized on the acceptor. The electronic
coupling is obtained from the two sets of Kohn−Sham (KS) orbitals
obtained from the two CDFT calculations. In the FODFT scheme in
the lower panel, two KS calculations are carried out, one for the donor
and one for the acceptor fragments (in a vacuum or in contact with the
environment via QM/MM, for instance). After biorthogonalization of
the two sets of orbitals, the KS Hamiltonian matrix of the two
fragments is built and electronic coupling identified with the matrix
element between the HOMOs on donor and acceptor. See sections
4.1.7 and 4.1.8 for further details.
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decay for electron tunneling along a polyglycine chain of
increasing length.219 An exponential distance decay was
reported down to electronic couplings as small as 10−3 meV.
The decay constant obtained (1.04 Å−1) was in good agreement
with experimental estimates for tunneling through β-strands
(1.1 Å−1).220 The ability to compute such small couplings with
a direct electronic structure method is remarkable, albeit
somewhat surprising in view of the numerical accuracies that
can usually be achieved with atomic basis sets.
I note that CDFT has also been combined with real-time

time-dependent density functional theory for the calculation of
electron transfer rates coherently coupled to photoexcita-
tions221 and for simulation of electronic conductance in a
molecular wire.222 Although photoinduced ET processes are
not further covered in this review, I would like to summarize
very briefly the study of ref 221. In this work CDFT
calculations are carried out at first to construct the initial and
final diabatic ground states. These states are then propagated by
solving the time-dependent Kohn−Sham equations including
an external electric field term (with nuclei fixed), and their
time-dependent overlap calculated. According to the theory
developed in this work, the frequency dependent photoinduced
ET rate is proportional to the Fourier transform of the time-
dependent overlap times a conventional Franck−Condon
factor that can be obtained from CDFT calculations of
reorganization free energy and free energy difference. While a
first application of this approach targeted ET in inorganic metal
clusters, this method may also become a viable tool to model
ultrafast photoinduced ET in biological systems, in particular
when extended to include nuclear dynamical effects.
4.1.8. Fragment Orbital Density Functional Theory.

There are several implementations of the FODFT method that
differ in a number of details with regard to the construction of
the orbitals and Hamiltonian and the definition of the coupling
matrix element.177,194−197,199,205 Here I review our own
implementation in the CPMD code199,205 and refer to refs
169 and 170 for a discussion of some of the other
implementations. In the FODFT approach denoted “FODFT
(2N − 1)” in ref 169, the diabatic wave functions are
constructed from the orbitals of the isolated (noninteracting)
donor (D) and acceptor (A) groups; see Figure 6 for an
illustration. Without loss of generality, D and A are assumed to
have the same electron number N. For a system with an
electron hole the ET is described by D+ + A → D + A+ with
total electron number 2N − 1. Kohn−Sham (KS) DFT
calculations are carried out for isolated neutral D and isolated
neutral A giving two sets of KS orbitals which are
biorthogonalized via Löwdin transformation. The Kohn−
Sham Hamiltonian of the combined system, hb

KS, is constructed
from the N − 1 occupied spin orbitals of D the N occupied spin
orbitals of A, respectively. The coupling matrix element for ET
is then given by the off-diagonal matrix element

ϕ ϕ= ⟨ | | ⟩H hN N
ab A b

KS
D (50)

where ϕA
N and ϕD

N are the highest occupied molecular orbitals
(HOMO or SOMO if N is odd) of A and D, respectively. For a
system with an excess electron the ET is described by D− + A
→ D + A− with 2N + 1 electrons. KS calculations are carried
out for the isolated anions A− and D−, followed by
biorthogonalization and construction of hb

KS from the N + 1
occupied spin orbitals of D− and the lowest N occupied spin
orbitals of A−. The coupling matrix element is then given by

ϕ ϕ= ⟨ | | ⟩+ +H hN N
ab A

1
b
KS

D
1

(51)

where ϕA
N+1 and ϕD

N+1 are the singly occupied molecular orbital
(SOMO or HOMO if N odd) of A and D, respectively. It is
worth noting that in this scheme the KS-Hamiltonian has the
correct number of electrons and that for ET the SOMOs of the
donor/acceptor groups with one extra electron are coupled, not
the LUMOs of the neutral fragments, in contrast to some other
implementations of this method.195−197

Equations 50 and 51 seem to be a rather drastic
approximation to the exact expression eq 32. Wave functions
are replaced by orbitals and the exact Hamiltonian by a KS-
Hamiltonian made up of a direct product of one-electron
orbitals. These approximations have been recently discussed in
some detail in refs 169 and 199. The advantage of FODFT is
that the spurious delocalization of an excess electron or hole
over donor and acceptor cannot occur as electronic structure
calculations are carried out only for the isolated fragments, not
for the donor−acceptor pair. The downside of this method is
that physical electronic interactions between donor and
acceptor are missing, at last in the scheme implemented in
refs 199 and 205.
The accuracy of the FODFT approach was benchmarked

recently against the same set of high-level ab initio calculations
that was used to test the CDFT calculations (see above). It was
found that despite the many approximations of the FODFT
method, the performance is good, with Hab values for π-
conjugated organic cations and anions underestimated by
37.6%169 respectively 27.9%170 at the GGA (PBE) level.
Furthermore, it was shown that a single scaling factor can
correct for this deficiency across a wide range of π-conjugated
compounds.169,170

The underestimation of couplings in FODFT is most likely
due to the neglect of orbital polarization by the electron
transfer partner in this method, and possibly also due to
inaccuracies of the GGA functional. In a recent study it was
shown that FODFT couplings increase by up to a factor of 2
when the percentage of Hartree−Fock exchange was increased
from 0% (GGA) to 100%.223 Thus, while CDFT couplings are
expected to be overestimated at the GGA level due to the
electron delocalization error and decrease by addition of
Hartree−Fock exchange, the exact opposite can be expected for
FODFT couplings as a consequence of the missing electronic
interaction between the electron transfer partners. A strong
advantage of FODFT calculations is that they are robust and
straightforward, and they provide a relatively safe and efficient
route for reasonably accurate estimation of electronic couplings
for large, biological systems. Applications of this method to
heme−heme couplings are discussed in section 6.3.

4.2. Free Energies for Electron Transfer

In sections 3.3 and 3.4 the free energy profiles for ET reactions
were introduced as well as the linear response approximation
that leads to Marcus theory. In this section I review the free
energies in more detail and introduce two types of
reorganization free energies in addition to the definition
given in eqs 7 and 8. I also reexamine the validity of the linear
response approximation and review recent extensions of it that
account for nonlinear response effects. At the end of this
section a summary of state-of-the-art computational methods is
given for the calculation of ET free energies.

4.2.1. Driving Force and Reorganization Free Energy.
The classical reaction free energy or driving force of reaction eq
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1, ΔA, is given by the ratio of classical partition sums over the
potential energy surfaces of adiabatic states 0/1 or diabatic
states a/b (the difference is negligibly small for small coupling
values). Expressing the Boltzmann factor in the partition sums
by the vertical energy gap ΔE (eq 4, one obtains224

Δ = − = − ⟨ −Δ ⟩A A A k T E k Tln exp[ /( )]b a B B a (52)

= ⟨ Δ ⟩k T E k Tln exp[ /( )]B B b (53)

where the brackets in eqs 52 and 53, ⟨···⟩M, denote the
canonical average evaluated for the potential energy of state M,
M = a, b.
Reorganization free energy has been defined in eqs 7 and 8 as

the free energy required changes the nuclear configuration from
the minimum of the initial state to the minimum of the final
state. Two more definitions for reorganization free energies are
in use that I distinguish from the ones defined in eqs 7 and 8 by
subscripts “st” and “var”, respectively. The former is defined to
be equal to the difference in the mean energy gaps of the two
states

λ = ⟨Δ ⟩ − ⟨Δ ⟩E E( )/2st
a b (54)

and can be directly obtained from experiments as the difference
of absorption and emission peaks (=Stokes shift, hence “st”).
The latter is defined in terms of the thermal fluctuations of ΔE

λ
σ

=
k T2a

var a
2

B (55)

λ
σ

=
k T2b

var b
2

B (56)

where σM
2 is the variance (“var”)

σ = ⟨ Δ − ⟨Δ ⟩ ⟩E E( )M M M
2 2

(57)

λM
var can be obtained from the inhomogeneous broadening of
the absorption or emission peak. At first sight, the different
definitions for reorganization free energy do not seem to have
much in common. However, in the linear response or Gaussian
approximation (see section 3.4) all definitions for reorganiza-
tion free energies are equivalent as a consequence of the linear
free energy relation eq 9.

λ λ λ λ λ λ≡ = = = =a b
st

a
var

b
var

(58)

The definition of reorganization free energy in terms of the
gap fluctuations, eqs 55 and 56, is very useful because it allows
one to understand this property in terms of contributions from
different nuclear modes. To this end one defines the time-
correlation function of the energy gap

δ δ= ⟨ Δ Δ ⟩c t E E t( ) (0) ( )M M (59)

where δΔE(t) = ΔE(t) − ⟨ΔE⟩M, and carries out a cosine
transform to obtain the spectral density function JM(ω)

∫ω
ω

ω=
∞J

k T
t t

( ) 1
2

d c ( ) cos tM
M

B 0 (60)

Integration of the inverse transform in frequency space gives at
t = 0

∫π
ω

ω
ω

=
∞

c
k T J

(0)
4

d
( )

M
MB

0 (61)

Since cM(0) = ⟨δΔE2⟩M = σM
2, one obtains by comparison to

eqs 55 and 56

∫λ
π

ω
ω

ω
=

∞ J2
d

( )
M

Mvar

0 (62)

Thus, reorganization free energy can be resolved and
understood in terms of spectral components by integration
over the corresponding spectral density.

4.2.2. Deviations from Linear Response. The LR
assumption is often found to give a good approximation.
Experimental evidence for this comes from band-shape analysis
of individual vibronic lines in the optical absorption and
emission spectrum of donor−acceptor complexes; see, e.g., ref
225 and references therein. Moreover, the energy gap law, that
is the parabolic dependence of the ET rate with respect to
reorganization free energy, ln kc,na ∝ −(λ + ΔA)2 (from eqs 24,
25, and 17) is a direct consequence of the LR assumption, and
has been observed for a series of aromatic donor−bridge−
acceptor compounds226 (serving as the first experimental
verification of Marcus’ inverted regime), as well as for
proteins.227 Deviations from the energy gap law in the inverted
region are often attributed to nuclear quantum effects.225

Evidence for LR behavior also comes from MD simulation
studies of ET between transition metal ions in aqueous
solution,139,198,204,228 and in native and Ru-modified cyto-
chromes;105,106,229−231 see, e.g., Figure 7A.

For large condensed phase systems like protein solutions the
Gaussian statistics can be understood in terms of the central
limit theorem. That is, a large number of uncorrelated and
arbitrary distributions of the electrostatic potential at the redox
site due to the thermal fluctuations of charged or dipolar
molecules or molecular fragments (here side chains, backbone,
and the solvent) result in an overall Gaussian distribution.
Clearly, in molecular systems fluctuations are not strictly
uncorrelated but for large systems like protein solutions the
distances between many of the charged or dipolar groups are
large and may be considered as uncorrelated to a first
approximation. Interestingly, the distribution of the energy
gap due to single amino acid residues can be profoundly non-

Figure 7. (A) Probability distribution for the total outer-sphere energy
gap, ΔEo, for ET in cytochrome c-His33Ru(NH3)5 (cca, see Figure
19A for protein structure). ET Fe2+ → Ru3+ in black and Ru2+ → Fe3+

in red. (B) Probability distribution for the contribution of the amino
acid Glu104 to the total outer-sphere energy gap (see Figure 20A for
illustration of the response). Notice that the total energy gaps in (A)
are well approximated by Gaussian distributions, whereas the energy
gap contributions by Glu104 in (B) are non-Gaussian. Reprinted from
ref 106. Copyright 2010 American Chemical Society.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00298
Chem. Rev. 2015, 115, 11191−11238

11205

http://dx.doi.org/10.1021/acs.chemrev.5b00298


Gaussian as reported for certain amino acids in Ru-labeled
cytochromes; see Figure 7B. It is the averaging over many non-
Gaussian distributions from protein residues that gives the
overall Gaussian distribution shown in Figure 7A.
Deviations from LR have been observed and typically

manifest themselves in different curvatures of the free energy
wells. So far, this has been attributed to three different causes:
(i) a strong change in the electronic polarizability of the solute
with charge state;225,232−234 (ii) very strong changes in the
solvation of the ET reactant and product species,136−138 e.g.,
when ET is coupled to a change in coordination numbers or to
chemical bond break,146,148,152 the latter is usually referred to as
“inner-sphere mechanism”; and (iii) fast ET in combination
with strong nonergodic effects.232−234 I note that standard
Marcus theory was developed for “outer-sphere” ET reactions,
where the chemical bonding of the oxidized/reduced species
remains intact during ET. Therefore, it is not expected to hold
for case (ii). Moreover, assuming a Boltzmann distribution of
states, it is not expected to hold for case (iii).
The first case (i) is typically observed for a solute that is

neutral and apolar in one ET state and charged in the other.140

An example in biology is the primary charge separation reaction
in photosynthetic reaction center proteins, for which distinctly
non-Gaussian free energy profiles were reported when the
special pair is described with an electronically polarizable
(fluctuating charge) model;232−234 see Figure 8A. In this case
the curves could be fit to an extension of the standard Gaussian
picture allowing for asymmetry between the two diabatic curves
by introducing different electronic polarizabilities in initial and
final ET states (Q-model225,235).
As an example for the second case, I mention the strong

nonlinear response reported for the Cu+/Cu2+ redox reaction in
aqueous solution as obtained from density functional based
MD simulation (DFMD); see Figure 8B.148 The curvatures at
the bottom of free energy profiles for the monovalent and
divalent ions are very different and are interpreted as arising
from two different types of solvent reorganization in response
to oxidation: a chemical response in the low free energy region
for Cu+ (high free energy region for Cu2+), leading to a change
in the first shell coordination number from an equilibrium value
of 2 for Cu+ to the equilibrium value of 5 for Cu2+, and a
standard dielectric response of higher solvation shells in the low
free energy region of Cu2+ (high free energy region for Cu+).
Even larger nonlinearities have been obtained for the Ag/Ag+

oxidation in water, again using DFMD simulations.152 Also in
this case first shell coordination changes dramatically upon
oxidation.
To account for these observations (which could not be

explained with the Q-model152), Vuilleumier and co-workers
have extended the Marcus picture for reactions with large
solvation changes and developed a 2-Gaussian and a non-
Gaussian solvation model.152 In the 2-Gaussian model the
solvent response is formulated in terms of two separate
Gaussian solvation states S0 and S1 with reorganization free
energies λS0, λS1 and free energy differences between initial and

final ET states, ΔAS0, ΔAS1. Each solvation state gives rise to a
separate pair of diabatic free energies
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where the subscript S takes values S = S0, S1 and the second
subscript of W denotes the initial (0) and final (1) diabatic
states. The resultant total diabatic free energies are given by

ϵ = − −

+ −
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where W0(ϵ) corresponds to Aa(ΔE) in our notation and
W1(ϵ) to Ab(ΔE) . Note that the profiles for the two solvent
states eqs 63 and 64 and the total free energy profiles in eqs 65
and 66 obey the linear free energy relation eq 9, the latter only
assuming a canonical equilibrium distribution. The model has
five fit parameters, λS0, λS1, ΔAS0, ΔAS1, and a free energy shift to
constrain the free energy difference to ΔA.

Figure 8. (A) Non-Gaussian diabatic free energy curves for primary
charge separation in the special pair along the L and M branches.
Reprinted with permission from ref 234. Copyright 2010 Royal Society
of Chemistry. (B) Non-Gaussian diabatic free energy curves for the
redox reaction Cu+ → Cu2+ + e− in aqueous solution. Adapted from
ref 152. Copyright 2012 American Chemical Society. In panel B TGS
stands for the two-Gaussian solvation model, eqs 65 and 66, with
solvation states S0 and S1, eqs 63 and 64. ΔEη (denoted ϵ in the main
text) is the vertical electron removal energy, eq 70.
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The profiles eqs 65 and 66 were found to fit very well the
non-Gaussian free energy curves obtained from the DFMD
data for the Cu+/Cu2+ and Ag/Ag+ aqueous redox couples; see
Figure 8B.152 In case of the Cu couple, the Gaussian
fluctuations of S0 describe the change in the first shell
coordination number in the low free energy region of Cu+,
whereas the Gaussian fluctuations of S1 take over in the low free
energy region of Cu2+ to describe the standard dielectric
response of higher solvation shells. The mixing region between
the two different solvation regimes at around ΔE = 0 is of
sigmoidal shape due to the particular functional form of eqs 65
and 66. The excellent fit of the data is a confirmation that the
solvent response to oxidation/reduction of these ions can
indeed be thought of as two distinct solvation responses, each
of which is Gaussian but with different parameters, resulting in
an overall non-Gaussian solvent response.
The situation described here for aqueous transition metal

ions with flexible coordination spheres is probably less relevant
for electron transporting proteins, where transition metals are
incorporated in rather rigid molecular frames (hemes, cubanes)
that hardly change bond lengths, let alone coordination
numbers when oxidized or reduced. However, nonlinear
response of this kind may occur at the catalytic termini of
ET chains when ET is coupled to substrate binding, chemical
reaction steps, or product unbinding.
A third possible source for non-Gaussian profiles is the

nonergodicity of fast ET reactions.36,232−234 Here the thermal
averaging should be carried out only over the part of phase
space that can be visited on the time scale of the reaction; see
section 5.2.1 for details. Taking again the example of the
primary charge separation, rather different shapes were found
for the free energy curves, depending on whether they were
averaged over the computationally accessible nanosecond time
scale or over the relevant picosecond time scale of the actual
reaction.232

4.2.3. All-QM, QM/MM, and QM + MM Implementa-
tions. The key quantity for calculation of ET free energies is
the vertical energy gap ΔE, defined in eq 4. All what is required,
is to sample ΔE in the initial and final ET states and insert in
either eq 52, 53, or 16 to obtain the driving force ΔA, and in eq
5 to obtain diabatic free energy curves, and thereby
reorganization free energy (eq 7,8, or 15) and activation free
energies (eq 17). Accurate calculation of these thermal averages
is a challenge, however. The fluctuations of the energy gap,
essentially being proportional to the fluctuations of the average
electrostatic potential at the active site, can be very large due to
wide amplitude motion of charged/dipolar protein residues
surrounding the active site and can span many orders of
magnitude in frequency space due to the different time scales of
protein/domain motions.
To improve the accuracy of the sampling procedure,

simulations may be carried out for intermediate states bridging
initial and final states. The usual formulas for thermodynamic
integration/free energy perturbation can then be used to
compute the driving force, and standard unbiasing methods can
be used to obtain the diabatic free energy profiles. To this end,
several computational schemes have been developed for
calculation of energy gaps for biological ET. While most of
them employ classical MD simulations to sample the protein
configurations and use snapshots from these simulations to
compute the energy gap, their major difference is the level of
theory used for the energy gap calculation.

At the most rigorous level, one may employ all-QM
calculations using linear or low scaling DFT as was done in a
study on ferredoxin.236 This treatment circumvents the
problems that are introduced by an interface between a high-
level and a low-level description of the system as is the case in
quantum mechanics/molecular mechanics calculations (QM/
MM, e.g., convergence with QM system size, electron spill-out,
termination of QM region, etc.). Moreover, electronic polar-
izability, which is crucial for more quantitative estimates for
reorganization free energy, is included in a most realistic way.
However, the all-QM treatment means that the system is
potentially prone to spurious charge transfer between ionizable
protein residues and redox active cofactors due to the electron
self-interaction error of GGA functionals. This can be a
potential problem especially when the protein contains amino
acids with relatively low ionization potentials (tyrosine,
tryptophan, and cysteine), that are similar in magnitude to
the electron affinity of the redox active cofactors. Functionals
containing a certain percentage of Hartree−Fock exchange
(hybrid functionals) and/or range-separated hybrids may cure
this deficiency, but these functionals are computationally more
expensive.
In QM/MM schemes the problem of spurious charge

transfer is avoided simply by treating only the redox active
cofactor with explicit electronic structure methods and the rest
of the protein with a classical force field. A possible scheme for
the calculation of ΔE at the level of QM/MM is shown in
Figure 9. In the first step (top left) the electron donating

cofactor (D) is treated at the QM level and the electron
accepting cofactor (A) as well as the protein and solvent is
treated at the classical force field level. The vertical ionization
energy of D, ΔE1, is obtained as the energy difference between
two single-point calculations at the same nuclear geometry, one
for D in the oxidized state and one for D in the reduced state,
while A remains in the oxidized state in both calculations. In the
second step (top right, Figure 9) the nuclear positions remain
the same as in step 1 but the QM region changes. D is now
described with a classical force field and A at the QM level. The
electron removed from D in step 1 is now inserted in A and the
electron affinity is calculated as the energy difference of two

Figure 9. QM/MM and QM + MM schemes for calculation of the
vertical electron transfer energy, ΔE. See section 4.2.3 for details.
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single-point calculations with A in the reduced and oxidized
state, respectively, while D remains in the oxidized state in both
calculations. The difference between ionization energy of D and
electron affinity of A is the vertical energy gap.
QM/MM calculations of driving force and reorganization

free energy, based on the above computational scheme, were
reported for Ru-modified cytochromes105,230 and catalases237

and for the redox potential of azurin.238 Similar calculations
were carried out by Ryde and co-workers to determine
reorganization energies for multi copper oxidases employing
either a mechanical or an electrostatic QM/MM embedding
scheme.239 More recently, a double-QM/MM scheme has been
reported, where both D and A are treated at the QM level at
the same time.240 This allows one to compute the ET energy
directly as the energy difference between final and initial states
without going through the doubly oxidized states of the above
(single-)QM/MM method (final state of step 1 and initial state
of step 2). A first application to the electron exchange between
Fe and Ru cations in liquid water was promising, and the
method should be well suited for future calculations of ET
energy gaps between protein cofactors. Distinct from the above
approaches is the QM/MM approach developed by Yang and
co-workers, who combined the theory of fractional electron
numbers with the minimum free energy path method (FNE-
MFEP) to compute ET free energies.241−244 Applications to
aqueous redox systems including Ru cations, flavins, and most
recently azurin were rather successful.
While QM/MM calculations significantly reduce the

computational effort with respect to all-QM approaches, they
are still relatively expensive. A number of alternatives have been
proposed over the years to reduce the cost of the QM
calculations, including frozen density functional theory coupled
to MD with a classical reference potential,245 the perturbed
matrix method avoiding self-consistent iteration of the
electronic orbitals at each MD time step,246,247 self-consistent
charge density functional tight-binding,248−250 and decoupling
between QM and MM calculations (QM + MM).105 In the
latter method, illustrated in Figure 9, the total ionization energy
ΔE1 is divided into an inner sphere contribution, ΔE1,qm, due to
the redox active cofactor, and an outer sphere contribution,
ΔE1,mm, due to protein and solvent. The former is obtained
from a QM gas-phase model of the inner sphere, and the latter
is obtained from a classical force field description of the outer
and inner spheres. A similar division is done for the calculation
of the electron affinity of A, ΔE2. As in the QM/MM scheme,
the total energy gap is obtained from the difference between
ionization energy of D and electron affinity of A.
In contrast to QM/MM, in QM + MM the calculations for

the QM and MM parts are decoupled, assuming additivity
between the inner and outer spheres. This is expected to give a
good approximation when the cofactors are relatively rigid and
correlations between protein and cofactor fluctuations can, to a
first approximation, be ignored. In this case the calculation of
the inner-sphere contribution to λ by thermal averaging at the
QM level may be replaced by the usual four-point QM
scheme251 and the inner-sphere contribution to ΔA may be
replaced by the more standard quantum chemical approach, i.e.,
single point energy and frequency calculations. In the special
case where donor and acceptor are chemically identical (e.g.,
chain of FeS clusters or bis-His coordinated c-hemes), the
inner-sphere contribution to ΔA vanishes at this level of theory
and the driving force is due only to the outer sphere, i.e.,
protein and water.

Due to their simplicity and efficiency, QM + MM-type
investigations have been the most common computational
approach, not only for the modeling of biological ET but also
for other electronic processes such as excitation energy transfer.
Examples include biological ET in native and Ru-modified
monoheme cytochromes,105,106,229,252 azurin,253 cytochrome c
oxidase,231 deca-heme proteins,178,254 and the photosynthetic
reaction center.114,115,232−234,255 Relatively good agreement
with QM/MM results were reported, where available.105

5. RECENT THEORETICAL DEVELOPMENTS

5.1. Multistate Biological ET

In sections 3 and 4 single step electron tunneling between a
donor and an acceptor was considered. The tunneling time
tables in proteins compiled by Moser and Dutton and Winkler
and Gray suggest that single step tunneling gives functional,
millisecond free energy optimized ET rates up to tunneling
distances of ≈20 Å50,56 (a more precise value would depend on
many details including the distance metric used). On the other
hand, it is well-known that protein structures support ET over
significantly longer distances, e.g., documented for the
complexes of the respiratory chain,6,176 hydrogenases,11 carbon
monoxide-dehydrogenases256 (FeS clusters), and the multi-
heme cytochromes involved in extracellular respiration (c-type
hemes).8,257

The solution for very long ranged ET in biology is to arrange
redox active cofactors in chains at close cofactor spacings of
typically 10−15 Å, enabling consecutive electron tunneling
steps over shorter distances (=hopping). In addition to metal
containing cofactors, ionizable protein residues such as
tryptophan, tyrosine, or cysteines could act as an electron
relay, e.g., in ribonucleotide reductase, photosystem II, DNA
photolyase, and cytochrome c/cytochrome c peroxidase; see ref
56 and references therein. Moreover, long-ranged charge
transfer has also been observed between low potential DNA
bases (typically guanines) bridged by intervening high potential
base pairs (typically adenines).73,121

Over the years several theoretical models have been
suggested to describe long-range ET across a chain of ionizable
molecular subunits including superexchange (SE),29 charge
hopping, variable-range hopping,258 hopping maps,259 and,
most recently, the flickering resonance mechanism35 (FR). In
this section the two most common models, SE (section 5.1.1)
and charge hopping (section 5.1.3), will be described following
the book of Nitzan.157 Then the FR model developed by
Beratan, Skourtis, and co-workers is reviewed and reexamined
in some detail in section 5.1.2. The FR model may be viewed as
in between the SE and the hopping model, which is why the SE
model is discussed first, followed by FR and hopping; see
Figure 10 for a schematic illustration. At the end of this section
(section 5.1.5) the recently established concept of hopping
maps is briefly described.

5.1.1. Superexchange Model. The superexchange (SE)
model has been introduced in section 4.1.4 and is illustrated
schematically in Figure 10 A. Thermal fluctuations bring donor
and acceptor levels into degeneracy (resonance) causing the
electron to tunnel along the bridge from donor to acceptor.
Nuclear relaxation following the ET stabilizes the electron on
the acceptor site. Importantly, during the tunneling process the
electron does not populate the bridge. The latter merely lowers
the tunneling barrier, or equivalently increases the electronic
coupling between donor and acceptor.
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The SE mechanism relies on the assumption that the gap
between highest occupied/lowest unoccupied electronic energy
levels of the bridge units (here the chain of redox active
molecular units between donor and acceptor) and the redox
active levels of donor and acceptor is large compared to
electronic coupling between donor/acceptor and the bridge.157

Assuming that in eqs 43 and 44 all electronic couplings are the
same, HD1 = Hii+1

B = HNA, and that all bridge energy levels Hii
B

are the same, one obtains157
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where ΔR = R/(N + 1) is the spacing between the sites,
assumed to be equidistant. Hence, for a periodic bridge the
effective coupling matrix element eq 67 is found to drop
exponentially with donor−acceptor distance with a decay
constant determined by the site−site spacing ΔR and the ratio
of energy spacing between D/A and bridge levels, ΔED/A −
ΔEb, and the site−site electronic coupling V. To facilitate
comparison to the results of the following sections, the absolute
electronic potential energies in eq 44, ED/A and Hii

B, are replaced
in eqs 67 and 68 by the electron removal energy of the donor at
the transition state configuration, ΔED/A, and the electron
removal energy of the bridge, ΔEb, respectively. The gap energy

ΔED/A − ΔEb can be expressed in terms of ET free energies and
reorganization free energy and is given by eq 77. The electronic
coupling matrix element between sites, Hii+1

B , has been replaced
by the root-mean-square fluctuations V = ⟨|Hii+1

B |2⟩1/2 to take
into account thermal effects.
The superexchange ET rate for a periodic bridge, kSE, is then

given by the usual nonadiabatic ET rate eq 24 using expression
eq 67 for |Hab|
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5.1.2. Flickering Resonance Model. An interesting
situation arises when ET occurs along a chain of redox sites
where donor, acceptor, and bridge levels are similar in energy.
In this situation the SE mechanism, assuming large energetic
separation of donor/acceptor and bridge levels, may no longer
apply. Beratan, Skourtis, and co-workers recently suggested a
new model that might describe such situations, termed the
flickering resonance (FR) model. In the FR model the medium
between donor and acceptor is no longer considered as merely
a bridge enhancing electronic coupling (as in the SE model, see
section 5.1.1), but as a chain of redox sites, each of which can
accept and donate electrons or holes. See Figure 10 B for an
illustration of the FR mechanism. ET from donor to acceptor is
assumed to take place when thermal fluctuations bring the
redox active energy levels of donor, bridge, and acceptor sites
simultaneously in alignment or resonance, in contrast to the SE
model where bridge sites remain off-resonant during ET. Then
the charge carrier is assumed to move with very little or no
nuclear relaxation (i.e., ballistically) through the energy-aligned
redox states to become trapped on the acceptor. This is in
contrast to charge hopping (section 5.1.3), where the carrier
moves sequentially from one site to the next and nuclear
relaxation takes place between each step (Figure 10 C).
In the following the FR model introduced in ref 35 is

examined in detail. To this end, an excess electron is considered
that moves in a chain of M redox sites, including the donor,
labeled i = 1, N = M − 2 bridge sites, with labels i = [2, M − 1],
and the acceptor, labeled i = M. The redox level of each site i is
characterized by a probability distribution, ρi(ΔEi), where

Δ = −E E Ei i iO, R, (70)

is the energy for removal of the excess electron from site i at
fixed ionic configuration, termed electron removal energy. The
state denoted “O” (for “oxidized”) refers to the state with no
excess electron present, and the state “R” (for “reduced”) refers
to the state with the excess electron present. A schematic of the
energy level distributions of a system with three bridge sites is
shown in Figure 11. I note in passing that the difference in
electron removal energy between two sites i and j is equal to
the energy for ET from i to j at fixed ionic configuration
(=vertical ET energy) as defined in eq 4, ΔE ≡ ΔEji = ΔEi −
ΔEj.
Generalizing Hopfield’s formulation for nonadiabatic ET

between two sites,29 the FR model asserts that ET across the
chain of sites takes place when the energy levels of all M sites
match one another to within the electronic coupling between
the sites, ±V. The ET rate is written as the corresponding
matching probability P(M) times a frequency 1/τ

Figure 10. (A) Superexchange (SE), (B) flickering resonance (FR),
and (C) hopping models for ET along a chain of M = 5 redox active
molecular sites (e.g., cofactors, DNA base pairs). The first site is the
electron donor (D), the last site is the acceptor (A), and there are
three bridge sites (1, 2, 3) between D and A. One-electron energy
levels are drawn in black lines for each site. The excess electron is
indicated by a Gaussian function, initially localized at site D. In the SE
model (A), thermal fluctuations bring D and A levels into resonance,
followed by tunneling from D to A. The bridge sites remain off-
resonant; they only enhance tunneling but are not significantly
occupied by the tunneling electron at any time. In the FR model (B)
all five levels are assumed to be in resonance before the electron
transfers to the acceptor. The bridge sites become partially occupied
by the tunneling electron. In the hopping model (C), the donor D and
the nearest neighbor bridge site 1 get into resonance, followed by
electron tunneling from D to 1. This step is repeated three times until
the electron has made four consecutive hops to reach A.
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τ
=k M P M( )

1
( )FR (71)

where 1/τ is associated with the rate-limiting process once an
M-state resonance is reached. This is either the inverse
transport time for an M-state resonance with finite lifetime
(denoted 1/τtrans in ref 35) or the inverse trapping time of the
carrier on the acceptor (1/τtrap), depending on whether
transport or trapping is rate limiting.
For nonadiabatic ET between two states (no bridge sites, M

= 2, V = ⟨|Hab|
2⟩1/2), the FR rate eq 71 is equal to the

nonadiabatic ET rate expression eq 24, with 1/τ the Rabi
frequency, 1/τrabi = 2V/h:

π
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=k P(2) (2)FR
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2

rabi (72)

=kc,na (73)

Equation 73 holds if one makes the same assumptions that lead
to the nonadiabatic rate eq 24, i.e., Gaussian distributions of the
electron removal functions of donor and acceptor sites. A
derivation of eq 73 is given in Appendix A.
The FR model extends the idea of the two-state matching

probability to the M-state case. The probability that the
ionization energy of the donor and the electron affinity of the
M−1 electron accepting sites are all within ±V of one another
is given by
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This integral was solved in ref 35 by Monte Carlo integration.
For a simple model of four sites with equal mean site energies

and width σ = 0.16 eV, P(M) was found to decrease very fast
with decreasing V, by about 3 orders of magnitude for each
order of magnitude reduction in V. Moreover, P(M) was found
to decrease exponentially with the number of sites, i.e., with
donor−acceptor distance.
In order to explain these numerical results for P(M), an

approximate upper bound of eq 74 was derived in ref 35. In
Appendix B I derive a similar expression assuming Gaussian
energy distributions with equal widths σE and different mean
values for donor, bridge, and acceptor sites, as schematically
shown in Figure 11. For large M (M ≥ 4), one finds
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where ΔED/A = (ΔED + ΔEA)/2, ΔED = ⟨ΔE1⟩R is the
thermally averaged electron removal energy of the donor in the
geometry of the reduced state (and the acceptor and brides
sites in the oxidized state), ΔEA = ⟨ΔEM⟩O is the thermally
averaged electron removal energy of the acceptor in the
geometry of the oxidized state (with the donor and bridge sites
in the oxidized state), and ΔEB = ⟨ΔEi⟩O, i ∈ [2, M − 1], is the
thermally averaged electron removal energy of a bridge site in
the geometry of the oxidized state (with the donor and
acceptor in the oxidized state). The latter is assumed to be the
same for each bridge site. ΔA is the usual free energy difference
for ET from D to A, λ = σE

2/(kBT) is the reorganization free
energy for ET between two neighboring sites, ΔA + λ = ΔED −
ΔEA, R is the total length of the chain of M sites, and ΔR is the
(equidistant) spacing between the sites, R = (M − 1)ΔR. An
expression for the cases M = 3 and 2 is given in Appendix B.
For the case M = 2 (no bridge site) eq 117 is recovered. For
numerical evaluations of eq 75, it may be useful to express the
energy gap ΔED/A − ΔEB in terms of free energies:

λΔ − Δ = Δ + − ΔE E A A( )/2D/A B BD (77)

A derivation of eq 77 is also given in Appendix B.
Hence, according to eq 75 the upper bound to the matching

probability can be written as a product of three exponentially
decaying terms. The first term on the right-hand side of eq 75 is
an exponential distance decay with decay constant Θ given by
eq 76. It is of similar form as the decay constant β in the SE
mechanism eq 68, except that the energy gap ΔED/A − ΔEB is
replaced by the width of the fluctuations of the electron
removal energy, σE. This results in a weaker distance
dependence than for the SE model (see section 5.1.4).
However, the energy gap ΔED/A − ΔEB does enter the
expression for the matching probability in the second
exponential term, which is not present in the SE model. The
third term on the right-hand side of eq 75 recovers the
exponential part of the classical Franck−Condon factor, eq 25,
which is also present in the SE model.
Besides P(M), an estimate for the transmission time τ is

required for transfer of the electron from the donor to the
acceptor once all energy levels match to within ±V; see eq 71.
This could be done numerically by solving the time-dependent
Schrödinger equation for a chain of cofactors with static energy

Figure 11. Definition of energetic quantities for ET in a simple
donor−bridge−acceptor system treated in section 5.1.2. The thermal
distribution of electron removal energies with respect to the vacuum
level, eq 70, is indicated by Gaussians. All distributions have the same
width σE. ΔED is the average vertical electron removal energy of the
donor in the nuclear configurations of the reduced state, ΔEB and ΔEA
are the average vertical electron removal energies of the bridge and
acceptor sites in the nuclear configurations of the oxidized state (that
is, average vertical electron affinity), respectively, and ΔED/A is the
electron removal energy from a level halfway between the centers of
the distributions for donor and acceptor. ΔABD and ΔA are the free
energy differences for ET from the donor to the bridge and from the
donor to the acceptor, respectively, and λ = σE

2/(kBT) is the
reorganization free energy for ET from donor to bridge or acceptor
sites.
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levels and electronic couplings. In ref 35 a lower limit to the
transmission time was estimated in the infinite lifetime limit of
the FR, τtrans

min ≈ R/⟨v⟩, where ⟨v⟩ = (2V/ℏ)ΔR. Hence, τ is
expected to increase only linearly with M implying that the
decay of the FR rate eq 71 is dominated by the exponential
decay of P(M).
Inserting eqs 77 and 75 in eq 71 and replacing τ by τtrans

min , one
obtains an upper estimate for the FR rate for a chain of equal
bridge energy distributions and electronic couplings (M ≥ 4):
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with the decay constant Θ given by eq 76. In section 5.1.4 eq
78 for the FR rate is compared to the SE and hopping rate
expressions. The FR model has been suggested as a possible
mechanism for charge transport along DNA base pairs and
heme chains.35 Applications of the FR model to these systems
will be discussed in sections 6.3 and 6.4.
5.1.3. Charge Hopping Model. Charge hopping is an

alternative mode of transport that can become relevant for
longer bridges. In contrast to the SE mechanism, charge
hopping is an incoherent transport channel where a localized
excess electron or charge is assumed to hop between
consecutive sites i and j, with hopping rates kji ≡ kj←i given,
e.g., by eq 24. The time dependent site populations of the
charge, pi, are given by a system of coupled first order
differential equations:
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where M is as above the number of bridge sites. As discussed in
ref 157, the assumption of first order kinetics is justified when
the charge population on the bridge remains small. In this case
the second order rates (a charge can hop from i to i + 1 only of
i is occupied and i + 1 is not occupied) becomes first order,
ki+1ipi(1 − pi+1) ≈ ki+1ipi, for pi+1 ≪ 1. The bridge population
remains small if the bridge levels are energetically well
separated from the donor/acceptor levels.
Here one is interested in the steady state flux through the

chain when the donor is a constant source pD = const and the
acceptor population is instantly drained so that pA = 0. This can
be realized, for instance, by a fast equilibrium between the
donor and an external electron source in excess concentration,
and a fast and irreversible ET from the acceptor to an external
electron sink. Moreover, one assumes that all rate constants
between bridge sites are equal, kij = kBB, which implies that they
are on the same (free) energy level. At steady state, ṗi = 0 ∀ i,
the flux J of electrons transferred between neighboring sites is
the same and equal to the flux through the entire chain (no

charge accumulation/loss at any site). The steady state flux is
given by

=J k phop D (80)
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BD B
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where ΔABD is the free energy difference for ET from the donor
to the bridge sites. Equations 80 and 81 can be readily derived
by simple algebraic manipulation of the linear eq 79 using the
above boundary conditions; see ref 157 for details. The kinetic
constant khop can be interpreted as an effective rate constant for
hopping from the donor to the acceptor via the bridge sites.
Importantly, the hopping model predicts that the effective
hopping rate khop decreases linearly with the number of bridge
sites, i.e., as 1/R, in contrast to the exponential distance
dependence of the SE and FR rates, eqs 69 and 78, respectively.

5.1.4. Analysis. The FR mechanism was only very recently
suggested as an alternative to SE. There are still a number of
uncertainties with regard to this mechanism concerning, e.g.,
the form of the prefactor that should be best used with this
theory and the treatment of the site fluctuations. The latter may
be strongly correlated in contrast to what was assumed in
section 5.1.2. With these caveats in mind, I compare here the
FR rate eq 78 derived for the simple donor−bridge−acceptor
system in Figure 11 to the corresponding SE rate eq 69.

π
β

λ
λ

= = Δ − Θ − Δ

−
+ Δ − Δ⎛

⎝⎜
⎞
⎠⎟

r
k
k

R
R

R R

A A
k T

2 2
exp[( )( )]

exp
( 2 )

8

1
FR
max

SE

BD
2

B (82)

where Θ and β are given by eqs 76 and 68, respectively.
Assuming typical values ΔED/A − ΔEB = 1 eV and σE = 0.15 eV
(corresponding to λ = 0.9 eV at 300 K), the ratio Θ/β ≈ 0.1,
implying that the FR model has a much softer distance
dependence than the SE model. Therefore, the first exponential
term on the RHS of eq 82 is positive and exponentially
increasing with distance R. At small distances or, equivalently, a
small number of sites, this term is small and the ratio will be
dominated by the second exponential term on the RHS of eq
82. Thus, for very short bridges (typically one to two bridge
sites) SE is favored over FR (r1 < 0). For longer bridges
(typically three to four bridge sites) the distance dependent
exponential term increases leading to a crossover from SE to
FR (r1 > 0). For even longer bridges SE is not competitive due
to the much sharper distance decay compared to FR. Moreover,
one can expect that a decrease in electronic coupling will
reduce the SE rate more than the FR rate because β is more
sensitive to changes in V than Θ (factor 2 in front of logarithm
in eq 68). The dependence on the free energies is more
complicated, but for most situations a reduction in bridge free
energies ΔABD should increase the FR rate more than the SE
rate.
For comparison of FR to hopping, I assert that in eq 81 the

rates kD2 and kAN are not too small compared to kBB so that khop
exhibits the usual 1/R dependence. Assuming kD2, kAN ≥ kBB,
which is fulfilled for the wide parameter range 0 ≤ ΔABD ≤ 2λ,
ΔABD − 2λ ≤ ΔA ≤ ΔABD, the hopping rate eq 81 is bound
from below by khop

min = kBB exp[−ΔABD/(kBT)]ΔR/R, khopmin ≤
khop. Using this lower bound, one finds for the ratio between
kFR
max, eq 78, and khop the following relation:
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The constant C ≥ 0 for all values of ΔABD, ΔA, and λ. It
takes a minimum C = 0 at λ = 2ΔABD, ΔA = 0 for any value of
ΔABD. Hence, the first and the second exponents in eq 83 are
always negative. This implies that at least for the simple model
system investigated, with equal distribution functions and
couplings for each site, and a bridge representing a rectangular
free energy barrier between donor and acceptor, the FR rate is
smaller than or equal to the hopping rate. Of course, it can be
questioned whether this perhaps unexpected result carries over
to real systems, especially with the above-mentioned caveats in
mind. Different rate prefactors and/or a better treatment of
correlated fluctuations in the FR model may tip the balance
among mechanisms. In this respect I note that some of the
correlation effects may be captured using, e.g., MD simulations
to estimate distributions for site energies and electronic
couplings.
5.1.5. Hopping Maps. In 2008 Gray and co-workers found

evidence that Cu(I) → Re(II) ET in Re-labeled azurins is
accelerated by an intervening tryptophan residue by 2 orders of
magnitude.93 More recently, the same group reported a more
than 10-fold increase in the Cu(I) → Ru(III) ET rate in Ru-
labeled azurins by an intervening nitro-tyrosine residue.260

These observations were interpreted in terms of a switch of
mechanism from electron tunneling to two-step hopping with
the singly oxidized tryptophan/nitro-tyrosine residue as a
charged intermediate. In their analysis, the hopping rate
calculated for a single intermediate using typical values for
reorganization free energies (0.8 eV) and distance decay
constants (1.1 Å−1) was in good agreement with the
experimental rate constant, whereas the calculated SE rate
was found to be significantly lower.
The question hopping vs SE prompted the authors to

develop so-called hopping maps or hopping advantage
maps.259,261 This is the ratio between the two rates, ln(khop/
kSE) plotted as a function of two parameters, e.g., the donor−
acceptor free energy difference and the intermediate−acceptor
free energy difference. Applied to the above-mentioned azurin
systems, these maps have revealed clear boundaries where
hopping dominates over SE and vice versa. They could be
particularly useful for the design of hopping systems.260 Here
ln(khop/kSE) is plotted as a function of the distance between
given donor and intervening residue and between the latter and
a given acceptor as well as for different values of the
intermediate−acceptor free energy difference. The map then
reveals the optimal positioning and the optimal free energy of
the intermediate to give the highest hopping advantage. Further
details on hopping maps can be found in a recent review.56

5.2. Ultrafast ET

The treatment of ET reactions in the usual Marcus picture
assumes a canonical equilibrium distribution of all possible
microstates of donor and acceptor, as implied by the brackets

⟨···⟩M. This was also a crucial assumption in the derivation of
the SE, FR, and hopping models in section 5.1. The assertion of
equilibrium thermodynamics can be expected to give a good
approximation if the ET rate is slower than the slowest system
vibrational mode coupling to ET.157 Molecular dynamics
simulations have shown that for small proteins the slowest
modes coupling to ET are due to the electroelastic fluctuations
of the protein/water interface occurring on the 1−10 ns time
scale.36 Even longer time scales may be possible, e.g., when
large protein conformational changes couple to ET (see section
5.3). Hence, one can expect that for slow to modestly fast
biological ET reactions occurring on the millisecond to
microsecond time scale, equilibrium statistical mechanics and
Marcus theory give an adequate description. Indeed, the
successful interpretation of many experimental measurements
of millisecond to microsecond biological ET reactions are an
undeniable proof for the strength of this theory.
However, some biological ET reactions are ultrafast,

occurring on the nanosecond to picosecond (ns−ps) time
scale, e.g., heme a to a3 electron tunneling in cytochrome c
oxidase (ns), hole transport in DNA, DNA photolyase, and
cryptochrome (ns−ps), and primary charge separation in
photosystem II (ps). In these systems the ET is comparable to
or faster than the electroelastic fluctuations at the biomolecule/
water interface. Hence, a significant fraction, if not all, of these
fluctuations are frozen on the time scale of the ET, invalidating
the use of canonical equilibrium statistical mechanics.
Consequently, the time averages measured in experiment are
no longer equal to the canonical equilibrium averages, which
means that the system is nonergodic.

5.2.1. Nonergodicity Correction. Matyushov and co-
workers suggested a simple correction for nonergodic effects
based on the theory of dynamically restricted canonical
ensembles.262 The formalism is similar to equilibrium statistical
mechanics with the crucial difference that integration is not
done over full phase space, but over the part of phase space that
is accessible on the time scale of the ET event. As a
consequence, reorganization free energy, average energy gap,
free energy difference, and activation free energy become a
function of the ET rate.
If one assumes that the ET rate constant is known from

experiment, say k, one can replace in the formula for the
canonical reorganization free energy in the frequency domain,
eq 62, the lower integration limit “0” by “k”. This leads to the
definition of a noncanonical (or nonergodic) reorganization
free energy

∫λ
π

ω
ω
ω

=
∞

k
J

( )
2

d
( )

k (85)

which includes only the contributions from modes that are at
least as fast as the reaction rate. However, these fast
contributions are averaged over all of configuration space
including the part described by the slow modes, because the
spectral density function J is formally obtained from infinitely
long trajectories. A similar correction has been suggested for
the rate dependent average energy gap ΔEA(k)

36,234 and for the
free energy difference ΔA(k) by virtue of ΔA(k) = ΔEA(k) −
λ(k) . In case the ET rate constant is not known experimentally,
one could solve the equations for λ(k) and ΔA(k) together
with the one for the ET rate (kET, e.g., eq 25) self-consistently
until kET = k; see scheme in Figure 12A.
Application of eq 85 to the picosecond primary charge

separation reaction in bacterial photosynthesis has given a
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spectacular reduction in reorganization free energy from
unphysically high values of 2.36 eV obtained from integration
over all frequencies (eq 62) to about 0.36 eV233,234 in good
agreement with the experimental estimate of 0.22 eV;24 see
Table 1. A similar analysis for heme a to a3 tunneling in
cytochrome c oxidase is discussed in section 6.2. In general, the
result of dynamical freezing of the slow modes is that
reorganization and activation free energy as well as the
magnitude of the free energy difference decrease compared to
canonical equilibrium conditions, as shown schematically in
Figure 12B.
5.2.2. Sumi−Marcus theory. The elimination of slow

modes according to the nonergodicity correction discussed in
section 5.2.1 gives self-consistent rate-adjusted ET parameters.
When used in the framework of Marcus theory, the kinetics

described by these parameters is still monoexponential. More
complicated multiexponential decay kinetics, as measured, e.g.,
for photosynthetic reaction center proteins, requires a treat-
ment beyond the standard Marcus formalism.112 Multi-
exponential decay implies that motions on at least two different
time scales couple to ET. In their theory developed some time
ago, Sumi and Marcus describe the ET by two coordinates, one
coordinate P for a fast polarization response and another
coordinate q for a slow polarization response compared to the
ET time scale.119 In case of the picosecond photosynthetic
charge separation reaction P would correspond to the
subpicosecond response of the intramolecular vibrations of
the cofactors, and q would correspond to all other relaxation
processes of the protein and solvent. The total energy gap is
assumed to be a linear function of P and q

Δ = +E aP bq (86)

resulting in a fast energy gap component, ΔEP = aP, and a slow
component, ΔEq = bq. The fast component ΔEP is assumed to
be in thermal equilibrium for each value of ΔEq, whereas the
slow component ΔEq is assumed to diffuse on a free energy
surface A(ΔEq) with diffusion coefficient D. The rate for ET
along the ΔEP direction is k(ΔEq) . In this picture the initial
state population p is a function of ΔEq and time only, p(ΔEq,t),
with a time dependence given by the diffusion-reaction
(Fokker−Planck) equation119
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and the ET rate is obtained from the initial state population
decay

=
→

k
p

t
d ln

d t
ET

0 (88)

Matyushov and co-workers have stressed that also in this
formalism a nonergodicity correction is necessary in the form of
a self-consistent ET rate-adjusted diffusion coefficient D →
D(kET) and free energy surface, A(ΔEq) → A(kET,ΔEq) .
Indeed, the authors have shown that self-consistent solutions to
eqs 87 and 88 using data from MD simulation give good
agreement with the multiexponential decay kinetics reported
for a number of mutants of Rhodobacter sphaeroides.112 The
dynamical quenching of the slow protein response was
suggested to be an important mechanism enabling ultrafast
biological ET while reducing the loss of free energy to heat.36

A note of caution may be appropriate at this point. In certain
systems the nonergodicity correction may lead to small
reorganization free energies on the order of the electronic
coupling matrix element. Then one needs to verify if the
assumption of localized charge carriers and the use of the
nonadiabatic or adiabatic rate formalisms (eqs 24, 26) are still
appropriate, or if the carrier is delocalized and explicit charge
propagation schemes should be used, as discussed in section
5.2.3.

5.2.3. Nonadiabatic Molecular Dynamics. In all previous
sections it was assumed that initial and final ET states are
characterized by potential wells that are sufficiently deep so that
localized charge carriers can form in initial and final states. This
is the case when reorganization free energy, after correction for
possible nonergodic effects according to eq 85, is still

Figure 12. (A) Self-consistent correction scheme for reorganization
free energy for fast (nonergodic) ET reactions. The lower integration
limit (2πkn−1) for the spectral density function J (eq 29) is iterated
until it is equal to the ET rate k. The result is a nonergodic
reorganization free energy, λ(k), that is smaller than the equilibrium
reorganization free energy including all frequencies, λ. In (B) parabolic
free energy profiles are drawn for the equilibrium case (blue) and after
the nonergodicity corrections have been applied (red). The non-
ergodicity correction for the free energy difference between the two
states, i.e., the vertical difference between the minima, is assumed to
result in the same scaling factor as for reorganization free energy. The
Stokes shift is indicated by twice the reorganization free energy. See
section 5.2.1 for further details.
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significantly larger than electronic coupling, λ(k) ≫ Hab. An
interesting situation occurs when this is no longer true. In
Figure 13 I show the adiabatic free energy curves for different

values of the ratio λ/Hab. If λ/Hab ≤ 2, the activation barrier for
ET vanishes according to eqs 18 and 19 (at ΔA = 0), and the
transition state becomes a minimum. In this regime the excess
electron is no longer localized on one cofactor or molecular
fragment, but spontaneously delocalizes; the ET rate becomes
ill-defined. This scenario may occur for two or more closely
spaced cofactors or DNA bases with strong electronic
interactions and surrounded by a low dielectric and/or slowly
responding (viscous) medium.
The phenomenon of excess charge delocalization is well-

known in the chemistry literature on mixed-valence com-
pounds, where the degree of delocalization is classified
according to Robin and Day.263 In class I compounds the
excess charge is highly localized, in class II compounds there is
some localization of distinct valences but with low activation
energy for interconversion, and in class III compounds the
excess charge is completely delocalized. Textbook examples for
class I, II, and III compounds are Pb3O4, tetrathiafulvalene

264

(also correctly predicted by CDFT130,205) and the Creutz−
Taube ion.265

Considering a chain of closely spaced ionizable sites, the
situation also has some similarity with the band transport
problem in solids. However, in contrast to solids, the thermal
fluctuations in proteins are so large that the mean free path of
the electron is smaller than the typical site spacings, making
band-theoretical approaches inapplicable. In other words, in
this regime the electronic interaction between the sites can no
longer be treated as a perturbation as is done in Marcus theory,
while the strong nuclear fluctuations in proteins cannot be
treated as a perturbation to the electronic problem as is done in
band theory. Nuclear and electronic motion can no longer be
safely separated and the coupled nuclear−electronic problem
should be solved instead.
Potential solutions to this problem are direct propagation

schemes of the coupled electron−nuclear motions. In
particular, mixed quantum−classical (MQC) nonadiabatic
molecular dynamics (NAMD) methods have been developed

for (bio)molecular systems including the very early work by
Warshel and co-workers,266,267 with applications to charge
separation in photosynthetic reaction center proteins,268 mean
field (MF) Ehrenfest, and fewest switches surface hopping
(SH).269−272 These approaches are also referred to as
semiclassical trajectory methods because nuclear motion is
treated using classical mechanics and electronic motion is
treated quantum mechanically. MF and SH have served as the
methods of choice for the last 20 years, primarily in the context
of ab initio and DFT electronic structure calculations of
photoexcitation processes.272 Also electron transfer reactions in
the gas phase have been investigated by combining the MF
approach with real-time TDDFT.273 (In the latter study the
competition between superexchange and hopping was inves-
tigated for a small donor−bridge−acceptor system.) Recently,
the MF and SH methods have been adopted for simulation of
thermal charge transport in larger, biological systems such as
DNA and proteins.37,38,250,274,275 I note in passing that charge
transfer in organic semiconducting materials is in a similar
regime,199,276,277 and first NAMD simulations for simple one-
dimensional model Hamiltonians278−281 and approximate
NAMD simulations for a slab of organic molecules282 have
recently been reported.
MF and SH are MQC schemes where the electronic wave

function Ψ(t) is expanded in a set of adiabatic electronic states
ϕl (ϕ0 and ϕ1 for a simple two-state donor−acceptor problem)

∑ ϕΨ =t c t tR( ) ( ) ( ( ))
l

l l
(89)

with cl(t) the time dependent expansion coefficients and R the
position vector of all nuclear coordinates. Insertion of eq 89 in
the time-dependent electronic Schrödinger equation gives

∑ℏ ̇ = − ℏ · ̇c c H d Ri ( i )k
l

l kl kl
(90)

where Hkl are the Hamiltonian matrix elements, dkl are the
nonadiabatic coupling vectors between states k and l, and Ṙ is
the velocity vector for all nuclei. The expansion coefficients are
propagated in time according to eq 90 for a time dependent
electronic Hamiltonian as determined by the classical nuclear
motion. The crucial difference between MF and SH is the way
how the classical nuclear dynamics is treated. In MF the nuclei
move on a mean field electronic surface composed of the
adiabatic potential energy surfaces Ek = Hkk (e.g., E0, E1 given
by eq 3 for a two-state system) with weights proportional to the
electron coefficients |ck|

2; see Figure 14A. In the SH method the
nuclei are propagated on a single adiabatic surface Ek at any
time and transitions between surfaces El ← Ek occur
stochastically according to a transition probability derived by
Tully;269 see Figure 14B. In both cases initial state population
decay occurs when the nuclear dynamics generates nuclear
configurations where the initial electronic state becomes
(quasi)-degenerate with an excited electronic state. In practice,
one needs to run a large number of Ehrenfest of SH trajectories
with different initial conditions. Then effective ET rates can be
obtained from the ensemble averaged time-dependent decay of
the initial charge population and charge mobilities calculated
from the mean square displacement of the center of excess
charge versus time.
The strength of NAMD approaches is that the ET

mechanism is, in principle, a result of the calculation, in
contrast to Marcus or band theory, which are based on a
preconceived picture of the ET process. However, the

Figure 13. ET free energy curves for large ratios Hab/λ. The diabatic
free energy curves eqs 11 and 12 are drawn in blue for λ = 0.4 eV and
ΔA = 0 eV. Adiabatic ground and excited state free energy curves are
obtained according to eq 10, and drawn in red for increasing values of
electronic coupling Hab at constant λ = 0.4 eV. At Hab = λ/20 the ET
can be classified as nonadiabatic, and at λ/5 it can be classified as
adiabatic. For Hab ≥ λ/2 the free energy barrier disappears and the
transition state at ΔE = 0 becomes a minimum.
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computationally amenable MF and SH approaches still have a
number of well-known shortcomings (see below) and a major
drawback is their very high computational demand, in particular
when the electronic structure problem is solved at the ab
initio283 or DFT level.273,284 Elstner and co-workers have
addressed the problem of efficiency by developing MF and SH
implementations based on self-consistent charge density
functional tight binding (SCC-DFTB) calculations of the
electronic Hamiltonian. This allows for an efficient propagation
of the coupled electron−nuclear motions for relevant biological
systems on the picosecond−nanosecond time scale. I refer here
to two recent reviews by the authors for a detailed presentation
of their implementation.37,38 Applications of the method to
DNA and DNA photolyase are discussed in sections 6.4 and
6.5.
The shortcomings of the MF approach are well documented

(see ref 285 and references therein): (1) while a reasonably
good approximation to the short time dynamics of the system is
obtained, after reaching an avoided crossing the system remains
in a mixed state indefinitely instead of returning to one of the
adiabatic states. A consequence of this is unphysically large
delocalization of the excess electron or hole. (2) The method
does not satisfy a detailed balance between quantum and
classical subsystems, resulting in the quantum system acquiring
too much energy during the course of the reaction. (3) A
quantum−classical method, the MF method neglects nuclear
quantum effects, which can become important at low
temperatures. Issue 1 has been addressed by Jasper and Truhlar
in their decay-of-mixing approaches, which impose demixing of
the electronic states, i.e., a decoherence correction, to model
the dissipative effect of the environment on the electronic
dynamics.286−288

The SH method and its latest extensions and modifications
also improve on these issues. The stochastic hops mimic the
effect of branching of the nuclear wave packets at the crossing
region and the nuclei are propagated at any time on a pure
adiabatic state. In recent analyses of the equilibrium limits of
the SH method for a two-level289 and a three-level model
system,290 it was found that SH does not in general yield a

Boltzmann equilibrium population of the electronic states but
that in practice the observed deviations are small, especially in
the limits of small electronic coupling (Hab) and/or strong
nonadiabatic coupling (dkl). Recently, nuclear quantum effects
were incorporated in the SH method291 by combining it with
ring polymer molecular dynamics39,292 (see also section 5.4.2).
The tunneling contribution to the rate for a one-dimensional
two state model of a nonadiabatic reaction could be well
reproduced when compared with exact quantum mechanical
calculations.
A longstanding problem of standard SH that is particularly

relevant for ET simulations is the missing decoherence of the
electronic wave function. After passing the crossing region, the
off-diagonal electronic density matrix element does not decay
sufficiently, leading to an overly coherent electronic wave
function with probability density on two or more surfaces. This
shortcoming is not new and has been addressed by many
researchers.286,293−297 One of the simplest approaches is to
collapse the electronic wave function to a single adiabatic state
after leaving the crossing region.294 More recently, the issue was
readdressed by Subotnik and co-workers in a series of papers.
Using a simple spin-boson model, the authors found that
standard SH rates without decoherence correction scale
incorrectly with electronic coupling.298 They suggested an
augmented SH algorithm where decoherence is introduced by
stochastically collapsing the electronic wave function according
to a rate that depends on positions and momenta.296,297 The
new algorithm, denoted A-FSSH, was shown to recover the
correct scaling of ET rates with electronic coupling.297

In summary, the field of NAMD simulation has been and
remains a very active and vibrant field of research. First
implementations have become available that open up the field
to applications in condensed phase biological and organic ET
and several research groups aim at improving some of the
known shortcomings of the original methods introduced some
time ago. It remains to be seen if new and improved but still
computationally practical NAMD algorithms will be developed
in the years to come (see also perspective by John Tully285).

5.3. ET Coupled to Slow Conformational Transitions

An interesting problem occurs when ET is coupled to slow
relaxation in the ET product state, e.g., a conformational
transition of the protein. The latter typically takes place on the
millisecond−microsecond or even longer time scales. The
situation can be cast again in terms of Sumi−Marcus theory119

(see section 5.2.2). The fast coordinate P now describes the
nanosecond−picosecond response of the cofactors, amino acid
side chains, solvent, and water/protein interface, and the slow
coordinate q describes the conformational transition of the
protein on the millisecond−microsecond or longer time scale;
see Figure 15A. The difference with respect to the fast ET
discussed in section 5.2.2 is that the equilibrium state on the
product surface is effectively never reached within the time
scale of ET due to a very large thermodynamic or kinetic barrier
for the protein conformational transition, closely corresponding
to the “narrow reaction window” limit of Sumi−Marcus theory.
More recently, Matyushov and co-workers suggested an

alternative approach to this problem, again based on the
concept of the dynamically restricted canonical ensemble.262

The equilibrium distributions for P and q are assumed to be
Gaussian, centered around PA and qA with widths σP and σq,
respectively. The equilibrium distribution of ΔE is then the
convolution of the two distributions:

Figure 14. Two popular quantum−classical nonadiabatic molecular
dynamics (NAMD) methods: (a) mean-field (MF) Ehrenfest MD and
(b) surface hopping (SH) MD. For each case, two adiabatic potential
energy surfaces are shown, E0 and E1. The trajectories of two
independent simulations are indicated in blue. After passing the high-
coupling region at the avoided crossing, the trajectories evolve on a
potential that is an average of E0 and E1 in the MF simulations. By
contrast, the trajectories evolve on either E0 or E1 in the SH
simulations. Reprinted with permission from ref 38. Copyright 2013
The Royal Society.
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which is also Gaussian with width σA = (a2σP
2 + b2σq

2)1/2 and
center ΔEA = aPA + bqA. The corresponding equilibrium
reorganization free energy is

λ
σ

λ λ= = +
k T2 P qA

var A
2

B (93)

where λP = a2σP
2/(2kBT) and λq = b2σq

2/(2kBT). One further
assumes that ET is slow enough so that both the fast and the
slow protein modes coupling to ET are sufficiently well
sampled in the reactant state (picoseconds−nanoseconds), but
faster than the slow conformational transition in the product
state (milliseconds−microseconds); i.e., ET is assumed to take

place in the microsecond−nanosecond range. Because of the
separation of time scales, ET will occur along the fast P
coordinate while the q coordinate is frozen at the equilibrium
value for A. Consequently, the system gets trapped in a local
minimum in the product state, denoted in the following as B′;
see Figure 15A. The missing relaxation in the q direction means
that the Stokes shift and the corresponding reorganization free
energy for ET to B′

λ = − = Δ − Δ′ ′
a

P P E E
2

( )
1
2

( )st
A B A B (94)

are smaller than for ET to B, λst = λP < λA
var. The free energy

difference between B′ and A is then given by

λΔ ≡ Δ = Δ −′A A EB A A
st

(95)

Assuming for simplicity that the fluctuations in B′ are the
same as in the initial state A, λB′

var = λA
var ≡ λvar, these

considerations lead to two parabolas that for a given curvature
(or λvar), have a horizontal separation of minima that is smaller
than in standard Marcus theory; see Figure 15B. This has two
important consequences: (i) the linear free energy relation eq
9, which is exact for a canonical ensemble, is no longer valid
and (ii) the activation free energy is smaller than in the Marcus
picture, eq 17. One can readily show that a slightly modified
linear free energy relation holds in this situation. The
expressions for the parabola for states A and B′ are

λ
Δ = Δ − ΔA E E E( )

1
4

( )A var A
2

(96)

λ
Δ = Δ − Δ + Δ′ ′A E E E A( )

1
4

( )B var B
2

(97)

Subtracting eq 96 from eq 97 and inserting eqs 94 and 95,
one obtains

χ χΔ − Δ = Δ + − Δ′
− −A E A E E A( ) ( ) (1 )B A G

1
G

1
(98)

where

χ λ
λ

= ≥ 1G

var

st (99)

Hence, for small ΔA the free energy gap is smaller than the
energy gap by the ratio of reorganization free energies, eq 99. If
the system is ergodic, i.e., χG = 1, eq 98 reduces to the standard
linear free energy relation eq 9. Importantly, the (nonadiabatic)
activation free energy for ET is now given by

λ
λ

Δ = − Δ = + Δ‡A A A E
A

(0) ( )
( )

4na A A A

st 2

var (100)

where use of eqs 96 and 95 was made. The ratio of activation
free energies for the nonequilibrium reaction A → B′, ΔAna

‡ =
λst 2/(4λvar), and the equilibrium reaction A → B, ΔAna

‡ = λvar/4
(assuming ΔA = 0 for both cases), is then given by

χ
Δ → ′
Δ →

=
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‡
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na

na
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2

(101)

Hence, the fact that the conformational transition is too slow to
occur on the time scale of the ET reaction leads to a reduction
in activation free energy proportional to the square of χG. Note,
one arrives at this result by requiring that the ET is faster than
the slow conformational transition (reduction of Stokes shift,
i.e., λst), but slow enough to couple to the electroelastic

Figure 15. (A) Electron transfer coupled to slow conformational
change of the protein. The initial state is denoted D−A and the final
state D+−A−. The reaction is described by a fast collective coordinate
P for the protein and solvent modes coupling to ET and a coordinate q
for the slow conformational change. ET along P occurs on a faster time
scale than protein conformational change along q, resulting in the
formation of a local minimum B′ rather than the equilibrium state B
on the product surface. In (B) parabolic free energy profiles are drawn
for the equilibrium case (A→ B, λst = λvar, blue) and for the case where
protein conformational change is quenched (A → B′, λst < λvar, red).
The freezing of the protein conformational transition leads to a
reduced Stokes shift as indicated by the block arrows but is assumed to
leave the fluctuations (curvature of the profiles) unchanged.
Consequently, the ET activation free energy is reduced by a factor
χG

−2 = (λst/λvar)2. See section 5.3 for further details. Adapted with
permission from ref 36. Copyright 2013 AIP Publishing LLC.
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fluctuations that promote the conformational transition
(retention of fluctuations, i.e., λvar).
Evidence for nonergodic effects of this kind has been

obtained from the line shape analysis of mStrawberry
fluorescent protein; see Figure 16. The Stokes shift between

absorption and emission lines is significantly smaller than what
one would expect from the widths of the lines. The ratio eq 99
deviates significantly from unity, χG = 1.8. A discussion of other
examples can be found in ref 36. Returning to the relevance for
biology, the dynamical freezing of possible protein conforma-
tional changes may be interpreted as an effective mechanism
that allows for fast biological ET to happen while avoiding the
(irreversible) formation of very low free energy states.
5.4. Path-Integral Based Approaches

5.4.1. Pseudopotential-Based Path-Integral Monte
Carlo. In their pioneering work dating back to 1987, Kuki
and Wolynes used the imaginary time path-integral formulation
of quantum mechanics299,300 to model electron tunneling in a
Ru-modified protein (Ru-pentammine labeled Zn-porphin
myoglobin).96 The excess electron was treated as a quantum
particle that interacts with the fixed nuclear cores of the protein
via one-electron pseudopotentials. The authors showed that the
electronic coupling matrix element for electron tunneling across
the protein is related to the free energy difference Ak required
to generate a “kink” in the polymer chain for the electron
relative to configurations where the chain is confined to the
reactant well. A kink was defined as a polymer configuration
where one terminal bead is in the donor well, the other
terminal bead is in the acceptor well, and the beads in between,
spanning the intervening protein space between the two wells,

= −H k T A k Texp[ /( )]ab B k B (102)

(In ref 96 Hab is denoted Δ.) Examples for kinked
configurations of the polymer chain for an excess electron are
shown in Figure 17. The problem can be cast equivalently in
terms of the time evolution of a two-level system with initial
diabatic state ϕa and final diabatic state ϕb.

301 Assuming a time-
independent Hamiltonian with off-diagonal element Hab, one
obtains for the coupling matrix element

= ℏ
H

t
I
Iiab

ba

aa (103)

where

ϕ ϕ= ⟨ | − ℏ | ⟩I texp( i / )ba b a (104)

ϕ ϕ= ⟨ | − ℏ | ⟩I texp( i / )aa a a (105)

The ratio on the right-hand side of eq 103 may be obtained
from imaginary-time path integral simulation of the excess
electron at “time” t = −iℏβ.301,302
Using path integral Monte Carlo sampling Kuki et al.

generated electron tunneling paths and computed their kink
free energy relative to a structureless reference system.96 The
principal result of this work was the identification of the
relevant region of the protein for electron tunneling as a
cylindrical zone bridging donor and acceptor. A general
drawback of pseudopotential simulations is that one assumes
that the ET is mediated exclusively by an excess electron or
excess hole. For thermal ET reactions one can expect that both
electron and hole transfer mechanisms contribute as shown in
semiempirical superexchange calculations97−99 (see also section
4.1.4), implying that multielectronic effects should generally be
included. Even for photoinduced ET reactions as investigated
by Kuki et al., wherein the initial state the electron is
photoexcited to an energy level close to the unoccupied energy
levels of the protein, the coupling mechanism is likely to
involve both electron transfer to the acceptor and hole transfer
to the donor. Another problem of pseudopotential-based path-
integral simulation is the numerical error associated with the
sampling of tunneling paths. Especially for long-range biological
ET reactions the electronic coupling matrix elements are very
small numbers, and one may obtain only relative values (with
respect to a reference system) to useful accuracy.

5.4.2. Ring-Polymer Molecular Dynamics. In the past 10
years major advances were made by Manolopoulos, Althorpe,
Miller, and co-workers in the development of ring-polymer
molecular dynamics (RPMD), a variant of PIMD employing
ring-shaped polymers (see Figure 18A), and ring polymer rate
theory.39,292,303,304 Key features of the RPMD method are that
it yields real-time MD trajectories, preserves the exact
Boltzmann distribution, and exhibits time-reversal symmetry.
These properties allow RPMD to be used in combination with
rare-event sampling methods for the simulation of electron
tunneling events in large condensed systems containing

Figure 16. Absorption and emission lines of mStrawberry fluorescent
protein (solid lines) and their fit by vibronic progression of Gaussian
lines (dashed lines). Note, the Stokes shift is significantly smaller than
what one would expect from the widths of the lines, as expressed by
the ratio χG = λvar/λst = 1.8. Reprinted with permission from ref 36.
Copyright 2013 AIP Publishing LLC. See ref 368 for experimental
data.

Figure 17. Four quantum paths for electron tunneling from the heme
cofactor to a Ru label in cytochochrome c (red, yellow, orange, and
green) as obtained from path-integral Monte Carlo simulation. The
protein is shown in stick representation in light blue and Trp14
positioned “in line of flight” is highlighted in magenta. The two redox
centers are separated by 22 Å edge to edge. Reproduced with
permission from ref 96. Copyright 1987 American Association for the
Advancement of Science.
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thousands of atoms (typically in combination with classical
electronic potential). Importantly, ring polymer rate theory was
developed, which allows one to rigorously compute quantum
reaction rates from RPMD simulations.39 The RPMD rate for
transition through a dividing surface ξ = ξ‡, kRPMD, can be
expressed as a product of a quantum TST rate, kQTST (= short
time limit of the RPMD rate), and a time-dependent
transmission coefficient, κ(t):

κ=
→∞

k t klim ( )
t

RPMD QTST (106)

∫
πβ

β ξ

ξ β ξ
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−

−
ξ ξ

−
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(2 )

exp( ( ))

d exp( ( ))
QTST

1/2
c

(107)

In eq 107 ξ = ξ(r) is a suitably chosen collective variable
depending on the positions of the electron in the n polymer
beads, q(1), ..., q(n) and the position of the N nuclei Q1, ..., QN;
the latter are treated here as classical particles, r = {q(1), ..., q(n),
Q1, ..., QN}. The free energy profile is defined as

ξ δ ξ ξ′ = − ⟨ − ′ ⟩ +A k T r( ) ln ( ( ) ) constB (108)

with the thermal average ⟨···⟩ given by
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The Hamiltonian of the n-bead ring polymer, n, is given by
the usual expression
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where v = {v(1), ..., v(n), V1, ..., VN}, Mj and me are the mass of
the nuclei and electron, respectively, ωn = n(βℏ)−1 the intra-
bead harmonic angular frequency, and Uext is the physical
potential energy of the electron due to interaction with the N
nuclei (as given by a pseudopotential). An explicit expression
for κ(t) appearing in eq 106 and ⟨gξ⟩c in eq 107 is given in ref
305.
Recently, Miller and co-workers employed RPMD for direct

simulation of ET between two metal ions in aqueous
solution305 using the electron−ion139 and electron−water306
pseudopotentials originally developed by Sprik and co-workers.
A “bead-count” coordinate ξ = f b(q

(1), ..., q(n)) was chosen as a
collective variable to describe the progress of electron
tunneling. It is equal to 1 if all electron beads are in the
donor well, equal to 0 if all electron beads are in the acceptor
well, and smoothly interpolates for intermediate cases when the
polymer ring visits the intervening region. This high energy
region was sampled using a bias potential along f b and the
weighted histogram analysis method (WHAM) for unbiasing
and construction of the full free energy profile. Several
simulations were carried out for different values of the driving
force of the reaction. It was found that, in the normal and
activationless region (ΔA ≥ −λ), the mechanism resembled
closely the Marcus picture and the RPMD reaction rate eq 106
was in very good agreement with the nonadiabatic ET rate eq
24; see Figure 18B. However, the RPMD simulation did not
capture the inverted region correctly (ΔA < −λ), predicting a
constant rather than a decreasing reaction rate with decreasing
ΔA. This failure was traced back to the inadequate quantization
of the real-time electronic state dynamics in the pseudopoten-
tial-based RPMD approach.
To address this problem, Miller and co-workers extended the

RPMD method to allow for the description of quantized
nonadiabatic, multielectron processes in large condensed phase
systems.40 The pseudopotential based position representation
of the excess electron is replaced by two discrete, multielectron
diabatic energies as used in Marcus ET theory. Treating the
nuclei quantum mechanically (i.e., each nucleus as a ring
polymer), r = {Q(1), ..., Q(n)}= {Q1

(1), ..., QN
(1), ..., Q1

(n), ...,
QN

(n)}, the external potential energy is given by
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where i(α) denotes the electronic diabatic state of bead α, i(α) =
A or B with potential energy EA and EB, respectively, and
Mi

(α)
,i
(α+1) are the elements of the matrix
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βn = β/n. The sum in eq 112 is over all combinations of i(α)

including terms where i(α) = A (or B) for all α, as well as mixed
terms exhibiting adjacent bead pairs where the electronic state
changes. Such changes are again referred to as “kinks” as before,

Figure 18. (A) Illustration of ring polymers with n = 8 beads and 0
(left), 1 (middle), or 2 (right) kink pairs. Beads shown in white and
black correspond to electronic states i(α)= A and B, respectively. (B),
(C) Driving force dependence of ET rate for a quantized excess
electron with a classical (B) and quantum description (C) of the
solvent from position-representation RPMD (blue, eq 106), kinetically
constrained RPMD (red, eq 106), semiclassical Marcus theory (black
open circles, eq 24), and the rate equation for a quantized effective
mode (black triangles, eq 30). Adapted with permission from ref 40.
Copyright 2014 AIP Publishing LLC.
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but now in diabatic electronic state space; see Figure 18A.
Thus, the external potential eq 112 provides a mean field
description of the electronic degrees of freedom for the classical
dynamics of the nuclear ring polymer. To describe the progress
of the ET reaction, a continuous auxiliary variable was
introduced as a collective coordinate (ξ = y in ref 40)). The
collective coordinate interpolates between configurations with
all beads in diabatic state A (y ≈ 1), with beads forming kink
pairs (y ≈ 0) and with all beads in diabatic state B (y ≈ −1).
In this picture, the overestimation of the ET rate in the

Marcus inverted regime is due to an overestimation of kinked
ring-polymer configurations across nondegenerate diabatic
energies. To address this deficiency, the authors augmented
the external potential eq 112 with a penalty function that
reduces the statistical weight of kinked and nondegenerate
configurations. The resultant method denoted “kinetically
restrained RPMD” was applied so far to model systems and
showed promising first results.40 In particular, it reproduced
correctly the Marcus inverted regime for both quantum and
classical nuclei; see Figure 18C. The method may prove useful
for future simulation of nonadiabatic ET reactions in
condensed phase systems including biomolecules, especially at
low temperatures where nuclear quantum effects become
important.

6. SELECTED APPLICATIONS

6.1. Ru-Modified Proteins

6.1.1. Reorganization Free Energies. Recently, my co-
workers and I reported computed λ values for a number of
proteins including Ru-modified cytochromes105,106 and azur-

ins,253 a designed 4-helix bundle protein,106,230 cytochrome c
oxidase (cco),231 and a deca-heme cytochrome (MtrF);307 see
Figure 19 for protein structures. All calculations were carried
out according to the QM + MM scheme of Figure 9. The
results are compiled in Table 1. The total reorganization free
energy was found to range from about 0.5 eV for ET deep
inside the membrane protein cco to 0.7−1.1 eV for ET between
cofactors of smaller proteins that are partly solvent exposed, to
1.4 eV for proteins where at least one redox active group is fully
solvent exposed. The calculated values are broadly consistent
with the few experimental estimates that are available although
in some cases there are significant deviations as I discuss further
below. The range of λ values in natural proteins is therefore
about 1 eV, corresponding to a variation in ET rate of about 4
orders of magnitude (at ΔA = 0). This is significant, but less
than the variations in rate due to electronic coupling/distance,
spanning about 9 orders of magnitude.176

6.1.2. Inner- and Outer-Sphere Contributions. The
total λ is often divided into an inner-sphere contribution due to
cofactors and first shell ligands and an outer-sphere
contribution due to the protein and solvent. Typical biological
cofactors are rather rigid exhibiting only small changes in bond
lengths and/or coordination number in response to oxidation/
reduction. Hence, inner-sphere reorganization energy is usually
rather small, about 0.05−0.15 eV for proteins involving heme
cofactors105,230,231 and about 0.2 eV for Cu proteins.239,251,253

The theoretical estimates for hemes is broadly consistent with
estimates obtained from photoelectron spectroscopy, 0.12−
0.14 eV for ET in a Zn-porphin dimer.308

The largest contribution by far is the outer-sphere
reorganization free energy. For proteins with solvent accessible

Figure 19. Structures of Ru-modified and native electron transfer proteins discussed in the main text. See Table 1 for details on the ET reactions
studied and computed and experimental ET parameters. The secondary structure of Ru-modified cytochromes (A)−(C) and of a 4-helix bundle
protein (D) are drawn in green. Heme cofactors and Ru complexes are shown in stick representation. Color code: H, white; C, green; N, blue; O,
red; S, yellow; Fe, orange; Ru, silver. Solvent molecules are omitted. Reprinted from ref 106. Copyright 2010 American Chemical Society. (E) Ru-
modified azurin secondary structure is drawn in orange. Cofactor and Ru complexes as in (A)−(D), Cu is drawn in purple, and solvent is omitted.
(F) Deca-heme protein MtrF, PDB code 3PMQ. Protein secondary structure is drawn in gray, heme cofactors are shown in stick representation
(green), color code as in (A)−(D), except Fe is drawn light green, and solvent is omitted. (G) Snapshot of an MD simulation of cytochrome c
oxidase embedded in a membrane. Protein secondary structure of the two subunits is drawn in green and yellow, heme cofactors are shown in stick
representation in orange and magenta, lipid tails are in gray, and color code of atoms of lipid head groups as in (A)−(D). Both sides of the
membrane are solvated with water. Adapted from ref 231. Copyright 2012 American Chemical Society.
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redox groups the contributions of the solvent and protein were
found to be highly dependent on the specific protein/water
environment of the redox group. For instance, for cyt c-
His33Ru(am)5 (cca) it was found that most of the outer sphere
reorganization free energy is due to charged protein residues
close to the Ru complex; see Figure 20A.106 In this specific
example positively charged Lys22 is pulled toward and
negatively charged Glu104 away from the Ru complex upon
reduction of the metal center. The extent of such responses
depends on the flexibility and length of the side chain and the
flexibility of the protein backbone. Being the N-terminal
residue, Glu104 exhibits a particularly high flexibility accounting
for almost a third of the total reorganization free energy
according to MD simulations.106 The situation is rather
different for cyt c-His33Ru(bpy)2(im)(ccb).106 It was found
that solvent reorganization around the Ru complex accounts for
more than three-quarters of the total λ. Upon electron injection
in the Ru complex, the distance between the metal and the first
solvation shell slightly increases (see Figure 20B) due to the
smaller net charge on the metal.
If no information from experiment or computation is

available, a reasonable first guess is to assume that protein
and water contribute to about equal amounts to outer-sphere
reorganization.106,233,234 Protein reorganization can be generally
viewed as a collective effect including many residues, each of
which contributes a small fraction (Glu104 and Lys22 in the
above example is somewhat of an exception in this respect). As
one would expect, charged residues usually give the largest
contributions even if they are relatively far away from the redox
active site due to weak dielectric screening by the protein frame,
followed by residues with dipolar side chains. This led us to the

conclusion that reorganization free energy may in general not
be effectively controlled by single point mutations, but may be
controlled to a large extent by the degree of solvent exposure of
the ionizable cofactors.106

6.1.3. Importance of Electronic Polarizability. The
relatively good agreement with experiment is a consequence of
using an electronically polarizable force field for the calculations
of λ. The outer-sphere reorganization free energy is strongly
overestimated if standard, electronically nonpolarizable protein
force fields and water models are used (see column with header
“p” in Table 1) . The reason for this i s wel l -
known.77,105,114,142,255,309 In Marcus’ continuum theory for
ET, the outer-sphere reorganization free energy, λo, is
proportional to the Pekar factor of the medium surrounding
the cofactors, λo ∝ (1/ϵop − 1/ϵs), where ϵop and ϵs are the
optical and static dielectric constants of the medium,
respectively. In electronically nonpolarizable molecular models
the atomic charges are typically adjusted so as to reproduce ϵs
or properties that depend on ϵs, but since the atomic charges
are fixed ϵop = 1. In contrast, the experimental optical dielectric
constants of water and aqueous protein solutions are ϵop ≈
1.8.105,310 Thus, if ϵs ≫ ϵop, which is usually the case for protein
solutions, one can expect that λo is overestimated with
nonpolarizable force fields by a factor equal to 1.8 (45%).
This should be compared to an average ratio λo(nonpol)/
λo(pol) = 1.6 (37%) obtained from simulation. The (small)
deviation indicates that the continuum model predicts a slightly
too strong dependence of reorganization free energy on the
optical dielectric constant, in agreement with other theoretical
studies.311

Table 1. Reorganization Free Energies (λ) and Rate Constants (kET) for ET Reactions in Proteins and between Aqueous Ionsa

ET reaction abbrev λ(comp)b λ(exp) pc χG
d kET(exp)

Proteins
Ru2+ → Fe3+ cyt c-His33Ru(NH3)5

e cca 1.34 1.15−1.24f 1.7 1.1 3.0 × 101f

Cu+ → Ru3+ azurin-His83Ru(bpy2)(im)
g azb 1.31 0.80h 1.6 1.1 1.2 × 106h

Fe2+ → Ru3+ cyt c-His33Ru(bpy)2(im)
e ccb 1.26 0.74i 1.5 1.1 2.6 × 106i

Fe2+ → Ru3+ cyt b5-His26Ru(bpy)2(im)
e cb5b 1.17 − 1.6 1.1 −

Fe2+ → Fe3+ 4-helix bundle-(porphyrin)2
e 4-helix 0.94 − 1.7 1.1 −

Fe2+ → Fe3+deca-heme cytochrome MtrFj MtrF 0.75−1.13 − 1.4 0.7k −
Fe2+ → Fe3+ cco heme a-heme a3

l cco 0.57 − 1.5 1.0k 7.1 × 108m

P* → BL bacterial reaction centern rc 0.36n 0.22o − − 3.2 × 1011p

BL
− → HL bacterial reaction center rc 0.36n 0.22o − − 1.6 × 1012p

Aqueous Ions
Ruaq

2+ + Ruaq*
3+ → Ruaq

3+ + Ruaq*
2+ 1.78q 1.7−1.8r 1.1s − 2.0 × 101t

(Ru(bpy)3
2+)aq → (Ru(bpy)3

3+)aq + e−u,v 1.24 1.21 − − −
Mnaq

2+ → Mnaq
3+ + e−u,w 3.09 2.98 − − −

aAll energies are in eV and all rate constants in s−1, unless stated otherwise. All values are for aqueous solutions except cco, and rc which are
embedded in a solvated membrane. See Figure 19 for protein structures. In the main text the proteins are referred to by their abbreviated name
(abbrev); (comp) stands for computed and (exp) for experimental. bObtained according to eq 54 with energy gaps computed according to the QM
+ MM scheme (Figure 9) using the electronically polarizable AMBER02 force field362 and POL3 water model,314 unless stated otherwise. The
superscript “st” in eq 54 is omitted for simplicity. cp = λnpo/λo; ratio between outer-sphere reorganization free energy obtained with the electronically
nonpolarizable (np) AMBER99 force field362 and TIP3P water,363 λnpo, and the outer-sphere reorganization free energy λo obtained with the
polarizable force field as described in footnote b. dNonergodicity parameter eq 99 for outer-sphere reorganization free energy. eReference 106.
fReference 312. gReference 253. hReference 313. iReference 227. jReference 307. Range of λ values for nine heme−heme ET reactions in MtrF using
the crystal structure termed “final” as initial coordinates. p is the average over all nine ET reactions obtained for the crystal structure termed
“preliminary” as initial coordinates. kλ was obtained by calculating the energy gap with the AMBER02 force field and POL3 water on trajectories
generated with AMBER99 force field and TIP3P water. This slight inconsistency is likely to be the reason for κ ≤ 1. lReference 231. mReference 72.
nReferences 233 and 234. Obtained according to eq 85. See ref 233 for details on force field and simulation protocol. oEstimated from experimental
data. Taken from Figure 4 of ref 24. pReference 364. qReference 198. Value for 5 M ionic strength and a Ru−Ru separation distance of 5.5 Å. rRange
of values for which the computed rate reproduces the experimental rate. sReference 309. tReference 365, in units of s−1 M−1. uReorganization free
energy for one-electron oxidation. vSee Supporting Information of ref 150. wReference 151. Value obtained as explained in Table 2 of ref 106.
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6.1.4. Comparison with Experiment. The computed
reorganization free energy for cyt c-His33Ru(NH3)5 was in very
good agreement with experiment,312 but the calculated values
for cyt c-His33Ru(bpy)2(im) and azurin-His83Ru(bpy2)(im)
were about 0.5 eV higher than experimental estimates.227,313 In
the MD simulations, most of the reorganization free energy was
found to be due to water surrounding the Ru(bpy)2(im) group
(see discussion above). Thus, a first possible explanation for
this discrepancy could be that the polarizable water model
(POL3314) underestimates electronic polarization effects, as
was noted in ref 315. However, work on aqueous transition
metal ions suggests that this is not a likely reason for the
discrepancy. Employing the same QM + MM approach as in
the protein simulations, reorganization free energies for
oxidation of aqueous Ru(bpy)3

2+150 (and aqueous Mn2+151)
were obtained in excellent agreement with experimental
estimates from photoemission spectroscopy150,151 and with
results from all-atom density functional based molecular
dynamics simulation150 (values given in Table 1). Moreover,
the reorganization free energy for electron self-exchange
between two aqueous Ru ions could be calculated in excellent
agreement with experimental data.198 Thus, given that the

solvent response in aqueous Ru(bpy)3
2+ could be well

described in ref 150, the large deviation for the two
Ru(bpy2)(im) labeled proteins is surprising.
At this point one should perhaps also consider possible

uncertainties of the experimental estimates. An impressive
effort was made by Gray and co-workers to measure ET rates
for a large number of Ru-modified proteins. Using high
potential Ru complexes, the Marcus inverted region could be
accessed for these proteins for the first time. Yet, the
experimental λ value for cyt c-His33Ru(bpy)2(im) was obtained
from a fit to data containing only a single point that is clearly in
the inverted region.227 The data for azurin-His83Ru(bpy2) (im)
did not contain a point that is clearly in the inverted region, but
the λ value obtained from the driving force dependence was
consistent with an estimate from the temperature dependence
of the ET rate.313 Though, the temperature method is subject
to some uncertainties as discussed by Moser and Dutton.176

Most surprisingly, experimental measurements on Ru-modified
azurin in aqueous solution313 and in protein crystals316 gave
similar reorganization free energy estimates (0.8 eV), which led
to the conclusion that solvent reorganization free energy is
vanishingly small. This is rather surprising because the electron-
accepting Ru complex is solvent exposed in the solution phase
experiments and the ET rate is sufficiently slow (microseconds,
see Table 1) so that the full dielectric response of water
(subnanoseconds) is expected to contribute to the activation
barrier. Hence, in order to help resolve the controversy
between experiment and computation, it would be of interest to
also reinvestigate and possibly extend the set of experimental
data that were used for determination of λ values in these
proteins.

6.2. Cytochrome c Oxidase

6.2.1. Enzyme Function. Cytochrome c oxidase (cco, or
complex IV, Figure 19G) is located in the inner mitochondrial
membrane and catalyzes the reduction of molecular oxygen, the
terminal step in cellular respiration. The chemical energy
released is converted into a proton gradient4 that drives the
synthesis of ATP in the terminal complex of the respiratory
chain, complex V. Given the high significance of cco to any
oxygen consuming organism, it is desirable to understand its
working principles qualitatively and quantitatively on a
molecular level of detail. A large bulk of experimental studies
on cco exists including crystal structures,317−320 mutation
experiments,110,111,321−325 kinetics,72,109,324−326 and spectro-
scopic measurements.327−329 Also many theoretical modeling
studies181,330−332 and molecular simulations231,333−338 have
been carried out. This has given valuable insight into many
key features of cco such as the nature of the cofactors, the
conserved residues, and intermediates, as well as the nature of
proton channels (recently reviewed in ref 339), electron
transfer pathways, and proton pumping mechanism (recently
reviewed in ref 66).

6.2.2. Heme a → Heme a3 ET: 20+ years of
Controversy. With regard to ET reactions in cco, one of the
issues that has been much debated is the kinetics of the
terminal electron tunneling step from heme a to heme a3; see
Figure 21A. As mentioned in section 2, an ultrafast tunneling
rate was reported for heme a → heme a3 ET, kET(exp) = 7 ×
108 s−1 = (1.4 ns)−1, and a very small driving force of ΔA =
−0.05 eV. The high rate for heme a → heme a3 tunneling is
unusual in the sense that it is at least 3 orders of magnitude
faster than typical ET times in proteins,24,26 exceeded only by

Figure 20. (A) Protein response to ET in cca. Two snapshots of the
protein were selected randomly and aligned: one from a trajectory in
the initial ET state (green) and one from a trajectory of the final ET
state (orange). Protein residues that contribute more than 0.1 eV to
the total reorganization free energy are depicted in stick
representation. (B) Solvent response to ET in ccb. Radial distribution
functions, gRuO(r), are shown between the Ru atom of the
Ru(bpy)2imHis33 complex of ccb and the oxygen atoms of solvent
water molecules. The distribution for the initial ET state (Ru3+) is
shown in black solid lines, and the distribution for the final ET state
(Ru2+) is shown in red lines. The integrated reorganization free energy
of water molecules, λqμ

wat, is shown in dashed lines. See Figure 19A for
the protein structure. Reprinted from ref 106. Copyright 2010
American Chemical Society.
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the picosecond charge separation event occurring in photo-
synthetic reaction centers. It was argued that ultrafast reduction
of heme a3 could help increase the chances of trapping O2 since
oxygen only binds to the reduced form,72 thereby facilitating
respiration especially under conditions where oxygen is a
limited resource, for example, at low atmospheric pressure.
The search for a possible microscopic explanation for

ultrafast tunneling between heme a and a3 has divided the
community for many years. In the Marcus picture, the high ET
rate is due either to large electronic coupling between the two
cofactors (Hab) or small activation free energy, that is, small
reorganization free energy (λ), or a favorable combination of
both parameters. Early empirical predictions based on the
Moser−Dutton ruler24,25 were consistent with a nanosecond
rate if a reorganization free energy as high as 0.7 eV was
assumed.176 The activation free energy corresponding to this
value (ΔA‡ = (λ + ΔA)2/(4λ) = 0.15 eV at 300 K) is in
apparent contrast with the results of temperature-dependent
rate measurements, which show that the rate remains almost
unchanged in the temperature range 277−308 K.110 Semi-
empirical calculations of electronic couplings181 and molecular
dynamics estimates of reorganization free energy338 have
further supported the notion that heme a to a3 tunneling is
almost activationless and should be described by λ values as low
as 0.2 eV (ΔA‡ = 0.03 eV). Such low values are highly unusual
for thermal ET in proteins and are surprising indeed if one

bears in mind that the reorganization energy of only two heme
groups makes already a contribution of about 0.1 eV (see
section 6.1).
The mechanism for ultrafast ET between the two hemes has

been revisited recently in a large-scale MD simulation study of
cco embedded in a membrane (see Figure 19G).231 The
reorganization free energy was computed again according to the
QM + MM scheme using the same electronically polarizable
force field as for the Ru-modified proteins above. Importantly,
the length of the MD trajectories generated was about equal to
the experimental time constant of the ET reaction (≈1−2 ns),
so as to avoid sampling of protein motions that are slower than
the ET reaction, in accord with section 5.2.1 and eq 85. The
energy gap fluctuations were spectrally resolved according to eq
60 from kET(exp) ≈ k = 0.02 cm−1 to 10 cm−1 (corresponding
to time constants of 1.7 ns to 3 ps), and integrated according to
eq 114.
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As one can see in Figure 21B, most of the reorganization free
energy occurs in this spectral region. The total value obtained
λo
var = λo

var(ω→∞) = 0.42 eV was to within numerical
uncertainties identical with the outer sphere reorganization
free energy estimated from the Stokes shift, λo

var = λo
st. A

breakdown of the latter into components of the system gave
contributions of 0.31 eV from collective protein reorganization
and 0.11 eV from solvent reorganization on either side of the
membrane. Adding the inner sphere contribution from DFT
calculations (0.15 eV), a total reorganization free energy of λ =
0.57 eV was reported.
This latest estimate for λ is somewhat closer to the generic

0.7 eV assumed by Moser and Dutton than the 0.2 eV
suggested by Jasaitis et al. and Kaila et al. The deviation with
respect to the estimate by Kaila et al. is rooted in the different
simulation method and analysis protocol as discussed in detail
in ref 231. In ref 231 it was also argued that the small but
significant barrier obtained, ΔA‡ = 0.12 eV, is in agreement
with the weak temperature dependence observed in experiment
if one allows for only a very minor increase in the donor−
acceptor distance as the temperature is increased. Thus,
according to these latest results, the ultrafast tunneling reaction
is most likely due to a small, but not unusually small
reorganization free energy in combination with relatively strong
electronic coupling between the two hemes.

6.3. Multiheme Proteins

6.3.1. Function and Applications. Multiheme cyto-
chromes are defined by the presence of two or more c-hemes
positioned to facilitate heme-to-heme electron tunneling. Some
of these proteins bind up to 10 or more heme groups forming
conductive wires (“biological nanowires”) on the 1−10 nm
scale; see, e.g., Figure 22A. Multi-heme proteins have attracted
much interest recently, due to their key roles in mediatorless
microbial fuel cells,340,341 decontamination of water and soil
containing radioactive isotopes such as U(VI) and Tc(VII),342

as well as for the promise they hold out for bionanotechno-
logical applications.23 The first crystal structure of a deca-heme
protein was solved in 2011 (MtrF)257 and the structure of two
homologues, UndA343 and MtrC,344 followed. Their redox
properties were characterized using spectroelectrochemical
methods,83,345 and the kinetics for ET through MtrC (a
homologue of MtrF) onto an iron oxide nanoparticle was

Figure 21. (A) Heme a to heme a3 ET reaction in cytochrome c
oxidase (cco) with experimentally determined parameters indi-
cated.72,110 Adapted from ref 231. Copyright 2012 American Chemical
Society. (B) Integral of the spectrally resolved outer-sphere
reorganization free energy (eq 114) divided by the total outer-sphere
reorganization free energy as a function of the upper integration limit
ω. The analysis was carried out using the data from ref 231. The arrow
indicates the experimental reaction rate constant on the scale of
inverse centimeters.
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investigated.8 Moreover, single-protein conductive AFM and
STM measurements were carried out for MtrC88,346 and
MtrF,88 reporting nanoampere currents at modest bias voltages.
Much of our current knowledge on the molecular structure and
function of multi-heme proteins was recently reviewed.347 Here
I summarize some of the molecular simulations that have been
carried out to help understand the mechanism of ET in these
proteins.

6.3.2. Thermodynamics of ET. The assignment of
measured (macroscopic) redox potentials to individual hemes
is challenging in c-type multi-heme cytochromes because each
heme is chemically identical. Recently, MD simulations were
carried out and the (microscopic) redox potentials of the 10
hemes of MtrF computed to assist with the assignment.254 The
redox potentials obtained are shown in Figure 22B (black
circles). The profile is to a good approximation symmetric with
respect to the center of the protein between hemes 6 and 1.
This implies that ET along the wire is not a steady downhill
process as one might anticipate, but a reversible process, with
no or very small dissipation of free energy. Transport is then
driven by the redox gradient set by the external electron donor
or acceptor. In this sense, the protein indeed acts like a “wire”
conducting electrons upon application of a voltage.

6.3.3. Kinetics of ET. Electronic coupling matrix elements
for heme-to-heme ET were calculated in a following study178

using the FODFT (2N) approach169 (similar to the FODFT-
(2N − 1) method of section 4.1.8), in combination with a QM/
MM calculation of the orbitals. The couplings averaged over
nanosecond MD trajectories are shown in Figure 22B in
colored circles with radiuses proportional to their magnitude. It
was found that electronic coupling is strongest between heme
pairs for which ET is most endergonic (ET to hemes 9 and 4).
This led to the conclusion that the protein has evolved to
harbor low potential hemes without slowing down ET rates, by
placing them in a stacked configuration with neighboring
hemes, where electronic interaction is strongest. In this way, the
large activation barrier due to low redox potential is fully or at
least partly compensated.
The ET parameters were converted in heme-to-heme ET

rates, shown in Figure 22C. Assuming that ET through the
protein occurs via consecutive heme-to-heme electron hopping,
the hopping rates were inserted in a Master equation to obtain
the electron flux through the protein (see paragraphs below for
a justification of the hopping mechanism). On this basis it was
predicted that MtrF supports a maximum flux of 104−105
electrons per second in aqueous solution, an estimate that
remains to be confirmed by solution phase kinetic experiments.
Interestingly, this is orders of magnitude smaller than the
single-molecule currents measured in conductive AFM and
STM experiments.88,89 The presence of an external potential
bias and/or the significantly reduced solvation of the protein in
the AFM experiments may give rise to a conduction mechanism
that is different from the hopping mechanism probed in
solution kinetics experiments. An explanation of the relatively
high currents measured in AFM experiments is still out-
standing.

6.3.4. Validity of ET Rate-Based Approaches. In light of
the recently developed theoretical concepts discussed in section
5, I would like to review possible mechanisms for ET in MtrF.
The above estimate for the electron flux through MtrF was
obtained by assuming that the relevant ET states in MtrF are
localized on single heme units, specifically, the t2g d-orbital
manifold of the low-spin c-type hemes, and that the ET

Figure 22. (A) Heme arrangement in the deca-heme protein MtrF,
PDB code 3PMQ.257 The porphyrin units are drawn in orange and the
Fe atoms in green. Adapted with permission from ref 347. Copyright
2015 The Royal Society. (B) Computed redox potentials of the heme
cofactors vs standard hydrogen electrode254 and root-mean-square
average electronic couplings178 for each pair as indicated by circles
with radius proportional to V. The horizontal axis refers to the heme
index defined in (A). Numerical values for V are indicated in units of
meV. (C) Heme-to-heme hopping rate constants kET in MtrF for the
forward direction (heme 10 → 5, full colors) and for the backward
direction (heme 5 → 10, shaded colors). Each bar indicates the rate
constant between the two hemes denoted at the base to the left and to
the right of the bar unless indicated otherwise. Figures in (B) and (C)
are reprinted with permission from ref 178. Copyright 2014 National
Academy of Sciences. (D) Comparison of three different mechanisms
for ET in MtrF: superexchange (SE), flickering resonance (FR), and
hopping. The simple donor−bridge−acceptor model of Figure 11 is
adopted with equal bridge site energies, and equal reorganization free
energies and couplings between each heme pair. The rate constant for
ET from heme 10 to heme J, kJ←10, is calculated according to eqs 69,
78, and 81 for the following ET parameters: λ = 0.9 eV,307 ΔABD =
0.13 eV, and ΔA = 0. Lines in black are for an average value of
electronic couplings as obtained from QM(FODFT)/MM electronic
structure calculations178 (V = 2 meV), and lines in red are for an
average value for electronic couplings obtained from the empirical
Moser−Dutton ruler (V = 22 meV, see section 4.1.1). The horizontal
axis at the bottom of the panel indicates the heme index shown in (A)
and the horizontal axis at the top of the panel indicates the total
number of hemes in the chain, comprised of heme 10, heme J, and M
− 2 bridging hemes. Note that for M = 2 the rate (k9←10) is trivially
identical for all three mechanisms.
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between states on different hemes can be described by electron
hopping between neighboring hemes with the usual non-
adiabatic ET rate eq 24. As I discuss in the following, the
conditions for application of rate-based approaches are indeed
met for the solvated protein.
The computed values for reorganization free energy for ET

between the hemes are significant, in the range 0.7−1.1 eV307

as obtained from 10 ns long MD simulations (see Table 1),
while electronic coupling matrix elements are about 3 orders of
magnitude smaller, ranging from (⟨|Hab|

2⟩)1/2 = 0.1 to 4 meV.
This shows that the heme-localized electronic states are low
energy states (“traps”) that are separated by sizable activation
barriers of 0.2−0.3 eV (≈10kBT at 300 K). With the activation
barriers being large compared to kBT, an excess electron initially
localized on a given heme will be relatively long-lived compared
to the vibrational modes coupling to ET. Rare thermal
fluctuations will initiate ET leading to formation of the final
state via a specific mechanism (e.g., SE, FR, or hopping, see
section 6.3.5). Importantly, the computed transition times for
nearest neighbor electron hopping are less than 0.1 ns (except
for two nanosecond transitions between hemes 4, 5 and 10, 9),
indicating that the nonergodicity correction eq 85 for the λ
values is not necessary. Moreover, the reorganization free
energies obtained from the Stokes shift and from the gap
fluctuations are very similar, indicating that the fluctuations are
Gaussian. Therefore, the calculations indicate that three
important conditions for rate-based models such as SE, FR,
and hopping are satisfied, that is, (i) localization of charge
carriers on single hemes in initial and final states, (ii)
sufficiently slow rates so that equilibrium statistical mechanics
remains valid, and (iii) Gaussian statistics of the energy gap.
6.3.5. Super Exchange, Flickering Resonance, or

Hopping? I have evaluated the rates for SE, FR, and hopping
according to eqs 69, 78, and 81 and have chosen effective ET
parameters as follows: λ = 0.9 eV and V = ⟨Hab

2⟩1/2 = 2 meV
from MD simulations and FODFT calculations (see above),
averaged over the seven heme−heme ET reactions along the
octa-heme chain. The net free energy change for ET along the
octaheme-chain ΔA5←10 ≈ 0 according to MD simulations, and
the free energy difference for ET from the donor to the bridge
states was chosen to be ΔABD = 0.13 eV. The latter value is
close to the computed redox potential difference between the
donor (heme 10) and the first bridge site (heme 9, ΔA9←10 =
0.19 eV). A slightly smaller barrier was chosen so as to
reproduce the flux through the octa-heme chain (1.5 × 104 s−1)
as obtained by solving a master equation for electron hopping
along the octa-heme chain using the seven as-calculated heme−
heme ET rates (see above). The particular choice for ΔABD is
not very important here, as the main conclusion remains the
same when this parameter is varied.
The results are shown in Figure 22D. One finds that hopping

dominates over both SE and FR for any number of hemes
(black lines). The reason for the relatively fast decay of the SE
and FR rates relative to hopping is the small electronic coupling
between the heme groups. Increasing V to 22 meV, the
coupling value at van der Waals distance (3.6 Å) according to
the Moser−Dutton ruler (see section 4.1.1), the decay for SE
and FR is less steep but the rates are still significantly below the
hopping rate. Rather large coupling values in excess of 100
meV, more typical for charge transfer in DNA, are necessary so
that FR and SE can compete with hopping at short distances.
These results are not unexpected, of course, because of eq 83.
The same caveats of the donor−bridge−acceptor model used

to derive this relation also apply here. However, in view of the
very clear advantage of hopping over FR as a consequence of
the small coupling values, it is very unlikely that the qualitative
picture will change if more refined models for the FR
mechanism become available.

6.4. DNA

6.4.1. Brief Survey. Hole transfer in DNA has been the
subject of a large number of experimental and computational
studies for the last 15 years (see refs 37 and 38 for recent
reviews from a computational perspective). Nevertheless,
important issues regarding the degree of charge localization,
adiabaticity, medium effects, time-scale separations, and the
details of the hole transfer mechanism as a whole are still under
debate. It is now widely agreed that a bandlike mechanism does
not exist,38,348 at least under ambient conditions, because of
thermal disorder and solvent effects, when present. The
experiments of Giese and co-workers121 and Lewis and co-
workers73 on the distance dependence of the charge transport
rate in DNA strands were interpreted in terms of one-step
superexchange tunneling for short distances (up to three121 and
one A−T base pairs,73 respectively) and multistep hopping for
longer distances; see also section 2. Recognizing the
importance of the dielectric environment in dynamically
modulating the site energies, the charge carrier in DNA was
also described as a polaron.123,349,350 (This term originates from
solid state physics and refers to a charge that is localized due to
local lattice distortions, corresponding to the stabilization of of
charge by relaxation of solvent dipoles in the current context.)
It constituted the basis of, for example, the phonon-assisted
polaron-gated349 and polaron drift models.123 The possible
existence of polarons was supported by the studies of sequence-
dependent transfer.350

6.4.2. Superexchange or Flickering Resonance at
Short-Range? In a recent study, Beratan, Skourtis, and co-
workers reexamined the distance dependent rate measurements
of Giese and co-workers121 and Lewis and co-workers,73 in
particular the interpretation that short distance charge transfer
occurs via SE tunneling. The authors applied the FR model to
both sets of experimental data, charge shift121 and charge
separation73 across A−T strands using parameters from
molecular simulations.351 A schematic of the stilbene capped
DNA hairpin of ref 73 is shown in Figure 23A, and the
corresponding model used for the FR calculations is shown in
Figure 23B. Note the formation of a Coulomb ramp along the
energy levels of the base pairs as a consequence of the
energetics for charge separation.
The distance dependence of the computed matching

probabilities eq 74 was found to correlate well with the

Figure 23. (A) Structure of a DNA hairpin (A, T), capped with
stilbene donor (Sd) and acceptor (Sa) groups. Adapted from ref 73.
Copyright 2006 American Chemical Society. (B) Coulomb ramp
energetics used in the flickering resonance model for ET in a stilbene
capped DNA hairpin. Reprinted with permission from ref 35.
Copyright 2014 National Academy of Sciences.
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measured exponential distance dependence over one, two, and
three bridging A−T base pairs for both charge shift and charge
separation experiments. Hence, the FR model could reconcile
the contradicting experimental results of exponential distance
decay (SE type) and relatively long-lived charge populations on
the bridge (hopping type). In light of the present analysis of the
FR model for a simple model system (specifically eqs 82 and
83), it would be of interest to compare the FR rate to the
hopping and SE rates using the same parameters for all three
models. Moreover, it would be of interest to see if the FR
mechanism for these particular systems is also predicted by the
direct charge propagation NAMD methods developed by
Elstner and co-workers (see sections 5.2.3 and 6.4.3).
6.4.3. NAMD Simulations. The above-mentioned NAMD

implementation based on SCC-DFTB was applied to simulate
the transport of an excess hole in a solvated homogeneous
DNA sequence AAAA (A for adenine) and for a heterogeneous
sequence GAG (reviewed in refs 37 and 38). Both mean field
Ehrenfest (MF) and surface hopping (SH) NAMD simulations
were carried out. For AAAA, where all site levels are similar in
energy, the MF simulations gave a strongly delocalized excess
charge, which is likely to be an artifact of the mean field
approach as discussed in section 5.2.3. In the SH simulation the
hole was mostly localized on a single A and the next-neighbor
transfer rate obtained (100 ns−1) was an order of magnitude
higher than in experimental measurements. The SH simulations
did not include a correction for the missing electronic
decoherence in the standard SH algorithm (see section
5.2.3), and inclusion of a decoherence correction may further
improve the agreement with experiment.
For GAG, where the energy landscape is no longer flat, MF

and SH simulations gave a similar picture, both in terms of
charge localization and transfer rates (3−4 ns−1). A typical
crossing event from the first G base (G1) to A and from A to
the second G base (G2) is shown in Figure 24. Thermal
fluctuations bring the adiabatic ground state in energetic

proximity with the first excited state causing a stochastic hop to
the first excited state (first green arrow, panel B) and a decay of
the hole population on G1. In response to this, the population
on A and G2 increases and shows an oscillatory behavior.
Several further surface hops follow in small time intervals until
the system settles with the excess hole located on G2. The
authors commented that the agreement between MF and SH
for this system is likely to be fortuitous and further
investigations with a decoherence-corrected SH algorithm are
necessary for more quantitative estimates of the transfer rate.
Overall, the SH simulations point toward a hopping

mechanism at least for these simple DNA sequences.
Investigations of the distance and sequence dependence of
the hole transfer are subject to ongoing studies. NAMD
simulations may be used to detect possible signatures of the FR
transport, by analyzing the trajectories for N-site energetic
degeneracies and the corresponding response of the electronic
wave functions at such configurations. If N-site energetic
degeneracies exist and indeed contribute to the charge transfer,
one may be able to extract typical values for the prefactor of the
FR rate eq 71 (τ−1) from such simulations.

6.5. DNA-Photolyase and Cryptochrome

The protein DNA-photolyase352 has attracted attention both
experimentally and theoretically due to the ultrafast biological
ET reaction it supports. Upon photoactivation, a hole is
transferred from a flavin adenine dinucleotide cofactor (FAD)
at one side of the protein, to a tryptophan (Trp) residue on the
other side of the protein, via two intermediate Trp residues,
FAD → Trp1 → Trp2 → Trp3.353 According to experimental
measurements, the hole transfer between the three Trp residues
in E. coli DNA-photolyase is ultrafast, on the time scale of 10−
100 ps.353 Interestingly, straightforward application of Marcus
ET rate theory for the step Trp2 → Trp3 gives rates that are
orders of magnitude lower than in experiment.250 By contrast,
SH MD simulations by Elstner and co-workers predicted an ET
rate in close correspondence with experiment.38,250 It was
demonstrated that the large deviation of the Marcus ET rate
estimate was due to the assumption of thermal equilibrium for
each of the two hole transfer steps from. According to the SH
simulation the lifetime of the hole on Trp2 is too short for the
protein environment to fully relax. Consequently, the effective
barrier for Trp2 → Trp3 is lower than under full equilibrium
conditions and hence the (uncorrected) Marcus ET rate is too
low. It would be interesting to further analyze the MD data and
estimate the nonergodicity corrected Marcus ET rate with a
reorganization free energy obtained according to eq 85. This
correction should bring the ET rate closer to the experimental
and SH estimates. DNA-photolyase and the previously
mentioned photosystem II are striking examples where
nonequilibrium effects, that is, the partial freezing of protein
modes, are of great importance, leading to an acceleration of
ET rates by several orders of magnitude.
Cryptochromes are another fascinating family of photo-

receptor proteins, thought to support the formation of a radical
pair upon light absorption. The radical pair is sensitive to weak
magnetic fields such as the Earth’s magnetic fields providing
migratory birds with a magnetic compass. Recently, a
femtosecond spectroscopy study reported hole transfer
reactions in a plant cryptochrome on the 1−100 ps time
scale, involving up to three tryptophan units.354 Furthermore, a
recent SH MD simulation study suggested a prominent role for
the solvent to provide the driving force for fast and stable

Figure 24. Surface hopping (SH) simulation of hole transfer in a GAG
oligonucleotide. A passage through the high-coupling region is shown.
Top panel: occupation of the nucleobases by the wave function of the
excess hole. Middle panel: energy of the adiabatic states. The active
state that determines the nuclear dynamics is depicted in orange and
selected adiabatic elementary transfer events are indicated by green
arrows. Bottom panel: ESP charges induced at the nucleobases by the
molecular environment. Reprinted with permission from ref 37.
Copyright 2013 Royal Society of Chemistry.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00298
Chem. Rev. 2015, 115, 11191−11238

11225

http://dx.doi.org/10.1021/acs.chemrev.5b00298


formation of a well-separated radical pair.355 This finding
carries an important message for computational chemists
aiming at modeling such reactions purely by static quantum
chemistry. While too much sampling of the dielectric response
of the environment can be problematic for ultrafast ET
reactions, too little sampling may also lead to qualitatively
incorrect results and mechanisms. Within rate-theoretical
approaches, the “right amount” of sampling is dictated by the
time scale of the reaction and can be determined self-
consistently, e.g., using the scheme in Figure 12A. Explicit
charge propagation schemes like SH MD do not suffer from
this problem because nuclear and electron dynamics are solved
simultaneously, and the sampling time is simply determined by
the time it takes for the charge to move from the initial to the
final state.

7. CONCLUDING REMARKS AND PERSPECTIVES

Much progress has been made since the first computer
simulations of biological ET were reported more than 30
years ago. Single-step biological electron tunneling is now very
well understood and many computational methods are available
at the empirical, classical, and QM level to estimate the Marcus
parameters for biological ET. Some of these methods were
reviewed in sections 3 and 4. The agreement with experiment
may in principle be systematically improved by improving the
quality of the force fields and electronic structure calculations
and by extending the time scale that can be routinely accessed
by MD simulations (although tremendous progress has been
made on this front recently). In section 5 I have reviewed and
discussed some of the topics that are currently under debate
and less well established such as multistate, ultrafast, and
nonergodic biological ET. New theoretical models and
numerical simulation approaches have been proposed in the
past few years to tackle these interesting problems, and they
resulted in new pictures or mechanistic proposals for biological
ET. In the following I would like to add a few more comments
on these new developments and suggest a number of
opportunities for further research in the field.

7.1. Nonergodic Effects

The proposal that the dynamical arrest of protein conforma-
tional changes leads to a decrease in ET activation free energy
and to an acceleration of ET rates is intriguing.36 Simulations
suggest that the dynamical arrest in combination with
sufficiently high electronic coupling makes the primary ET in
PSII as well as hole transfer in DNA photolyase ultrafast and
this seems a very reasonable explanation.232,233 It remains to be
investigated how common nonergodic effects are among redox
proteins that support slower microsecond−nanosecond ET.
There are only very few experimental examples where this
effect has been observed so far, typically by comparing λst as
obtained from the Stokes shift (difference in absorption and
emission band) with λvar, obtained from the band shape of
optical transitions. In none of the seven proteins shown in
Figure 19 significant deviations between λst and λvar were
reported (χG ≈ 1, see Table 1), suggesting that rate accelerating
nonergodic effects may not occur in these proteins. It would be
interesting to investigate whether nonergodic effects are
correlated with the fold, size, and surface hydrophobicity of
the protein. Careful simulations on a curated set of redox
proteins with validated polarizable force fields, and possibly
conducted independently by different research groups, would
be useful to establish this very interesting proposal, which

would have important implications on our fundamental
understanding of biological ET.

7.2. Flickering Resonance Mechanism

Can the FR mechanism compete with the established SE/
hopping mechanisms? The FR mechanism has been suggested
very recently as a possible short-range transport channel in
DNA35 that, by contrast to SE, accounts for both exponential
distance dependence and partial excess charge location on the
bridge. The data presented herein indicate that the FR
mechanism is expected to be less relevant for ET along heme
wires as a consequence of the smaller electronic couplings
between heme cofactors than between DNA base pairs. It
would be desirable to design experiments, motivated and
guided by theory, that can support (or exclude) this mechanism
in simple biomolecular systems. An indication for this
mechanism is the temporary occupation of charge carriers on
the bridge sites on the order of 10 fs in combination with a soft
exponential distance dependence. Another interesting charac-
teristic of the FR mechanism is the predicted explicit
dependence of the exponential decay constant on temperature,
∂θ/∂T = 1/(2ΔRT) (assuming ∂λ/∂T and ∂V/∂T are small), in
contrast to the SE mechanism, where ∂β/∂T ≈ 0 (assuming, in
addition to the above, that ∂ΔA/∂T and ∂ΔABD/∂T are small,
too). Hence, a possible experimental signature of the FR
mechanism is an increase in the distance decay constant with
increasing temperature and this effect should be the larger the
lower the temperatures (1/T). See also discussion of this point
in a recent perspective article.57

7.3. Note on ET Models

I would like to emphasize that the SE, FR, and hopping
mechanisms are theoretical models that have been derived for
certain limits and under a number of simplifying assumptions.
They are very valuable because they provide an intuitive picture
of how charge may transfer across and between biological
molecules. Unfortunately, the details of the actual electron
transport process, occurring on the femto- to subfemtosecond
time scale, are difficult if not currently impossible to observe
experimentally. Hence, ET models are supported or rejected in
a rather indirect way, by comparing experimentally accessible
observables, such as the distance or temperature dependence of
the measured ET rate, with the corresponding predictions of a
particular model. Possible agreement may not be considered as
a “proof” of the validity of the model, as one could imagine that
there are several different mechanisms that all have a similar
distance or temperature dependence.

7.4. “Ab Initio” Ultrafast Biological ET

A powerful alternative to the above models are numerical
simulations aimed at solving the ET problem from first
principles. “Ab initio” in this context means direct charge
propagation by solving the electronic Schrödinger equation
within a given approximation and to couple nuclear motion to
electronic charge propagation, again within a given approx-
imation. Quantum−classical NAMD methods270−272,285 are
particularly suitable for the study of ultrafast ET, where some of
the assumptions made in rate-based approaches (SE, FR, and
hopping) can be questioned, e.g., the validity of equilibrium
statistical mechanics and even the simple nonergodic
corrections discussed.
The semiempirical SH implementation by Elstner and co-

workers37,38 is a good example for progress in this field and for
a pragmatic view regarding the right balance between speed and
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accuracy. Many of the parameters that go into the SCC-DFTB
electronic Hamiltonian have been benchmarked extensively,
such as site energies and most recently electronic coupling
matrix elements.169,170 Adding electronic polarizability to the
force field and a way to account for the missing electronic
decoherence may be crucial to further enhance the predictive
power of the method. These subtleties may tip the balance
between localized/delocalized transport. In the context of the
above discussion, it would be interesting to know, for instance,
whether the FR mechanism proposed for DNA, or features of
it, is borne out in explicit SH simulations. Future applications
may improve our understanding on the distance and sequence
dependence of hole transfer in DNA and may further our
knowledge of multistate ET in proteins.

7.5. ET between FeS Clusters

Most of our knowledge on protein ET is derived from heme
and Cu-containing proteins. A third ubiquitous type of
cofactors are FeS clusters, present, e.g., in complex I of the
mitochondrial membrane,6,66 hydrogenases,11,16,18 and CO-
dehyrogenases.19,22 There is much less known about the
molecular details of electron tunneling between FeS clusters. A
recent experimental study gave some insight on the kinetics of
ET between the three FeS cluster of a hydrogenase enzyme.85

On the theoretical side, only few studies have been carried
out.187,188 The reason for this may be the rather complicated
electronic structure of these clusters. However, relatively cost-
effective broken-symmetry DFT calculations were shown to
give reasonably good results for nuclear and electronic structure
(see, e.g., refs 356 and 357), and one may use such calculations
in combination with QM/MM or classical MD to gain further
insight into the kinetics and mechanism of biological ET
between FeS clusters.

7.6. ET at the Bio/Inorganic Interface

From a biotechnological point of view, the interaction of redox
proteins with metal and semiconductor substrates is a very
important topic. Redox enzymes such as hydrogenases, CO-
dehydrogenase, and laccase are exquisite biological catalysts for
production of renewable fuels in bioelectrochemical cells; see
Figure 2. Nonetheless, very little molecular detail is known
about the interaction between these proteins with electrode
materials and about the electrochemical electron transfer
reactions they support. Notable exceptions are cytochrome c
on Au358 and STC (a small tetra-heme cytochrome) on iron
oxide.359 Challenges here are the realistic modeling of relevant
adsorption structures of the protein on the electrode surface
and the calculation of electrochemical ET rates between a
molecular species and a periodic solid.

7.7. Bionanoelectronics

Multi-heme cytochromes such as MtrC may represent a new
category of bioorganic conductive materials for potentially
revolutionizing bionanotechnological applications such as
electronic communication, signaling, and sensing with bacterial
cells, nontoxic implantable bioelectronics devices, or even
artificial skin. The recent integration of such proteins in
electronic circuits is indeed an exciting prospect.23 In order to
fully explore the potential and scope for future bioelectronic
applications, it is important and necessary to obtain a
fundamental understanding of the electronic properties of
these fascinating proteins and their complexes with metal
substrates (MSs) at an atomistic level of detail. A satisfactory
theoretical explanation of their relatively high electric

conductivity is still outstanding.89,178,360 Recently developed
theoretical models of redox molecular junctions361 as well as
numerical simulation methods may shine light on this issue in
the years to come.

APPENDIX A. DERIVATION OF TWO-STATE
MATCHING PROBABILITY P(2) AND EQ
73

The electron removal functions of donor and acceptor sites are
assumed to be Gaussian:

ρ
π σ σ

Δ = − Δ − ΔE E E( )
1

2
exp(

1
2

( ) )1 1
D D

2 1 D
2
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A A
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where ΔED = ⟨ΔE1⟩R is the thermally averaged electron
removal energy of the reduced donor in the geometry of the
reduced state “R” (and the acceptor in the oxidized state), and
ΔEA = ⟨ΔE2⟩O is the thermally averaged electron removal
energy of the reduced acceptor in the geometry of the oxidized
state “O” (with the donor in the oxidized state). The widths of
the fluctuations are related to the reorganization free energies
of neutral donor, λD, and reduced acceptor, λA, σ λ= k T2D B D

and σ λ= k T2A B A , and the free energy difference for ET from
donor to acceptor is ΔA = (ΔED − λD) − (ΔEA + λA) . The
centers of the distributions are thus separated by ΔED − ΔEA =
ΔA + λ, where λ is the total reorganization free energy λ = λD +
λA. Note that the definitions for λ and ΔA given are equivalent
to the ones in eqs 15 and 16. The difference is that these
quantities are defined here in terms electron removal energies
of single sites, whereas in eqs 15 and 16 they are defined in
terms of vertical ET energies between sites. The matching
probability can be written as

∫ ∫ρ ρ= Δ Δ Δ Δ
−∞

∞

Δ −

Δ +
P E E E E(2) d ( ) d ( )

E V

E V

1 1 1 2 2 2
1

1
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Applying the mean value theorem, the inner integral is equal
to 2Vρ2(ΔE1 + V*), where V* ∈ [−V,V]. Final integration over
ΔE1 gives

πσ λ λ= − Δ + + *⎡⎣ ⎤⎦P V A V k T(2) 2 /(2 ) exp ( ) /(4 )
2 1/2 2

B
(118)

where σ2 = σD
2 + σA

2 = 2kBTλ, and ΔA and λ as defined above.
In the nonadiabatic limit, defined in ref 35 by θ = 2V/
(2kBTλ

2)1/2 ≪ 1, the coupling term in the exponent, V*, can be
neglected. In this limit the matching probability P(2) is equal to
the Franck−Condon factor times 2V. Comparison of eq 71
with eq 25 gives a frequency 1/τ = πV/ℏ = π2/τrabi, hence eqs
72 and 73. For a discussion of the adiabatic limit (θ ≈ 1), I refer
to ref 35 and note that the FR expression in this limit is similar,
albeit not identical with the adiabatic ET rate eq 26. I note that
the above adiabaticity criterion differs from the usual definition
eq 23 by a factor θ/(2πγ) = (21/2hνn)/(π

3/2V) . Biological ET
reactions are usually nonadiabatic according to both criteria.

APPENDIX B. DERIVATION OF UPPER BOUND TO THE
MATCHING PROBABILITY P(M), EQ 75

Expressions for the upper bound to the matching probability
are derived in the Supporting Information of ref 35 for the two-
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state (M = 2) and three-state (M = 3) case for different
Gaussian widths for donor, bridge, and acceptor distributions.
Here I derive the matching probability for the general M-state
case with the restriction that all bridge site energies have equal
mean energies and that all Gaussian widths are identical; see
model shown in Figure 11. A general formula without these
restrictions can be obtained following a similar derivation, but
the final expression becomes rather lengthy due to nested
Gaussian overlap integrals.
The distribution for the donor is

ρ π σ σΔ = − Δ − ΔE E E( ) 1/( 2 ) exp[ ( ) /(2 )]E E1 1 1 D
2 2

the distribution for all bridge sites are the same

ρ π σ σΔ = − Δ − ΔE E E( ) 1/( 2 ) exp[ ( ) /(2 )]i i E i EB
2 2

i ∈ [2,M − 1], and the distribution for the acceptor is

ρ π σ σΔ = − Δ − ΔE E E( ) 1/( 2 ) exp[ ( ) /(2 )]M M E M EA
2 2

Starting from the exact expression eq 74 I replace the lower and
upper integration limits for the (M − 1) integrals over ΔEi, i ∈
[2,M] by ΔE1 − V and ΔE1 + V, respectively. This gives an
upper bound to P(M):

∫ ∫

∫

ρ ρ

ρ

≤ Δ Δ Δ Δ

··· Δ Δ

−∞

∞

Δ −

Δ +

Δ −

Δ +

P M E E E E

E E

( ) d ( ) d ( )

d ( )

E V

E V

E V

E V

M M M

1 1 1 2 2 2
1

1

1

1

(119)

To solve the integral over ΔE2, I introduce a new variable x =
(ΔE2 − ΔEB)/σE, define the distribution ρ2 in terms of the new
variable

ρ π′ = −x x( ) 1/( 2 ) exp( /2)2
2

and make a Taylor expansion of ρ2′ around x1 = (ΔE1 − ΔEB)/
σE. This gives

ρ π′ = − − −

+ − − + −
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Insertion of the expansion in the integral gives
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Carrying out a similar integration over ΔEi, i ∈ [3,M], I obtain
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Since the product of two Gaussians is again Gaussian, the latter
integral can be solved analytically, giving
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where ΔED/A = (ΔED + ΔEA)/2 and ΔA + λ = ΔED − ΔEA.
For different bridge lengths M I obtain

where I have used σE
2 = λkBT. The expression for M ≥ 4 is

equal to the one given in the main text, eq 75. However, since
for M ≥ 4 the first factor on the right-hand side of eq 126 is of
the same order or smaller than the leading error in the
expansion of the integral, higher orders of the integral
expansion should be taken into account, in principle. For the
case M = 2 (only donor and acceptor, no bridge sites), the well-
known result is recovered that P(2) is equal to 2V times the
Franck−Condon factor. In this case, the right-hand side is no
longer an upper bound but exact to within the error of the
integral expansion.
Equation 77 is obtained from the above definition for ΔED/A

and noting that the free energy difference between donor and
acceptor is ΔA = ΔED − ΔEA − λ, and between donor and
bridge sites ΔABD = ΔED − ΔEB − λ. On an aside, ΔED/A, lying
halfway between ΔED and ΔEA, is the most likely electron
removal energy in the transition state ensemble for ET. The
latter is defined by the configurations with vanishing ET energy,
ΔEM1 = ΔE1 − ΔEM = 0. This is why ΔED/A was chosen in the
SE expression eq 67 as the electron removal energy for the
tunneling electron in the transition state.
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Events in the Blue Light Sensor Plant Cryptochrome: Intraprotein
Electron and Proton Transfer Revealed by Femtosecond Spectrosco-
py. J. Am. Chem. Soc. 2012, 134, 12536−12546.
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