
ANRV408-PC61-08 ARI 27 February 2010 15:27

The Diabatic Picture of
Electron Transfer, Reaction
Barriers, and Molecular
Dynamics
Troy Van Voorhis, Tim Kowalczyk, Benjamin Kaduk,
Lee-Ping Wang, Chiao-Lun Cheng, and Qin Wu∗

Department of Chemistry, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139; email: tvan@mit.edu
∗ Present Address: Center for Functional Nanomaterials, Brookhaven National Laboratory,
Upton, New York 11973

Annu. Rev. Phys. Chem. 2010. 61:149–70

First published online as a Review in Advance on
November 13, 2009

The Annual Review of Physical Chemistry is online at
physchem.annualreviews.org

This article’s doi:
10.1146/annurev.physchem.012809.103324

Copyright c© 2010 by Annual Reviews.
All rights reserved

0066-426X/10/0505-0149$20.00

Key Words

reaction dynamics, nonadiabatic, density functional

Abstract
Diabatic states have a long history in chemistry, beginning with early valence
bond pictures of molecular bonding and extending through the construction
of model potential energy surfaces to the modern proliferation of methods
for computing these elusive states. In this review, we summarize the basic
principles that define the diabatic basis and demonstrate how they can be
applied in the specific context of constrained density functional theory. Us-
ing illustrative examples from electron transfer and chemical reactions, we
show how the diabatic picture can be used to extract qualitative insight and
quantitative predictions about energy landscapes. The review closes with a
brief summary of the challenges and prospects for the further application of
diabatic states in chemistry.
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Adiabatic state: an
eigenstate of the
Born-Oppenheimer
electronic
Hamiltonian

Diabatic state: an
electronic state that
does not change
character as a function
of molecular geometry

ET: electron transfer

CDFT: constrained
density functional
theory

1. INTRODUCTION

Qualitatively, a diabatic electronic state is one that does not change its physical character as one
moves along a reaction coordinate. This is in contrast to the adiabatic, or Born-Oppenheimer, elec-
tronic states, which change constantly so as to remain eigenstates of the electronic Hamiltonian. A
classic example of the interplay between diabatic and adiabatic pictures is sodium-chloride dissoci-
ation (Figure 1). Here, the ground adiabatic state is thought of as arising from the avoided crossing
between an ionic and a covalent state. The adiabatic state thus changes character—transforming
from Na-Cl to Na+-Cl− as the bond gets shorter—whereas the ionic and covalent configurations
play the role of diabatic states.

Diabatic electronic states play a role in a variety of chemical phenomena but are, at the same
time, underappreciated by many chemists. For example, diabats are often used in the construction
of potential energy surfaces because they are smooth functions of the nuclear coordinates (1–
3). In spectroscopy, diabatic states are invoked to assign vibronic transitions and rationalize the
rates of interstate transitions (4–6). In the general description of electronically excited dynamics,
diabatic states are advantageous because they typically have a small derivative coupling, simplifying
the description of electronic transitions (7–11). In scattering theory, diabatic states connect to
clearly defined product channels (12–14). Finally, diabatic states play a qualitative role in our
understanding of molecular bonding (15–17) (as illustrated by the NaCl example above), electron
transfer (ET) (18, 19), and proton tunneling (20–22).

This review article is intended as an introduction to the basic concepts behind the construction
of diabatic states and their use in describing chemical phenomena. After summarizing differ-
ent definitions of diabatic states—and in particular discussing why so many competing definitions
exist—we focus on a particular definition based on constrained density functional theory (CDFT).
We show how CDFT-derived diabatic states are computed in practice and discuss several illustra-
tive chemical applications.
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Figure 1
NaCl dissociation in the diabatic and adiabatic representations. The ionic ( green) and covalent (blue) diabatic
states maintain the same character across the potential energy surface, whereas the adiabatic states (black)
change.
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2. STRICT DIABATS CANNOT BE OBTAINED FROM ADIABATS

Of central importance to the study of diabatic electronic states is the idea of a strictly diabatic basis
(SDB) (23). By definition, for a set of strict diabats, |�i 〉, the derivative coupling between any two
states vanishes at every possible nuclear configuration, R:

di j (R) ≡
〈
�i

∣∣∣∣ ∂

∂R
� j

〉
= 0 ∀i, j, R. (1)

This definition is in line with our qualitative idea that diabatic states do not change when the nuclei
move (i.e., the derivative is zero). Given an arbitrary set of M adiabatic states, |�i 〉 (e.g., a few
important electronic states involved in a photochemical reaction), it would clearly be desirable
to develop a formula for a set of M strictly diabatic states that span the same Hilbert space as
the given adiabats. That is to say, one would like to have a set of orthonormal states that satisfy
Equation 1 and for which

|�i (R)〉 =
∑

j

Ai j (R)|� j (R)〉 (2)

for some matrix A. The matrix A is called the adiabatic-to-diabatic transformation matrix, for
obvious reasons (24, 25).

If states of this form could be obtained, they would clearly provide the most rigorous definition
of diabatic states; one would simply need to specify the set of interesting adiabatic states, and
then the corresponding diabatic states could be automatically determined. Unfortunately it is not
generally possible to create an SDB from a given adiabatic basis (23) (see the sidebar).

This result has a significant impact on how we approach diabatic states. One has the common
situation in which there is an ideal mathematical construction for diabatic states (SDBs) but no way
of realizing this ideal in practice. Thus, if one wants diabatic states for a particular application,

PROOF THAT ONE CANNOT CREATE A STRICTLY DIABATIC BASIS FROM
A GIVEN ADIABATIC BASIS

First write down the nonadiabatic coupling between the adiabatic states

τi j (R) ≡
〈
�i (R)

∣∣∣∣ ∂

∂R
� j

〉
. (3)

It is important to note that once the adiabatic states have been chosen, τ is fixed and cannot be changed. Now, write
Equation 1 in terms of τ and A: 〈

�i

∣∣∣∣ ∂

∂R
� j

〉
= A†τA + A†∇A = 0

→ τA + ∇A = 0, (4)

which can be considered the condition that determines the correct A once the couplings are known (24, 25). We
now take the derivatives of Equation 4 with respect to R. After some manipulation, and exploiting the fact that
mixed partial derivatives must be the same independent of the order in which they are taken, we obtain

∇ × τ = τ × τ. (5)

This relationship is called the curl condition, and it specifies a restriction that must be satisfied by τ if one hopes
to construct an SDB out of the given set of adiabatic states. Unfortunately, this condition is not satisfied for the
Born-Oppenheimer eigenstates of real molecules, except under rare circumstances (23, 26).
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one must weaken the search criteria in one of two ways. One either looks for weakly diabatic
states (i.e., ones that almost satisfy Equation 5) that span a given adiabatic space, or one looks for
strictly diabatic states that almost span the desired space. One expects that approximate diabats
will be good descriptors of chemistry insofar as they faithfully reproduce the strict diabats, and
the approximations can be made better and better if one allows more and more states.

3. STRATEGIES FOR OBTAINING DIABATIC STATES

Given the results of the previous section, it is clear that we will need to make approximations to
obtain practical diabatic states. As a rule, theoretical chemists enjoy making approximations, and
thus it comes as no surprise that we have many subtly different ways of obtaining diabatic states
for real systems. Broadly, these approaches can be broken down into two categories: techniques
that try to deduce the best set of diabatic states from a given set of adiabats and those that attempt
to construct diabatic states directly. The emphasis of this review is constructive methods, but to
understand these techniques in context, we briefly summarize the most popular alternatives.

3.1. Deductive Strategies

Given a set of adiabats, there are a number of methods that can be employed to obtain approximate
diabats.

Minimize the coupling. If one cannot entirely remove the derivative couplings between diabatic
states (Equation 1), then an obvious strategy is to try to make the couplings as small as possible—
typically in a local sense. The original proposal along these lines is due to Baer (24, 25), who
proposed picking an arbitrary set of diabatic states at a reference point, R0, and then integrating
Equation 4 along a path (e.g., a reaction path) to obtain states that locally are strict diabats.
This procedure turns out to be quite computationally demanding, in part because it requires the
derivative couplings at every point.

Slowly varying states. Often one is looking for diabatic states that simply do not change much
from one point to another. The best established method in this family is the block diagonalization
(BD) approach (27). Here, one performs a unitary rotation in configuration space that block
diagonalizes the electronic Hamiltonian, while leaving a target set of diabatic states as similar as
possible to a reference set of states (28, 29). This procedure has the benefit that it minimizes the
�2 norm of the derivative coupling (|d|2 = min) in the vicinity of the reference point (30). Other
techniques in the same spirit include enforcing configurational uniformity, so that each diabatic
wave function is predominantly constructed from a fixed set of electronic configurations (31, 32);
regularizing adiabatic states to remove the divergent portion of the coupling (33, 34); and the
fourfold way, which combines many of the positive features of the above methods (35, 36). As a
starting point, these techniques require highly accurate adiabatic states and are thus typically used
in conjunction with high-level configuration interaction (CI) calculations.

Eigenstates of a physical observable. By far the oldest form of diabatization is the Mulliken-
Hush approach (37, 38) to ET. Here, the approximate diabatic states are defined using purely
spectroscopically observable information (transition energy, transition dipole μ12, and change
in dipole �μ). This approach can be generalized to deal with multiple states in a way that only
involves adiabatic quantities (39, 40) if one defines the diabatic states as the eigenstates of the dipole
moment operator (39, 41). Similarly, multiple charge centers and/or excitation energy transfer can
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VB: valence bond

FAAQ: formanilide-
anthraquinone

be dealt with by defining the diabatic states to be the maximally localized wave functions in real
space (42, 43). In each case, one realizes that the eigenstates of any fixed physical observable (such
as the dipole or localization) will not change much as molecules rearrange, and thus they will form
a transferable set of diabatic states. Although computationally convenient, these techniques are
typically only applied to electron- and energy-transfer problems.

3.2. Constructive Strategies

In this family of approaches, the diabatic states are constructed directly without reference to any
particular adiabats.

Valence bond theory. Although not widely publicized, Pauling’s idea of resonance structures
within valence bond (VB) theory (15) provides a natural definition of diabatic states (44, 45). For
example, bonding in NaCl involves two resonance structures—|Na+ Cl−〉 and |Na : Cl〉—which
clearly have diabatic character from an ET perspective. The allyl radical has two structures—
|CH2 = CH − ĊH2〉 and |ĊH2 − CH = CH2〉—that place the double bond in a fixed location
irrespective of which C–C bond is actually shorter. The VB-diabatic connection has been used
to describe SN1 reactions (46) and proton-coupled ET (47), and is the basis for the molecular
orbital VB (48) and empirical VB (16, 17) methods. It is important to realize that, to obtain
accurate diabatic states (i.e., to obtain diabatic states that can faithfully reproduce the lowest
several adiabats), it is often desirable to include more than the minimal number of diabatic states
suggested by chemical intuition (49).

Density constraints. In many cases, diabatic states can be clearly identified based on their
density—ionic states such as |D+ A−〉 will have excess electron density on one side of the molecule,
whereas a covalent state such as |D↑ A↓〉 will have excess spin density on one side. Thus, suitable
diabatic states can be obtained by optimizing the wave function subject to a constraint on the den-
sity. This concept is the basis of the frozen density functional method (50, 51) as well as the CDFT
approach (52) detailed in the following section. Applying constraints is conceptually simpler than
decomposing the wave function in terms of VB states, but this approach can be computationally
more challenging as it requires separate self-consistent calculations for each diabatic state.

4. CONSTRAINED DENSITY FUNCTIONAL THEORY
OF DIABATIC STATES

As a concrete example, we now focus on the specific choice of using density constraints to define
diabatic states and outline the steps that must be taken to represent the electronic Hamiltonian,
Hel, in the constrained diabatic basis.

4.1. Obtaining Diabatic States

By definition, we choose each diabatic state to be the lowest energy state of the system subject to a
constraint on the density. For concreteness, it is good to have an example in mind, and we use the
|D+ A−〉 state of the formanilide-anthraquinone (FAAQ) molecule (Figure 2) as an illustration.
This particular charge-transfer excited state has been identified spectroscopically as having a very
long lifetime (>900 μs) in DMSO solution (53).

www.annualreviews.org • The Diabatic Picture of Electron Transfer 153

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

01
0.

61
:1

49
-1

70
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
id

ad
e 

de
 S

ao
 P

au
lo

 (
U

SP
) 

on
 1

2/
20

/1
0.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV408-PC61-08 ARI 27 February 2010 15:27

a 

b 

c 

VAwA(r)

Figure 2
Obtaining the D+ A− state of FAAQ. (a) One chooses which atoms belong to the acceptor. The atomic
partition operator then divides space between the fragments, as illustrated by the dividing surface. (b) A
constraint potential is applied. Changing the Lagrange multiplier changes the depth of the potential and
controls the net charge on the acceptor. (c) A ground-state calculation in the presence of the optimal
potential results in exactly one excess electron (red ) on the acceptor and one excess hole (blue) on the donor.

Step 1: fragment selection. One must define a group of atoms whose charge/spin/electronic
state one wants to constrain. Typically, this is done by chemical intuition, so that in the case of
FAAQ, aniline (C6H5NH) is identified as the donor, whereas anthraquinone (COC14H7O2) is the
acceptor.

Step 2: defining the constrained observable. In practice, there are any number of physical ob-
servables that one might constrain to create diabatic states (e.g., the dipole moment, the magnetic
moment, the local spin state). In the case of a charge-transfer state, the obvious thing to constrain
is the fragment charge (54). But how do we define the fragment charge? Mulliken (55), Löwdin
(56), Bader (57), Becke (58), and Hirshfeld (59) populations all provide useful but nonunique
prescriptions for partitioning charge among different atoms within a molecule. For practical pur-
poses, one must make an arbitrary choice at this stage and verify later that this choice does not
materially affect the predictions. To this end, we choose Becke’s partitioning wherein the charge
on the acceptor is given by

NA =
∫

wA(r)[ρα(r) + ρβ (r)]dr ≡
∫

wA(r)ρ(r)dr, (6)

where ρ is the electron density, and wA is the Becke weight operator that determines the charge
on the acceptor. By design, wA(r) is nearly unity in regions of space near the acceptor, and nearly
zero in regions of space near the donor (58) (see Figure 2). For the case of FAAQ, one clearly
wants NA = 1.0 so that the net charge on the acceptor is −1. At the end of the calculations of step
3, this choice leads to the lowest energy state such that the Becke partial charges of all the atoms
in the acceptor sum to precisely −1.0.

Step 3: constrained minimization. To obtain the lowest energy state subject to the constraint
in Equation 6, one introduces a Lagrange multiplier, VA, and looks for the stationary point of

W [ρ, VA] = E[ρ] + VA

(∫
wA(r)ρ(r)dr − NA

)
, (7)

where E[ρ] is the electronic energy one is trying to minimize. This formalism could be applied to
coupled-cluster, reduced density matrix, or many-body perturbation theory energy functions (60).
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Density functional
theory (DFT): a
means of determining
the ground-state
properties as a
functional of the
electron density

Diabatic coupling:
the matrix element of
the electronic
Hamiltonian between
two different diabats:
Vi j = 〈�i |Ĥel |� j 〉

However, in Equation 7, we specialize to the case of DFT both because it is relatively fast and
because in principle it can give the exact energy of the system under any density constraint (52).
The stationary condition for VA ( ∂W

∂VA
= 0) just enforces the constraint (Equation 6). Meanwhile,

in a Kohn-Sham (KS) framework, the stationary condition with respect to the density gives a
Schrödinger equation for the KS orbitals:(

−1
2
∇2 +

∫
ρ(r′)

|r − r′|dr′ + vxc (r) + VAwA(r)
)

ψi (r) = εiψi (r), (8)

where vxc is the exchange-correlation potential and ψ i are the KS orbitals. Thus we see that the
Lagrangian introduces an additional constraint potential, VAwA(r), that controls the charge on
the acceptor (see Figure 2). The optimal value of VA is determined implicitly: The correct value
of VA modifies the KS equations in such a way that the resulting density (ρ(r) ≡ ∑

i |ψi (r)|2)
satisfies Equation 6. Because the implicit optimization is strictly a maximization, the simultaneous
optimization of ρ and VA can be accomplished in a similar amount of time to a standard ground-
state DFT calculation (60, 61). Thus, in this constrained scheme, the diabatic states are obtained
as adiabatic ground states of the system under an alternative potential.

This prescription can be simply generalized to deal with charge (54, 60, 61) and/or spin (62–
65) constraints on an arbitrary number of fragments. We have implemented the above three-step
procedure into the NWChem (66) and Q-Chem (67) program packages. The result is that the user
can specify not only the positions of the atoms, but also the charge and spin on any selected groups
of atoms within the molecule. The fact that these are modified ground-state calculations facilitates
analytic force evaluation (54) as well as seamless integration into quantum mechanics/molecular
mechanics and continuum electrostatic models of solvation.

Applying these steps to obtain both neutral (|D A〉) and charge-transfer (|D+ A−〉) configura-
tions for FAAQ using B3LYP (68) in the 6-31G∗ basis and COSMO (69) to describe solvation in
DMSO, we find a relaxed charge-transfer energy �G = 2.31 eV, which is in excellent agreement
with the experimental measurement of 2.24 eV (53, 54). Thus, constraints can be a quantitative
tool for obtaining diabatic states in realistic molecules.

4.2. Computing the Diabatic Coupling

In the diabatic basis, the couplings, Vi j = 〈�i |Ĥ|� j 〉, play an analogous role to the derivative
couplings in the adiabatic basis—both terms determine the rate of transitions between electronic
states—but the diabatic couplings have the advantage of not requiring wave-function derivatives.
An accurate, simple expression for the diabatic coupling is particularly important because there
are no quasi-classical formulas for Vij. For example, the diabatic energies can quite often be
estimated using classical expressions such as the Rehm-Weller equation (70). At the same level of
theory, Vij arises purely from quantum tunneling—the exponential tail of the donor wave function
overlaps with the acceptor and vice versa—which has no classical counterpart. Thus, the diabatic
coupling depends sensitively on the distance between the interacting fragments and their relative
orientations, and a complete picture depends crucially on estimating it (71, 72).

Vij also allows us to completely specify Hel in the diabatic basis. For example, for two diabatic
states,

Hel ≡
(

E1 V12

V12 E2

)
. (9)

The energies, Ei, can be obtained directly from CDFT, and only V12 is unknown. We note that,
because they are eigenstates of different Hamiltonians, the pure constrained states are not or-
thogonal (〈�1|�2〉 ≡ S �= 0). If one is interested in the diabatic coupling itself, physical intuition
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dictates that some orthogonal set of diabatic states is required—otherwise the overlap between
the wave functions is interpreted as a spurious coupling. A unique orthogonalization arises if all
the diabatic states are specified by different average values of the same partition operator, ŵ (e.g.,
if all the diabats have distinct charge/spin states for a single fragment within the molecule). In this
case, one can look for the generalized eigenvectors, d, of the partition operator viaWd = nSd and
then transform the Hamiltonian to the orthogonal basis: H → d†Hd. For clarity, we refer to the
coupling in the nonorthogonal basis as Vij, whereas for the orthogonal coupling, we use Hij. In
either case, the adiabatic states are defined by the generalized eigenequation

Hc =
(

E1 V12

V12 E2

) (
c 1

c 2

)
= ε

(
1 S
S 1

) (
c 1

c 2

)
≡ εSc. (10)

In the present context, the challenge in computing 〈�i |Ĥ|� j 〉 using CDFT is that DFT only gives
us access to the energy and density of each diabatic state—the wave function is never constructed.
Hence, we need to make an approximation to evaluate Vij in CDFT. Toward this end, we note
that for constrained diabatic states, each diabat (i) is an eigenstate of the Hamiltonian in its own
alternative potential (Vi ŵi ):

Ĥ + Vi ŵi |�i 〉 ≡ Ĥi |�i 〉 = Fi |�i 〉 ≡ (Ei + Vi Ni )|�i 〉 ∀i, (11)

where Ei, Vi, and Ni are the diabatic energy, associated Lagrange multiplier, and specified constraint
value, respectively, for the i-th diabat—all of which are provided directly by CDFT. This allows
us to rewrite the diabatic coupling in the suggestive form (73):

〈�i |Ĥ|� j 〉 = 1
2
〈�i |Ĥi −Vi ŵi + Ĥj −Vj ŵ j |� j 〉 = Fi + Fj

2
〈�i |� j 〉− 1

2
〈�i |Vi ŵi +Vj ŵ j |� j 〉. (12)

Thus, the many-body matrix elements of Ĥ in the diabatic basis can be reduced to a combination
of zero-body (i.e., wave-function overlap) and one-body (constraint potential) matrix elements.
Equation 12 contains the physical insight that the coupling between diabats only depends on the
overlap between them (first term) and the potential required to create them (second term).

At this stage, we make an approximation and use the KS determinants |�i 〉 in place of the exact
diabatic states |�i 〉 in Equation 12. This is certainly an approximation, but it is one that can work
surprisingly well in practice (73). For example, if we examine hole transfer in the mixed valence
system Zn+

2 as a function of the Zn-Zn distance, we expect that the tunneling matrix element will
decay exponentially (40). Using B3LYP and a large basis (40, 74), one finds values for Hij that differ
by <150 cm−1 from the corresponding BD predictions for 5 Å < R < 9 Å (40). The differences
can largely be attributed to the underlying electronic structure—the BD uses CASSCF, whereas
the CDFT results use B3LYP. Thus the present prescription for Hij appears to be adequate for
the coupling of well-separated fragments.

5. APPLICATIONS

5.1. Electron Transfer

Diabatic states play a critical role in ET theory (see Figure 3) (19, 75). One first posits the existence
of reactant and product diabatic states where the electron is localized on the donor and acceptor,
respectively. Reactions are then typically characterized by the thermodynamic driving force, �G,
and the reorganization energy, λ, of the diabatic free-energy surfaces. The latter quantity measures
the stiffness of the molecular framework, which can often be inferred from the Stokes shift of the
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a b c

e–

e–

e–

D – A–

D– – A 

Reaction 

G 

Reaction 

G λ

λ

ΔG ΔG

Figure 3
(a) In solution, the electron-transfer reaction coordinate is dominated by solvent reorganization. The
free-energy landscape can be characterized by the driving force (�G), measuring the energy released, and
reorganization (λ), measuring the structural relaxation energy. (b) If �G < λ, the reaction is in the normal
regime, and the rate increases with �G. (c) If �G > λ, the reaction is in the inverted regime, and the rate
decreases with increasing �G.

charge-transfer absorption/emission bands (76). If we assume that the free-energy surfaces are
perfect parabolas with the same curvature (equivalent to the assumption that the system responds
linearly), it is easy to work out that the activation energy for ET is �G‡ = (�G + λ)2/4λ leading
to a rate (77, 78)

kET ∝ |HDA|2 1√
4πλkT

e−�G‡/kT = |HDA|2 1√
4πλkT

e
−(�G+λ)2

4λkT . (13)

There are many generalizations of this simple formula that account for anharmonic free-energy
surfaces (79), adiabatic ET (80), and quantum nuclear effects (81). In the present article, we
are interested in a more basic question: Given that Equation 13 or one of its generalizations is
appropriate for a given problem, how can one compute accurate diabatic ET states and extract
from those states parameters such as �G and λ? That is to say, how do we translate the cartoon
(Figure 3) into a calculation?

We can trace the use of CDFT to answer this question back to Wesolowski & Warshel’s (50)
idea of using a frozen density to describe the charge distribution of each diabatic state. More
recent work has employed CDFT (or the related concept of penalty function DFT) to define the
diabatic potential surface, which can then be explored to estimate �G and λ (54, 82, 83). To do this,
we need to define the reaction coordinate. Figure 3a illustrates the physical picture (84): When
the electron is on the donor (acceptor), the solvent orients to stabilize the electron on the donor
(acceptor). The transition state involves a fluctuation of the solvent that untraps the electron and
initiates transfer. This picture leads to several reasonable choices for the reaction coordinate: One
can choose the equilibrium solvent polarization (84), the fractional degree of ET (D−1+q A−q ) (85),
or the energy gap [�E = E(D+ A−) − E(DA) ≡ ED − EA] (86) between reactants and products.
Below we show a preference toward the last definition, which has certain formal advantages
(87).
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DCT: dielectric
continuum theory

Once the diabatic states have been defined, the key remaining decision for condensed-phase
ET concerns the treatment of the solvent. In some sense, the presence of solvent actually validates
the use of diabatic states, so some care needs to be taken here (88). Broadly speaking, there are
two paths from which to choose: implicit models—in which the solvent is replaced by a fictitious
continuous medium—and explicit models—in which many discrete solvent molecules are included
in the simulation. To compute �G ≡ Geq

D − Geq
A and λ ≡ Gneq

A − Geq
A , one requires three free

energies: (a) Geq
D , the equilibrium free energy of the donor state; (b) Geq

A , the equilibrium free
energy of the acceptor state; and (c) Gneq

A , the free energy of the acceptor state in the ensemble of
nuclear configurations (qD) most favorable for the donor. The first two are obviously equilibrium
properties, whereas Gneq

A requires a nonequilibrium Frank-Condon approximation, wherein the
nuclear positions are all fixed by the donor ensemble, but the solute and solvent electrons are re-
laxed in the acceptor electronic state. We now briefly review how these free energies are computed
in the presence of solvent.

Implicit solvent. At a basic level, an implicit solvent model has two steps. First, one carves
out a spatial cavity around the solute molecule(s). Second, the space outside the cavity is filled
with a dielectric medium, which represents the solvent. Because a dielectric can respond to the
molecular charge distribution inside the cavity, this prescription provides a crude approximation
to the electrostatic interaction between solvent and solute. This dielectric continuum theory
(DCT) has a long history within chemistry. In the days before computers, these models were
popular primarily because they can provide simple, analytic formulas for the solvation energy of a
molecule (80, 84, 89, 90). As time has progressed, these models have become more sophisticated
(91–94) so that modern DCT is considered a computational and essentially predictive model of
both chemical and biological phenomena.

The advantage of using DCT in describing ET is that it vastly reduces the number of de-
grees of freedom one must explore because the solvent molecules have been integrated out. Thus,
equilibrium free energies such as Geq

D or Geq
A can be computed directly by optimizing the geom-

etry of FAAQ with the electron constrained to be on the donor (D A) or acceptor (D+ A−) in
the presence of the solvent dielectric. Because analytic gradients of the energy are readily cal-
culated in CDFT, geometry optimizations of this type are straightforward, and the positions of
individual solvent molecules need never be considered (54). Applying this prescription to FAAQ
using B3LYP/6-31G∗/COSMO calculations, we obtain �G = 2.31 eV, which, as noted above,
is in excellent agreement with experiment (�G = 2.24 eV). Similarly, for a ferrocene adduct of
FAAQ (Fc-FAAQ), the computed �G goes down to 1.02 eV, still in excellent agreement with the
experiment at 1.16 eV (53, 54).

To compute λ, one requires Gneq
A , which is somewhat tricky to obtain in a continuum model.

The difficulty is that, because we have integrated out all the solvent degrees of freedom, it is
challenging to freeze the solvent nuclei while allowing the solvent electrons to relax. To overcome
this, it is assumed that the solvent dielectric has a fast component (ε∞ ≈ n2

o pt) arising from electronic
polarization, and a total dielectric (ε0), which captures electronic and nuclear response (95). Each
dielectric, ε = ε∞, ε0, interacts with the solute through a reaction field V0 (91):

V0 = −g(ε0)Vsolute ≡ − ε0 − 1
ε0

Vsolute, (14)

where Vsolute is the potential of the solute on the boundary (B) of the cavity (96). From Equation 14,
we identify the slow field as

Vslow = [g(ε0) − g(ε∞)]Vsolute, (15)
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On the fly: any
technique wherein
molecular energies and
forces are calculated as
needed rather than
being inferred from
precomputed values

which simply interprets the slow part as the difference between the total and fast components. To
compute Gneq

A , then, one first performs a calculation with the electron on the donor and obtains
Vslow. A calculation is then performed at the same geometry with the electron on the acceptor and
two fields: (a) a static field of Vslow and (b) a polarizable continuum with dielectric ε∞. These two
fields reflect the nuclear polarization of the solvent (which is frozen) and the electronic polarization
(which responds), respectively. Finally, denoting the acceptor electron density and potential by
ρA, V A, and similarly for the donor (97),

Gneq
A ≡ E[ρA] − 1

2
g(ε∞)

∫
B

V A(r)ρA(r)dr −
∫

B
Vslow(r)ρA(r)dr + 1

2

∫
B

Vslow(r)ρD(r) dr. (16)

If we apply this prescription to FAAQ and Fc-FAAQ using B3LYP/6-31G∗/COSMO calculations,
we obtain λD = λA = 0.6 eV for FAAQ and λD = λA = 0.8 eV for Fc-FAAQ. These results are
qualitatively consistent with the experimental observation that FAAQ is in the inverted regime, so
that λ � �G, whereas Fc-FAAQ undergoes rapid charge recombination, which implies �G ≈ λ

(53). However, the results are quantitatively incorrect: One infers a value of λ ≈ 1.45 eV from the
experimental kinetics, which is much higher than either DCT prediction. The disagreement likely
has to do with the fact that modern DCT is heavily parameterized toward equilibrium properties,
with relatively less attention paid to the type of nonequilibrium solvation involved here. To obtain
more consistent results away from equilibrium, we turn to explicit models.

Explicit solvent. Explicit-solvent models offer manifold advantages over implicit models: One
can directly probe reaction dynamics, obtain information about the entire free-energy surface, and
obtain parameter-free ab initio predictions of free energies. The downside is that these calculations
are 1000 to 1,000,000 times as expensive as their implicit counterparts, and the rapidity with which
results can be obtained is thus somewhat hindered. The seminal papers in the field use classical
force fields to describe the diabatic potential energy surfaces, in which case the calculations are
much faster. These investigations have established rate expressions (98–100), mapped out free-
energy surfaces (86, 101), validated the reaction coordinate (102, 103), and predicted qualitative
reaction dynamics (85, 104).

More recently, advances in computer speed have opened the possibility of exploring the dia-
batic ET energy landscape in explicit solvent using DFT (62, 65, 82, 83, 105–110). The general
prescription for these simulations is illustrated in Figure 4, again for the example of FAAQ in
DMSO. First, one performs several long molecular dynamics trajectories for each diabatic state
in the presence of solvent to properly sample the energy landscape. These simulations would
be virtually impossible using a deductive prescription for the diabatic states—which would re-
quire derivatives of excited-state wave functions and/or the identification of a reference structure.
For CDFT, one merely requires ground-state energy derivatives to perform the relevant on-
the-fly Born-Oppenheimer-like dynamics (54). For example, in the simulations in Figure 4, the
solvent was modeled by a polarizable force field, and the diabatic states of FAAQ were deter-
mined by constrained B3LYP/3-21G. The technical details of the computations can be found
elsewhere (110). However, we note that a traditional fixed-charge model of the solvent (as op-
posed to the polarizable approach used here) would result in severe overestimation of the re-
organization energy (110, 111), essentially neglecting all the fast component of the dielectric
response.

Once the molecular dynamics simulations are complete, a large number of independent snap-
shots are collected from the trajectories, and the energy of both diabatic charge states at every
snapshot is computed. By performing this procedure for the neutral and charge-transfer trajecto-
ries of FAAQ, one obtains the two energy gap distributions displayed in Figure 4c,d, respectively.
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Figure 4
Sampling the electron transfer (ET) energy landscape with explicit solvent. (a) One first computes several long molecular dynamics
trajectories, with the solute in either the neutral (pictured) or charge-transfer (CT) state. A movie of one such trajectory is available in
the Supplemental Material (follow the Supplemental Material link from the Annual Reviews home page at http://www.
annualreviews.org). (b) One monitors the energy of each diabat as a function of time and collects statistics on the energy gap
(�E = ECT − EN) from the (c) neutral and (d ) CT trajectories. Here, the histograms show accumulated data, and the lines are a
maximum likelihood fit. (e) Finally, the free energy, G, of each state is obtained from the log of the probability computed in panels c and
d. All energies are in electron volts.

Finally, the free-energy surfaces can be obtained from

GX(�E) ≡ −kT ln PX(�E) X = CT or N. (17)

Figure 4e presents a simplified fit of this type wherein GN and GCT are assumed parabolic with
the same curvature. Under these circumstances, GN and GCT are determined entirely by �G
and λ, facilitating a direct comparison to the Marcus picture. We find that �G ≈ 3.1 eV for
FAAQ, which is too high compared with experiment, primarily because a small basis (3-21G)
has been used for the electronic structure. It is anticipated that similar simulations in a 6-31G∗

basis would be more in line with experiment. Meanwhile, we obtain λ ≈ 1.4 eV—which is in
excellent agreement with experiment (λ ≈ 1.41 eV). A larger basis would likely have little effect
on λ because it primarily reflects the geometry of the system, which should be less sensitive
to the electronic basis. It thus appears that implicit models offer a fast and reasonably accurate
means of predicting equilibrium properties of the diabats (such as �G), but that they should be
supplemented by explicit solvent when out-of-equilibrium behavior (such as reorganization) is of
interest.
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CDFT-CI:
constrained density
functional theory–
configuration
interaction

5.2. Chemical Reactions

The diabatic picture employed for ET can also be applied to more general reactions. Instead of
“donor” and “acceptor” electronic states, “product” and “reactant” diabats that exist at all points
along the reaction coordinate are posited. This diabatic framework is the basis of empirical VB
theory (16, 17) and has been used to analyze SN1 (46) and SN2 (112) reactions, as well as proton
transfer (21). Once the diabatic states are defined, one is typically interested in computing the
corresponding adiabatic energies by solving the generalized eigenvalue problem in Equation 10
at every nuclear configuration. Activation energies and transition pathways can then be predicted,
and the transition-state electronic structure can be decomposed into reactant and product con-
tributions. In this section, we briefly touch on some recent work in our group that attempts a
systematic description of a wide range of reactions using the reactant/product division within
CDFT (113).

The first step is to construct the reactant and product diabatic states. The task at hand is
more challenging than it is for ET because in a typical chemical reaction, atoms are exchanged
between the reactant and product molecules. Thus, whereas one can reasonably bin atoms as part
of the donor or the acceptor fragment in an ET reaction, the same is not generally true in an SN2
reaction, for example. This obstacle can be overcome if one assumes that the reactant state density
resembles the superposition of the densities of the reactants (113, 114). To be concrete, suppose
one is interested in a nucleophilic substitution reaction:

ClCH3 + F− � [Cl · · · CH3 · · · F]− � Cl− + CH3F.

Clearly, the reactant state should formally have zero charge (q = 0) and no net spin (S = 0) on
the ClCH3 group and [q = −1, S = 1/2] on F−. Likewise, the product state should have Cl (q =
−1, S = 1/2) and CH3F (q = 0, S = 0). Now, we realize that the formal charges and spins will
be precise when the fragments are well-separated, but these values are not expected to be accurate
constraints at the transition state, where the fragments overlap significantly.

To obtain the correct constraint values for the reactant state (an equivalent procedure is followed
for the product), one generates a promolecule density ρ̃R by superimposing the densities of ClCH3

and F−, calculated separately with their formal charges and spins and at the same level of theory
as the final calculation; i.e.,

ρ̃σ
R(r) = ρσ

ClCH3
(r) + ρσ

F− (r) (σ = α, β). (18)

We note that the ClCH3 fragment internal geometry is identical to the geometry of said fragment
within the full calculation. The reactant charge and spin constraints of a given fragment (X =
ClCH3, F−) are then obtained from ρ̃R using the weight function, wX, associated with the same
fragment. Thus

qX =
∫

wX(r)[ρ̃α
R(r) + ρ̃

β

R(r)]dr, SX =
∫

wX(r)[ρ̃α
R(r) − ρ̃

β

R(r)]dr. (19)

qX and SX are then used in a CDFT calculation to build the desired reactant state, as illustrated
in Figure 5.

This diabatic procedure generalizes to any AB + C → A + BC reaction. Furthermore, solving
Equation 10 typically gives better adiabatic reaction barrier heights than those obtained from
the unconstrained ground state, as illustrated in Table 1. Here, we consider the standard set of
reaction barriers collected by Truhlar and coworkers (115) using both standard DFT and the
CDFT-CI energy of Equation 10 using the diabatic prescription described above for reactant
and product states. We see that the CDFT-CI results are typically significantly better than their
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Reactant Product

+ 

+ + 

+ 

a

b

c

wF–(r)
wFCH3

(r) 

qF– SF–
qFCH3

SFCH3  

CDFT CDFT 

Reactant
density  

Product
density  

d

e

Figure 5
Constructing reactant and product diabatic states for F− + CH3 Cl ↔ FCH3 + Cl−. (a) The atoms are
divided according to the reactants and products. (b) DFT calculations are performed on the isolated
fragments. (c) The fragment densities are added together. (d ) The apparent charge (q) and spin (S) for each
fragment are determined by integrating the population weight function wi (r) against the summed densities.
(e) Constrained DFT calculations are performed with the computed q and S constraints to arrive at the
reactant and product diabats.

unconstrained counterparts, particularly with less accurate functionals (113). Only for B97-2,
which already gives fairly accurate barrier heights, do the limitations of our diabatic prescription
become apparent. The clear improvement in the CDFT-CI barrier heights can be traced to two
sources. First, a large fraction of the error in DFT barrier-height predictions is known to arise from
electron self-interaction error (116, 117). Because the constraints force the electrons to localize
in each of the underlying diabatic states, the effects of self-interaction error on the CDFT-CI
results are mitigated (61, 63), improving the barrier heights. Second, by including a small CI
within the calculation, CDFT-CI is able to include some of the static correlation that is missing in
standard functionals (118), leading to a more stable description of bond breaking at the transition
state.
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Table 1 Summary of the mean absolute error (MAE) of barrier heights

PBE B3LYP B97-2
Hydrogen transfer (36)

MAE 9.7 3.8 4.6 3.0 3.6 4.0
Heavy atom transfer (12)

MAE 14.9 7.6 8.5 2.3 3.4 4.7
Nucleophilic substitution (16)

MAE 6.9 2.3 3.4 1.3 1.4 2.9
All (63)

MAE 10.0 4.2 5.1 2.5 3.0 3.9

The numbers in parenthesis represent the total number of barrier heights in each data set.
Boldfaced numbers are CDFT-CI results. All energies are in kcal mol−1.
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Figure 6
(a) Dissociation curves of LiF with various approximate methods. (b) Weights of configurations in the
CDFT-CI (B3LYP) ground state. The ground state rapidly switches from neutral to ionic at the capture
radius for Li+F− (R = 5.4 Å).

Importantly, this same diabatic prescription can be used not only to obtain accurate results, but
to physically interpret the results as well. For example, we can use the same CDFT-CI approach
to treat bonding in LiF if we consider four diabatic states: Li+F−, Li↑ F↓, Li↓F↑, and Li−F+. This
prescription gives an accurate description of the adiabatic dissociation curve (see Figure 6) when
compared to a high-level OD(2) calculation (119, 120). However, the CDFT-CI calculation also
allows us to break the adiabatic state down into contributions from the various ionic and covalent
contributions. Thus we see that LiF is indeed primarily covalent beyond the capture radius of
5.4 Å, but that Li+F− becomes dominant as the bond becomes shorter.

6. CONCLUSIONS

In this review we briefly highlight the role diabatic states have in our qualitative understanding
of chemistry, as well as the fundamental equations that allow diabats to be used for quantitative
prediction. The nonexistence of strictly diabatic states leads to a variety of essentially diabatic states,
each of which can be an appropriate description of chemistry under the right circumstances. For
concreteness, we focus here on the use of density constraints for the definition of diabats and show
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how the electronic energy, nuclear forces, and diabatic coupling can be obtained in this particular
representation. We also illustrate how these diabatic states can be used for both the description of
ET chemistry and the prediction of reaction barrier heights.

Moving forward, we see an expanding role for diabatic states in the area of reaction dynamics—
in particular, excited-state dynamics. Constructive strategies such as VB or CDFT techniques offer
direct access to diabatic potential energy surfaces without recourse to the corresponding adiabats.
Thus, energies, forces, and molecular properties can easily be computed on the fly, facilitating
molecular dynamics simulation of large systems. Thus, in the case of ET, one is already able to
propagate trajectories on individual diabatic surfaces to sample the free-energy landscape (see
Figure 4) even when one of those states is not the ground state.

Even without any further theoretical advances (see Future Issues) in our understanding of
diabatic states, the existing technology is well-positioned to answer important chemical questions.
The applications presented here are necessarily by way of illustration and validation of the concepts
involved. However, the same steps outlined above could be used in the description of ultrafast
photoinduced ET in solution (121) or at interfaces (122), as well as in the description of reaction
barriers in electrochemical (123), photovoltaic (124), and photosynthetic (125) architectures. Thus,
we see that although diabatic states have their historical origins in the qualitative description of
chemistry, these same states promise to play an active role in the future of computational and
theoretical chemistry.

SUMMARY POINTS

1. Diabatic states provide an intuitive means of describing bonding by, for example, decom-
posing the wave function into ionic and covalent contributions.

2. Diabats provide smooth potential energy surfaces that correspond to well-defined prod-
uct and reactant channels.

3. Mathematically, one cannot construct a set of strictly diabatic states out of a set of adiabats.
As a result, there are many approximate prescriptions for diabats available to chemists.

4. Constructive approaches facilitate the application of diabatic states in on-the-fly dynam-
ics.

5. CDFT provides a practical constructive route for obtaining approximate diabats in large
molecular systems.

6. Diabatic states provide a framework for obtaining quantitative predictions about ET
dynamics and chemical reaction rates.

FUTURE ISSUES

1. It would be ideal to develop a less arbitrary construction of diabatic states that is still
computationally inexpensive. At present, CDFT requires the identification of fragments
and the (nonunique) choice of atomic populations. A prescription that automatically
optimizes the fragment choice and the atomic populations based on energy minimization
would clearly be preferable. In this area, the ideas of partition theory (126, 127) might
provide a way forward.
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2. The results obtained so far indicate CDFT-CI gives accurate adiabatic ground-state
potential energy surfaces. The CI eigenequation (Equation 10) also provides excited
states. Under what circumstances are the excitation energies accurate?

3. It would be beneficial to generate trajectories that allow quantum transitions between the
diabatic electronic states. These simulations could employ, for example, surface hopping
(128), multiple spawning (129), or generalized Langevin (130) techniques to describe the
quantum transitions. Simulations of this type would be instrumental in directly predicting
ET kinetics from the dynamics.
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27. Pacher T, Cederbaum LS, Köppel H. 1993. Adiabatic and quasidiabatic states in a gauge theoretical

framework. Adv. Chem. Phys. 84:293–391
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