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Abstract

We discuss from a pedagogical perspective the use of tensors in many-body electronic
structure methods, especially the relevant storage and computational aspects used by
modern quantum chemistry software packages. We consider the implementational con-
sequences of the various symmetries—spin, spatial, and permutational—that appear in
tensors representing the Hamiltonian, wave functions, and other important quantities in
many-body methods. In addition, we review a number of state-of-the-art approaches to
tensor frameworks on modern high-performance computing architectures.

1. Introduction

Quantum chemical models are typically formulated in terms of basis-set

expansions, and the linear- and nonlinear equations governing these models

are thus most conveniently expressed as contractions over tensor-based

Annual Reports in Computational Chemistry, Volume 15 # 2019 Elsevier B.V.
ISSN 1574-1400 All rights reserved.
https://doi.org/10.1016/bs.arcc.2019.08.005

79

https://doi.org/10.1063/&spi1;1.4966643


representations of the corresponding Hamiltonian integrals and wave func-

tion parameters. While two-electron repulsion integrals require up to

four-dimensional tensors, the complexity of the data structures for the wave

function coefficients depends on the complexity of the electronic structure

model. Self-consistent-field methods such as Hartree–Fock or density-

functional theory require only two-dimensional tensors (matrices) for their

molecular orbital coefficients or electron densities, whereas more advanced

electron correlation methods, such as coupled cluster theory, can require

as high as 2N-dimensional tensors, where N is the level of excitation in

the wave function ansatz. For example, the coupled cluster singles and dou-

bles (CCSD) method requires up to four-dimensional tensors for the storage

of the cluster amplitudes, while the inclusion of full triple excitations

(CCSDT) requires up to six-dimensional tensors.

The performance of computer implementations for solving the compli-

cated algebraic equations underlying such methods thus hinges on the details

of the tensor representation, and the choice of data layout/distribution,

incorporation of permutational, spatial, and/or spin symmetries, etc. is often

tied to the particular choice of high-performance computing hardware on

which the program is ultimately deployed. The large storage capacities of

distributed-memory computing architectures, for example, permit calcula-

tions involving much larger tensors than single-node computers, but they

also require much greater attention to the design of efficient tensor data lay-

outs in order to minimize internode communications.

In this article, we will discuss the details of a number of tensor represen-

tations widely used in electronic structure codes, as well as their advantages

and disadvantages for specific applications. We will take a pedagogical

approach to our presentation in order to appeal primarily to newcomers

to the field, as opposed to “old hands” who are likely already adept at many

of the concepts we consider. Given the wide array of computer languages

utilized in modern quantum chemistry software (Fortran, C, C++, Python,

etc.) we will avoid any language-specific examples. While some of the tech-

niques we describe here can be found scattered throughout the computa-

tional chemistry literature, others can be found only within the codes

themselves and have not been previously published in detail. Finally, where

appropriate we will give specific examples of community codes that utilize

these methods, but our overview is not intended to be fully comprehensive

of the current software ecosystem of the field. Thus, the lack of recognition

of any particular codes in our presentation should not be taken as a form of

expressio unius est exclusio alterius.
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2. Basics of tensor storage

Modern high-performance computers are particularly adept at algo-

rithms involving products of matrices, both because of the structure of

advanced CPU architectures (pipelining of low-level instructions, multi-

level cache memory, fused multiply-add/-accumulate operations) and the

availability of highy tuned algorithms to exploit these capabilities. Thus,

all advanced quantum chemistry programs are designed to take advantage

of matrix-based data structures. Highly optimized libraries of matrix math-

ematics functions, such as the basic linear algebra subroutines (BLAS), are

available for most architectures and operating systems. Such libraries are

capable of providing near-peak performance of matrix operations in

single-core computing systems, and standard interfaces are available that

allow the implementation of efficient electronic structure programs without

dependence on a particular matrix-algebra package.

As an example of the use of matrix algorithms, consider the following,

typical tensor contraction, written in Einstein notation in which summation

is implied over repeated indices:

zabij ¼ xcdij y
ab
cd , (1)

we will assume for now that these tensors exhibit no special symmetries (e.g.,

permutational symmetry). A naı̈ve implementation would store each tensor

as a four-dimensional array and carry out the multiplications and additions

explicitly. However, a more efficient implementation would be to pack

each tensor into rectangular matrices and utilize optimized linear algebra

libraries. To make this example more concrete but simple, assume that

indices i and j range from 0 to 2 and indices a, b, c, and d range from 0 to

3. Then, for example, we can arrange the 3 � 3 ¼ 9 possible combinations

of i and j as

i j ij

0 0 0

0 1 1

0 2 2

1 0 3

1 1 4
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1 2 5

2 0 6

2 1 7

2 2 8

where the compound index ij¼ 3� i + j for a total of nine ij combinations.

Assuming a comparable structure for the 14 possible combinations of

corresponding ab and cd compound indices, we may view the three tensors

x, y, and z as simple matrices and the contraction as a matrix-matrix product,

depicted schematically as

Z X Yij ij

ab
ab

cd

cdx

Thus, one may take advantage of the efficiency of matrix operations on

modern computing hardware by arranging the tensors into such matrices

using contiguous memory storage and passing pointers or references to the

start of this memory to optimized BLAS functions, particularly the general

matrix multiply (GEMM) routines. In most quantum chemical programs,

double-precision (64-bit) storage and multiplication is used for such ten-

sors, but recent work has suggested that single precision (32-bit) can pro-

vide better performance without loss of necessary precision.We emphasize

that the storage of such tensors must be contiguous in memory (i.e., each

consecutive element of the matrix must occupy consecutive elements of

memory) in order to conform to the standard BLAS implementations. This

implies that one must take care when allocating memory dynamically for

storing such tensors. In C/C++ programs, the default storage is row-wise,

meaning that the beginning of a row of the matrix immediately follows the

end of the preceding row in linear memory. However, the default interface

in many BLAS implementations is Fortran based, which assumes that the

default storage is column-wise, and thus many codes will implicitly transpose

and reorder the matrix-matrix multiplication to account for this without

the need to sort the tensor elements. There do exist C/C++-based BLAS

interfaces that provide row-wise access, and these are gaining wider

adoption.

82 T. Daniel Crawford and Roberto Di Remigio



In many electronic structure methods, such as coupled cluster, the same

tensormay appear inmultiple contractions, butwith different index orderings.

For example, the xcdij tensor above might appear in another contraction as

wca
ik ¼ xcdij v

da
jk : (2)

In this case, the matrix-based storage used for the previous contraction no

longer applies, because the row and column indices have been changed,

as shown in the schematic below:

W X Vic ic

ka kajd

jdx

In order to take advantage of the efficient matrix-matrix multiplication

algorithms of the BLAS, the xcdij tensor (as well as wca
ik and v

da
jk , if they are used

in other contractions) must first be sorted into the appropriate element

ordering, and many production-level programs may keep several orderings

of a given tensor simultaneously, provided sufficient memory and other

storage.

A perhaps subtle point, however, is that not all tensor-index reorderings

require explicit movement of data. Consider yet another contraction of

the form

rabij ¼ vaks
ij
kb: (3)

In this case we have a contraction of a two-index tensor and a four-index

tensor to yield another four-index tensor, with only a single summation

index (k). To take advantage of the BLAS matrix-matrix multiplication

algorithm, we require the tensor ordering shown schematically below:

r v sa a

bij bijk

kx

Thus, it appears that we must ensure that the elements of the s
ij
kb tensor

are ordered such that only k stands as the row index against a compound bij

index for the columns. If we have already stored the elements of s
ij
kb in a

matrix with a kb compound row index and a ij compound column index,

it appears we must sort the elements into the new arrangement. However,

closer inspection reveals that no movement of data is actually required.
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Assuming that the indices i, j, and k, range from 0 to 2 and the indices a

and b range from 0 to 3, as before, then a kb � ij matrix-based storage of s
ij
kb

corresponds to the arrangement shown in Fig. 1A, where we have explicitly

indicated the values of the individual indices corresponding to each element

of the 12� 9 matrix. If the matrix is stored row-wise, then the first element

in memory corresponds to s0000, followed by s0100, s
02
00, etc. The last element of

the first row corresponds to s2200, and, if the rows are stored contiguously in

memory, the next value is the first element of the second row, i.e., s0001.

Compare this ordering to that required to carry out the contraction in

Eq. (3) above, which is shown in Fig. 1B as a 3 � 36 matrix. Again the first

element is s0000, followed by s
01
00, s

02
00, etc. But in this case, the last element of the

first row is s2203, and it is followed by the first element of the next row, viz. s0010.

However, the first nine tensor elements end with s2200, followed by s
00
01, just as

occurred in the kb� ij ordering of the tensor. Therefore, a shift between the

two arrangements requires no movement of the data in memory, only per-

haps a recalculation of the pointers to the beginning of each row in memory

(but this is not necessary for the BLAS matrix-matrix multiplication

A

B

Fig. 1 An example of matrix-based storage of the sijkb tensor for a systemwith i, j, k2{0, 1,
2} and b 2{0, 1, 2, 3} orbitals. In (A), the tensor elements are arranged with compound
row and column indices of kb and ij, respectively, while in (B) the rows are labeled by
only k while the columns use the compound index bij. If row-wise contiguous memory
storage is used, the two arrangements are, in fact, identical.
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algorithm). This observation also holds if we required the matrix to exhibit a

kbi � j arrangement, assuming no packing of the i and j indices, e.g., to take

advantage of permutational symmetry (vide infra) — no movement of the

tensor elements in memory is needed. Furthermore, this observation holds

for tensors of any order: given an n-dimensional tensor with elements stored

contiguously in linear memory, any partitioning of the dimensions along

adjacent indices requires no movement of tensor elements within memory.

A six-dimensional tensor, for example, x(i, j, k, a, b, c), could be viewed

equivalently as a matrix with index dimensions i � jkabc, ij � kabc, ijk �
abc, ijka � bc, or ijkab � c.

3. Tensor symmetries

Electronic structure calculations can take advantage of a wide array of

wave function symmetries to streamline both the storage requirements and

floating-point operational costs of a calculation, including permutational,

spin, and spatial symmetries. Here we summarize the basic concepts behind

utilizing these symmetries and what advantages and disadvantages they

provide.

3.1 Permutational symmetry
The Pauli antisymmetry principle indicates that wave functions describing

fermions (which includes electrons) must change sign upon the interchange

of the (spin and spatial) coordinates of any two particle. This principle is

often manifested in electronic structure calculations in the antisymmetry

of the various tensors that appear in the second-quantized representation

of the Hamiltonian and the electronic wave function. For example, the

two-electron integrals are often expressed in Dirac/physicist notation as

pq k rsh i¼
Z

dx
!
1

Z
dx
!
2ϕ

�
pðx!1Þϕ�

qðx!2Þ 1

r12
ϕrðx!1Þϕsðx!2Þ�ϕsðx!1Þϕrðx!2Þ
� �

,

(4)

where x
!
1 and x

!
2 contain the spin (ω) and spatial ( r

!
) coordinates of each

electron, r12 is the length of difference in the space vectors of the two elec-

trons, and the {ϕp} denote spin orbitals. This definition bestows on this

tensor the antisymmetry:

pq k rsh i¼� pq k srh i¼� qp k rsh i¼ qp k srh i, (5)
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and, if the spin orbitals are real functions,

pq k rsh i¼ rs k pqh i¼� rs k qph i¼� sr k pqh i¼ sr k qph i: (6)

When the Hamiltonian is formulated as above, the wave function ampli-

tudes in electron correlation methods also exhibit antisymmetry, e.g., the

double-excitation amplitude tensor of coupled cluster theory,

tabij ¼�tbaij ¼�tabji ¼ tbaji , (7)

where i and j (a and b) denote occupied (unoccupied) spin orbitals.

One can take advantage of permutational antisymmetry by packing the

canonical indices described earlier. For example, if the tensor xcdij of Eq. (1) is

antisymmetric with respect to permutation of its i and j indices, then the ear-

lier table of values of the compound index ij is reduced from nine elements

to only three because tensor elements with i ¼ j are necessarily zero:

i j ij

1 0 0

2 0 1

2 1 2

While this results in considerable reduction of the storage and computing

demands, a complication arises when the tensor indices must be unpacked

for contractions that require all values of the permutable indices, such as that

occurring in Eq. (2).

3.2 Spin symmetry
In the case of a spin-independentHamiltonian, the total spin angular momen-

tum operator (Ŝ
2
), commutes with the Hamiltonian and thus eigenfunctions

can be constructed that are common to both operators. In practice, this

typically means that approximate wave functions are constructed to be

eigenfunctions of Ŝ2, i.e., to represent a pure spin state. This is relatively

straightforward for Hartree–Fock wave functions and for wave functions

for which the wave operator is linear in nature, such as in configuration

interaction methods. For more complicated electron correlation models,

such as coupled cluster theory, enforcing spin symmetry is straightforward
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only for states whose zeroth-order wave function represents a closed-shell

singlet. For open-shell states, conventional coupled cluster approaches do

not yield spin eigenfunctions unless one takes great pains in both formu-

lation and implementation [1, 2].

While spin-orbital representations, such as those described in the pre-

vious subsection, yield antisymmetric tensors for Hamiltonian components

and wave function parameters, the tensors representing spin-adapted wave

functions are typically spin free (i.e., constructed in terms of spatial orbitals

rather than spin orbitals), and thus have more limited permutational sym-

metry. For example, in a spin-adapted representation of a spin singlet, the

coupled cluster double-excitation amplitudes mentioned earlier have only

one permutational degree of freedom,

tabij ¼ tbaji , (8)

where the indices here refer to spatial orbitals rather than spin orbitals.

3.3 Spatial/point group symmetry
While it is certainly true that the vast majority of molecules are asymmetric,

the existence of even one symmetry elementa can make a significant differ-

ence in the cost of an electronic structure calculation. The use of spatial sym-

metry to streamline quantum chemical calculations hinges on the vanishing

integral rule, which states in its simplest terms that an integral of a general

function over a symmetric domain is zero unless the integrand contains a

component that transforms as the totally symmetric irreducible representa-

tion (irrep) of the applicable point group. While this rule holds for any point

group, irreps, it is most straightforwardly derived for Abelian groups, for

which all irreps are one-dimensional.

Consider such a point group comprised of h symmetry operations, Ô

and, correspondingly h one-dimensional irreps with characters χðÔÞ. An
arbitrary function, f ðx!Þ, defined on a domain R, may be written as a

sum of components, each spanning an irrep of the point group,

f ðx!Þ¼
Xirreps
j

f ðx!Þj, (9)

a We focus here on point group symmetry, which is of principal importance to molecular systems, as

opposed to space-group symmetry, which is relevant to periodic systems, such as molecular crystals.
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where we will take j ¼ 1 to denote the totally symmetric irrep. Thus, the

integral of f ðx!Þ overRmay similarly be decomposed into irrep components,

I ¼
Z
R
f ðx!Þd x!¼

Xirreps
j

Z
R
f ðx!Þjd x!¼

Xirreps
j

Ij (10)

Furthermore, the action of a symmetry operator Ô on the components of

f ðx!Þ yields the corresponding characters as eigenvalues, viz.

Ô
Xirreps
j

f ðx!Þj ¼
Xirreps
j

χðÔÞj f ðx!Þj, (11)

and therefore,

ÔI ¼ Ô
Xirreps
j

Ij ¼
Xirreps
j

χðÔÞjIj: (12)

If the domain R is unchanged by the operations of the group, Ô½R�!R,

then the integral of f ðx!Þ over the domain R is concomitantly unchanged.

Thus,

ÔI� I ¼
Xirreps
j

χðÔÞjIj�
Xirreps
j

Ij ¼ 0: (13)

Given that this equation holds for all operations of the group, we may there-

fore sum over all such operations and reorder the summations to obtain,

X
Ô

ÔI� I
� �¼Xirreps

j

Ij
X
Ô

χðÔÞj�1
� �

¼ 0: (14)

For point groups with nondegenerate irreps [3],

X
Ô

χðÔÞj ¼
h if j¼ totally symmetric irrep

0 otherwise

�
(15)

Thus,

X
Ô

ÔI� I
� �¼Xirreps

j 6¼1

Ij
X
Ô

ð�1Þ¼�h
Xirreps
j 6¼1

Ij ¼ 0: (16)
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We therefore conclude that the sum of the nontotally symmetric integrals is

zero and that only the integral containing the totally symmetric irrep can

make a nonzero contribution to the total integral, i.e.,

I ¼ I1: (17)

The implication of the vanishing integral rule in electronic structure cal-

culations is straightforward: if the one- and two-electron integrals appearing

in the second-quantized Hamiltonian are comprised of molecular orbitals

that are themselves built from symmetry-adapted basis functions (a common

procedure in modern quantum chemical programs), then the integrals —

and, by extension, the molecular orbitals and other wave function parame-

ters/amplitudes and any intermediate tensors built from their products— are

zero unless the direct product of their corresponding irreps contains the

totally symmetric irrep. This result is probably the most fundamental selec-

tion rule in computational chemistry, as it shows that the matrix represen-

tation of a totally symmetric operator is block diagonal by irrep in a basis of

symmetry-adapted functions. Hence the storage requirements for such

matrix representations can be dramatically reduced as only the diagonal

blocks will be nonzero. In the specific case of the antisymmetrized two-

electron integral in Eq. (4), for example, if the molecular orbitals, ϕp, ϕq,

ϕr, and ϕs transform as the irreducible representations (irreps) Γp, Γq, Γr,
and Γs, respectively, then the antisymmetrized two-electron integral,

pq k rsh i, must be zero unless

A1�Γp�Γq�Γr�Γs, (18)

where we have used the Mulliken symbol A1 to represent the totally sym-

metric irrep.

Most quantum chemistry programs can take advantage only of point

groups containing nondegenerate irreps, specifically D2h and its subgroups

(C2v, C2h,C2,D2, Cs, Ci, andC1), for which all characters are� 1. (A nota-

ble exception is the SCF module in the Turbomole package [4].) As a result,

direct products between the irreps of such groups are much easier to com-

pute than for groups with complex characters, such as the cyclic groups C3

or higher, or groups with degenerate irreps, where direct products can lead

to direct sums of irreps (e.g., e0� e0 ¼ a1 	 a2 	 e0 in the C3v group). Fur-

thermore, as first demonstrated in 1974 by Alml€of [5, 6], forD2h and its sub-

groups direct products can be computed trivially and efficiently using the
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bitwise exclusive-or (XOR) logical operation.b For example, for D2h, if we

use the irrep ordering of Cotton [3] and number them starting from 0 with

the totally symmetric irrep first, we have

Irrep Decimal Binary

ag 0 000

b1g 1 001

b2g 2 010

b3g 3 011

au 4 100

b1u 5 101

b2u 6 110

b3u 7 111

Then we may take any direct product without consulting a character

table simply by computing the XOR between the binary representations

of the two irreps in question, e.g.,

b1g�au¼XORð001,100Þ¼ 101¼ 5¼ b1u (19)

or

b2u�b3u¼XORð110,111Þ¼ 001¼ 1¼ b1g: (20)

The XOR approach also maintains the requirement that, for D2h and its

subgroups, the direct product of any irrep with itself must yield the totally

symmetric irrep, because XOR of any bit with itself is zero, e.g.,

b2g�b2g ¼XORð010,010Þ¼ 000¼ 0¼ ag: (21)

This technique has long been employed in the DALTON [7] and PSI [8]

programs (and likely others) and XOR is just one of many examples in

which bitwise logic operators have found use in efficient quantum chemical

programs [5, 6].

We may simultaneously take advantage of both the vanishing integral

rule and the matrix-based algorithms described in the previous section by

b The bitwise XOR can be thought of as “one or the other, but not both,” and thus gives the single-bit

values XOR(0,0) ¼ XOR(1,1) ¼ 0, and XOR(0,1) ¼ XOR(1,0) ¼ 1.
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grouping the molecular orbitals by irrep. Taking the two irreps of the Cs

point group as an example, assume that the three occupied orbitals in our

earlier example transform such that the first two (orbitals 0 and 1) belong

to the a0 irrep and the last (orbital 2) belongs to a00. Similarly, let us assume

that the four unoccupied orbitals are evenly divided with orbitals 0 and 1 in

a0 and orbitals 2 and 3 in a00. With these symmetry assignments in mind, we

may augment the matrix storage for the s
ij
kb tensor used as an example from

the previous section as shown in Fig. 2A to include the direct product of the

irreps of each row pair, Γkb 
Γk � Γb, and column pair, Γij 
Γi � Γj. Given
that the tensor represents a totally symmetric quantity, then, in accord with

Eq. (18), the only possible nonzero entries in the matrix are those for which

Γkb ¼Γij. In the figure, dark squares represent symmetry-allowed tensor ele-

ments and the white squares represent zeroes, revealing substantial sparsity in

the matrix, with exactly half of the 108 possible tensor elements vanishing

due to symmetry. If we were to sort the rows and columns to collect all

A B

Fig. 2 An example of matrix-based storage of the sijkb tensor, including point group sym-
metry. The molecule belongs to the Cs point group with the three occupied orbitals dis-
tributed between the irreps as {0, 1, 2} ¼ {a0, a0, a00} and the four unoccupied orbitals as
{0, 1, 2, 3} ¼ {a0, a0, a00, a00}. Dark squares indicate symmetry-allowed elements and white
squares indicate vanishing elements. In (A) the rows and columns are ordered exactly
as in Fig. 1, while in (B) kb and ij pairs have been sorted such that all binary products
of orbitals yielding a0 and a00 are grouped separately, leading to a more efficient
symmetry-blocked structure.
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a0 and a00 irrep products together, we arrive at the blocked structure indicated
in Fig. 2B. Thus, we may reduce the memory and/or disk requirements for

storing the elements by a factor of two by retaining only the two symmetry-

allowed submatrices of dimensions 6� 5 and 6� 4, respectively. In general,

the reduction in storage costs of elements, amplitudes, and other symmetry-

adapted intermediates scales approximately as the square order of the point

group, h2, with the eight symmetry operations of the D2h group yielding

an impressive factor of 64 reduction [9, 10].

Note also that the storage of the s
ij
kb tensor from the kb � ij arrangement

shown in Fig. 2B may also be viewed as equivalent to a k � bij arrangement

analogous to that in Fig. 1B, with the additional caveat that each nonvan-

ishing submatrix is subsequently decomposed into h blocks of elements. For

example, consider the upper-left submatrix of kb� ij elements in Fig. 2B, for

which Γkb¼Γij¼ a0. If we isolate the index, k, to the left, we see that the two
a0 occupied orbitals can be grouped together, followed by the a00 occupied
orbital. Therefore, this Γkb ¼Γij ¼ a0 submatrix may be viewed as two con-

secutive matrices, one with Γk ¼Γbij ¼ a0 and one with Γk ¼Γbij ¼ a00, with
no movement of the elements in memory, as shown in Fig. 3A. Similarly,

the Γkb ¼Γij ¼ a00 submatrix of Fig. 2B may be viewed as two submatrices,

each distinguished by again isolating the index k to left within each irrep, as

shown in Fig. 3B.

The use of symmetry not only reduces disk and memory storage require-

ments, it also reduces the number of floating-point operations required to

evaluate tensor contractions appearing in electronic structure formulations.

For example, for a molecule with C2v symmetry, if we were to make use of

symmetry-blocking of the tensors representing the xcdij , v
da
jk , and wca

ik tensors

from Eq. (2), the schematic diagram given earlier could be modified for

the four irreps as

ic ic

ka kajd

jdxW X V

a1 a2 b1 b2 a1 a2 b1 b2a1 a2 b1 b2

a1

a2

b1

b2

a1

a2

b1

b2

a1

a2

b1

b2

The irrep labels denote direct products of pairs of irreps associated with

spin-adapted indices, Γic, Γjd, or Γka, and thus the dark squares indicate

groups of symmetry-allowed elements and the white squares groups of
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elements that must be zero.c The diagram reveals the useful factor of four

(¼ h for C2v) reduction in storage of the residuals, amplitudes, and integrals,

as well as the reduction in the number of floating-point operations by a

factor of 16 (¼ h2), because we only need carry out matrix-matrix multipli-

cations between corresponding nonzero subblocks of the tensor factors.

A

B

Fig. 3 Rearrangement of the sijkb tensor into matrix-blocked k � bij ordering, including
point group symmetry. The molecule belongs to the Cs point group with the same
orbital groups as in Fig. 2. In (A) the Γkb ¼Γij ¼ a0 submatrix is decomposed into two
smaller submatrices based on the two possible irreps of orbital index k, while in (B),
the same decomposition is carried out on the Γkb ¼Γij ¼ a00 submatrix. In each case,
if the tensor is stored in a row-wise, contiguous fashion in memory, no sorting of the
data is necessary.

c The perfect blocking in this schematic diagram in which each irrep contains the same number of tensor

elements occurs only if the number of orbitals in each irrep is identical. This often occurs for cyclic

groups, such as C2 or for the inversion group, Ci, but not for groups with mirror planes, such as C2v.
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While the vanishing integral rule holds for the Hamiltonian and wave

functions, some nonzero tensor quantities appearing in electronic structure

methods may, in fact, be nontotally symmetric, i.e., transform as an irrep

other than A1.
d For example, wave function derivatives with respect to a

symmetric/symmetrized perturbation such as an external Cartesian field

or symmetry-adapted geometrical coordinate can be nontotally symmetric,

as can excitation vectors, e.g., tensors representing differences or gradients

between different electronic states. In such cases, the schematic view of the

contraction above takes on a somewhat different layout if, for example, the

irrep of the xcdij and vdajk factors were A2 and B1, respectively, within C2v:

ic ic

ka kajd

jdxW X V

a1 a2 b1 b2 a1 a2 b1 b2a1 a2 b1 b2

a1

a2

b1

b2

a1

a2

b1

b2

a1

a2

b1

b2

In this case, the same storage and computational advantages appear as in

the totally symmetric case, but the implementation requires additional logic

for the ordering of the nonzero data blocks. One could choose to order

the submatrix storage based on either the row irrep or the column irrep,

and, ultimately the decision is arbitrary, provided one maintains a consistent

standard [8].

4. Modern implementations

Quantum chemistry is an integral part of the toolbox of researchers, in

part because of the development of efficient and robust implementations of

reliable ab initiomethods that can leverage existing medium- and large-scale

computer architecture. In addition, the formulation and application of new

electronic structure methods that can enable new discoveries and new sci-

ence critically depends on the ease with which quantum chemists can cor-

rectly and efficiently implement the equations inherent to these methods.

The complexity of many of the highly accurate theories available makes this

d Such quantities still obey the vanishing integral rule, but they should be considered factors in a product

of terms that ultimately must contain the totally symmetric irrep.
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a nontrivial task, especially when one hopes to also achieve maximum per-

formance on the available computing resources.

Tensor contraction libraries are among the core components, together

with molecular integral evaluation engines, of quantum chemistry programs.

On modern distributed-memory parallel computing systems, the efficiency

of a tensor contraction hinges on minimization of communication overhead

among nodes. Tensor libraries should ideally provide a number of key per-

formance capabilities [11]:

1. They must be able to accommodate arbitrary tensors, with storage strat-

egies that minimize the need for noncontiguous data movement oper-

ations, such as transpositions and sortings.

2. They should handle arbitrary contractions between tensors using opti-

mized and parallelizable computational kernels.

3. They should transparently and adaptively manage memory usage by

processing tensors in chunks as required by the available amounts of core

memory and disk space.

4. The should leverage all the symmetries that the quantum chemical theory

at hand enforces, such as permutational, spin, and point group, which can

lead to significant savings in terms of computational time and storage, as

discussed in the previous sections.

Tensor library developers attempting to fulfill this list of requirements

also strive in keeping the inherent complexities of the code properly

encapsulated from the end-users of their tensor library: the design of the

applications programmer interface (API) is extremely important. At a

glance, many of the existing implementations conform to the so-called

transpose-transpose-GEMM-transpose (TTGT) paradigm [12] such as those

described in Section 2 above and are thus structured according to the

following scheme:

• A low-level foundation that specifies the layout of the tensor data struc-

ture in memory and the basic operations on such a data structure, such as

allocation, deallocation, assignment, element access, and arithmetic

operations. This low-level layer, being “closer to the metal” will also

take care of the chunking operations. The latter will be discussed shortly.

• A middle-level layer that handles contractions. In the TTGT paradigm,

one will resort to optimized BLAS-like libraries for matrix-matrix and

matrix-vector multiplication.

• A high-level layer that is ultimately intended as the library API for user

consumption. This layer should allow for easy creation andmanipulation

of tensors and the expression in code of the working equations of the
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theory in a form that is as close as possible to the derived equations. This

task is easily achievedwith the definition and implementation of domain-

specific languages (DSLs). Automatic code generators [13, 14] might also

be part of the high-level layer, but their discussion is beyond the scope of

this article.

We emphasize that this design overview does not imply that there exists a

one-size-fits-all approach to the problem. Whereas the basic requirements

for a library will largely remain unchanged, the target problems (small and

medium vs large) and architectures (single- vs multiple-node, homogeneous

vs heterogeneous) will perforce guide the implementation choices.

In many medium-sized applications on single-node, homogeneous

architectures, the available core memory might be exceeded by the required

tensors. An efficient library must be able to process tensors in chunks and

switch between disk-based and memory-based algorithms with little to no

additional overhead. For this class of problems the existing implementations

fall in the TTGT paradigm: the cost of transposition/sorting is still negligible

with respect to that for matrix multiplications. Storage schemes where sym-

metry packing is easily implemented are favored, as they afford significant

savings in the I/O operations for disk-based algorithms.

The direct product decomposition (DPD) approach [9, 10] (components

of which are described in detail in Section 3.3) was devised to enforce point

group symmetry in the solution of the coupled cluster equations. The stor-

age format emphasizes space savings: only nonzero, nonredundant symme-

try blocks of amplitudes, integrals, and intermediates will be stored. This will

incur transposition/sorting overhead during some of the contractions, but it

still is very well suited for medium-sized applications, especially if coupled to

disk-based storage and chunking strategies that overlap disk I/Owith matrix

multiplies to hide latency.

The tensor contraction engine [15] (TCE) is another notable example

of the TTGT paradigm. The TCE generates contraction code to be fur-

ther compiled into an executable program. An operation tree is generated

based on the derived equations, intermediates are identified, and the opti-

mal contraction patterns are chosen based on heuristic considerations.

More recently Epifanovsky et al. have described the libtensor library

which offers an implementation of the TTGT paradigm with an easy to

understand high-level API for increased programmers productivity [16,

17]. The work of Kaliman and Krylov on libxm [18] builds upon

libtensor, to allow the use of GPUs and disk-based algorithms. Many

of the more recent implementations of tensor libraries use C++, the
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multiparadigm programming language that makes it possible to achieve

performance without sacrificing expressiveness. Template programming

is one of the essential cornerstones of C++, since it enables static polymor-

phism, compile-time computation, and laziness [19]. For example, with

static polymorphism it is possible to have functions for single-precision

and double-precision floating point numbers without code duplication.

This technology is proving instrumental in reappraising the assumed

necessity of double-precision arithmetic [20] and will be a necessary tool

for any attempt at mixed-precision implementations.

For multiple-node and/or heterogeneous architectures, developers

strive to minimize communication overhead and load imbalances between

the different processing units. Thus, more often than not, transposition and

sorting become bottlenecks as they require slow internode communication.

Authors of this class of libraries emphasize storage formats that maximize

data locality to facilitate distribution and reduce message-passing. Under-

standably, such libraries show greater complexity: assumptions on the lay-

out of the computing facilities need to be implicitly or explicitly coded in

the various algorithms.

The Cyclops tensor framework [21] (CTF) is designed to leverage

multiple-node architectures within the TTGT paradigm. This requires care-

fully tuned storage patterns so that transposition/sorting will not become

a communication bottleneck. The library provides an expressive DSL that

lets users write code that maps one-to-one to derived equations. Under

the hood, the tensors are distributed according to a cyclic decomposition,

and structured communication patterns orchestrate the tensor contractions.

The cyclic decomposition was adopted to preserve symmetry packing of the

tensor in each subtensor while minimizing the need for padding data. The

resulting decomposition is regular enough to allow the use of BLAS-like

subroutines on such distributed blocks.

The ExaTensor library is a relatively new addition to the landscape of ten-

sor contraction libraries for quantummany-body theories [22]. The library is

written in the Fortran programming language and explicitly targets multiple-

node, heterogeneous computing environments. The domain-specific virtual

processor (DSVP) concept is the core abstraction of ExaTensor: a software

processor architecture that is able to execute domain-specific primitives,

such as tensor contractions, natively on the available hardware. This is an idea

reminiscent of the super instruction architecture language (SIAL) framework

[23–25], and strives for a task-based, rather than data-based, parallelism

strategy.
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Ultimately, as the sizes of chemical problems and computing architec-

tures reach extreme scales, the cost of transposition/sorting will adversely

affect performance. Furthermore, the emergence of local quantum many-

body theories—which take advantage of the short-sightedness of the Cou-

lomb two-electron interaction to achieve reduced scaling—poses additional

challenges to the effectiveness of the TTGT paradigm.With locality, sparsity

patterns emerge that are less regular than those imposed by the symmetries

we have so far discussed.

The TBLIS project aims at completely avoiding transposition/sorting in

tensor contractions [12]. Within TBLIS, tensors are stored as matrices, but

according to a logical mapping that is neither column-major nor row-major.

This is termed block-scatter-matrix (BSM) format and the BSM tensor con-

traction (BSMTC) is its related contraction algorithm. As the name suggests,

TBLIS is related to the BLAS-like Library Instantiation Software (BLIS)

framework [26].

TiledArray offers a novel approach to the efficient exploitation of sparsity

and targets multiple-node architectures [27–29]. The basic data type is the
distributed array, which is a collection of tiles, for dense or sparse tensors.

The implementation is templated C++, and different underlying scalar data

types are thus automatically supported. The library can also accommodate

more general sparsity patterns, such as the clustered low-rank [30] (CLR)

format, reminiscent of H-matrices.

We also note that most of what has been discussed above can be adapted,

with minor modifications, to relativistic electronic structure models in the

Kramers unrestricted formalism [31, 32]. Indeed, when the time-reversal

symmetry between large and small component of the 4-spinors is relaxed,

the working equations of relativistic coupled cluster theory, for example,

are the same as in the nonrelativistic spin-orbital case, allowing for efficient

reuse of much of the same infrastructure. Recently Shee et al. have presented

a new implementation of relativistic ground- [33] and excited-state [33]

coupled cluster methods based on an extension of the DPD format [9, 10]

to double group symmetry and complex algebra.

5. Conclusions and prospectus

The quest for the optimum implementation of tensor contraction

algorithms will likely keep researchers occupied for many years to come.

The efficient use of existing computer architectures, programmers’ pro-

ductivity/time, and expansion of the domain of applicability of quantum
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many-body methods pose important challenges. With heterogeneous

computing environments gaining importance, careful hand-optimization

of computational kernels could prove ineffective. Data-based approaches

to systematic optimization, notably based on machine learning, could

become the frontier of performance tuning.
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