
Editorial: Modern Architectures and Their Impact on Electronic
Structure Theory

Cite This: Chem. Rev. 2020, 120, 9015−9020 Read Online

ACCESS Metrics & More Article Recommendations

In 1929, P. A. M. Dirac asserted that “The underlying
physical laws necessary for the mathematical theory of a

large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact
application of these laws leads to equations much too
complicated to be soluble”.1 Less than 15 years later, the
physicists Atanasoff and Berry at Iowa State College
constructed the first automatic digital computer,2 a replica of
which can be viewed on the Iowa State University campus. It is
interesting to wonder what Dirac would think about the
dramatic advances in the capabilities of both computer
architectures and software paradigms which, taken together,
have enabled theoretical and computational chemists to
transform those “underlying physical laws” into important
applications in chemistry, physics, biology, materials, and many
other fields.
The computing world is on the brink of the exascale era,

with computers that are capable of exaflop (1018 floating point
operations/second) calculations anticipated to become avail-
able within the next two years. “Pre-exascale” computers; e.g.,
Summit at Oak Ridge National Laboratory, are already in
operation. These computers have, or will have, the ability to
successfully attack important problems that relate directly to
current experiments and that could not have been solved
otherwise. Examples include understanding heterogeneous
catalysis in mesopores (including solvent and enough of the
pore to be realistic), the design of new materials with desired
properties, such as materials for quantum computing or ligands
for selective separations, the study of condensed phase
phenomena, and potentially designing new vaccines to combat
viruses.
The most advanced computers (including the top 500

computers)3 almost all have heterogeneous architectures that
include both the latest computer processing units (CPUs) and
graphical processing units (GPUs) and potentially other
accelerators. GPUs, in particular, speed up calculations because
of their high density of threads that greatly enhance parallelism
for operations such as matrix multiplies that are ubiquitous in
many electronic structure functionalities. All of the planned
exascale computers (e.g., Aurora at Argonne National
Laboratory, Frontier at Oak Ridge National Laboratory, and
El Capitan at Lawrence Livermore National Laboratoryall in
the U.S.4) will have a significant GPU presence. This
heterogeneity necessitates the development of novel software
engineering and the design of ubiquitous libraries, since the
CPU and accelerator architectures often require the use of
different languages, as well as different approaches to

programming. Complicating this situation further, there are
multiple GPU vendors (e.g., NVIDIA, AMD, Intel), each of
which has its own language and software requirements. Indeed,
Aurora and Frontier will be based on GPUs from different
vendors. Consequently, many electronic structure function-
alities (e.g., integrals5 over basis functions, Fock builds for
Hartree−Fock calculations,6 second order perturbation theory
(MP2),7,8 multiconfigurational methods,9 and coupled cluster
(CC) methods10) that have been implemented primarily for
NVIDIA GPUs must be translated by the application
developer (e.g., quantum chemist) for use on another type
of GPU. There are at present no efficient translators from one
type of GPU to another, although significant effort is ongoing
in this area.11,12 Indeed, chemists themselves have been
developing software generators that take quantum mechanical
quantities (such as integrals)13,5 and methods (such as
CC)14−16 and generate the code to be run by the end user.
These software generators offer a potential pathway to faster
generation of GPU specific code; however, the initial
implementations are frequently computationally inefficient.
Other accelerators have been developed, notably the various

versions of the Intel Phi,17 especially Knights Landing (KNL)
which is an important component of Cori at NERSC (the
National Energy Research Scientific Computing Center at
Berkeley). Others include ARM and field programmable gate
arrays (FPGA), but none of these alternatives appear to be as
computational effective as GPUs.18 Nonetheless, one of the
top 500 computers (Astra at Sandia National Laboratory, #198
on the list) is configured with ARM accelerators. In addition, it
is noteworthy that the most recent Japanese system at the
RIKEN Center for Computational Chemistry is based on the
ARM architecture, and it is rumored that China’s Tianhe-3 will
also be based on ARM technology. Quantum computers are
also making an appearance with limited qubits available to the
scientific community.19,20 The programming models are
currently quite different from those that are commonly used
within quantum chemistry (e.g., hybrid approaches in which
classical computers and quantum computers each do that part
of the computation for which they are most well suited).

Published: September 9, 2020

Editorialpubs.acs.org/CR

© 2020 American Chemical Society
9015

https://dx.doi.org/10.1021/acs.chemrev.0c00700
Chem. Rev. 2020, 120, 9015−9020

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
SA

O
 P

A
U

L
O

 o
n 

Se
pt

em
be

r 
9,

 2
02

0 
at

 1
5:

40
:0

0 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.chemrev.0c00700&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00700?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00700?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00700?goto=recommendations&?ref=pdf
https://pubs.acs.org/toc/chreay/120/17?ref=pdf
https://pubs.acs.org/toc/chreay/120/17?ref=pdf
https://pubs.acs.org/toc/chreay/120/17?ref=pdf
https://pubs.acs.org/toc/chreay/120/17?ref=pdf
pubs.acs.org/CR?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00700?ref=pdf
https://pubs.acs.org/CR?ref=pdf
https://pubs.acs.org/CR?ref=pdf


Consequently, quantum computers offer yet another challenge
to quantum chemistry software development.
In concert with the addition of GPUs, the core counts per

node have been steadily rising with the latest nodes having up
to 48 cores per node. However, even with these large core
counts, much of the compute power of the top 500 machines
comes from the GPUs on each node. Many of these nodes also
support at least three levels of cache and have relatively large
memory available for computation. Currently, the CPU and
GPU memories are mostly separate, with NVLink being the
notable exception.21 Programmers need to think carefully
about data locality and reuse to minimize data movement
between the CPUs and GPUs. In addition, since communi-
cation networks between nodes have not been able to keep up
with the advances in raw compute power, data movement
between nodes also needs to be minimized. This data locality
has led to a resurgence of methods that take advantage of the
local features within molecular chemistry that are discussed
below.
For serial or low parallelism programming, disk-based

methods were often useful since the communication to local
disk was faster than having to recompute quantities on a single
CPU that were too large to hold in memory. However, the
increased computing power, especially parallel computing
capability with multiple cores and multiple threads, has
outstripped most of the disk capabilitiesespecially for large
computers where the large disk storage is on a distributed file
system rather than on the node (local disk space). This has led
to the reframing of many problems in terms of direct
computations (recalculation of quantities too large to store)
and to algorithms that require less intermediate data, such as
fragmentation and reduced scaling methods. However, even for
I/O, new technology is continually becoming available. For
example, solid-state drives, flash memory, and burst buffers
could enable programmers to again use large storage space for
intermediate quantities or for restart. However, most of the
large computer centers have not taken advantage of this
technology. So, most programmers do not count on having this
capability available for their algorithmic developments.
While the computer architecture issues are complex on their

own, there are also significant computer software stack and
language requirements to navigate. Most electronic structure
programs are written in Fortran, C++, or Python, or in some
cases, combinations of these languages. An example of the
latter is Psi4,22 which is written partly in C++ and partly in
Python. This is motivated by the fact that while Python is very
good at the “traffic directing” aspects of a complex code, it is
not very performant, whereas the opposite is true of C++ or
Fortran. It is common for “legacy” codes, such as GAMESS,23

Molpro,24 Molcas25 and NWChem26 to be written primarily in
Fortran77 or Fortran90, while newer codes are commonly
written in an object oriented language like C++ (e.g., Q-
Chem,27 NWChemEx,28 QMCPack29), but possibly modern
versions of Fortran. For example, associated with GAMESS is a
C++ code called LibCChem.30 LibCChem currently contains
closed shell HF, MP2, RI-MP2, and CCSD(T) functionalities.
A novel programming language, Julia, combines the best
features of the lower level languages (e.g., Fortran, C++) and
the higher level languages such as Python. A recent Hartree−
Fock implementation in Julia has been shown to be
surprisingly competitive with the HF code in GAMESS.31

One attractive feature of C++ is that it is integrated with
many high-performance computing frameworks. C++ has

language-specific bindings for CUDA, OpenMP, OpenCL,
and OpenACC. For this reason, programs written in C++ can
readily make use of accelerators. Several quantum chemistry
codes are being written with GPUs as the primary target using
C++, including TeraChem,32 LibCChem,30 and NWChe-
mEx.28 This is very important since, as noted above,
accelerators are playing an increasingly central role in high
performance computing. The Department of Energy Exascale
Computing Project (ECP) has had an increasing focus on
GPUs over the past three years, and the anticipated exascale
computers will all have a significant GPU presence. In addition,
the latest C++ releases include features that support thread and
task-based parallel processing, thereby reducing the need for
using thread libraries such as Pthreads. It is also possible,
however, to offload Fortran code directly onto GPUs as well.
This has been accomplished for the RI-MP2 code in
GAMESS.23

In addition to the base programming language for a code,
there are multiple models for parallel programming that one
must consider. MPI33 is still considered the general standard
for communication between nodes. Multiple programming
models have been built within the chemistry community on
top of MPI and/or native hardware communication libraries
that allow the chemistry programmer to effectively worry more
about the data layout and communication as opposed to the
specifics of the MPI interface. Two of the notable examples
here are the Global Arrays (GA) program that was codesigned
as the nonuniform memory architecture with NWChem and
the generalized distributed data interface (GDDI) that
performs the same role for GAMESS. GA, an early example
of a partitioned global address space (PGAS) language, is now
being used in other codes such as MolPro,24 GAMESS-UK,34

Columbus,35 LibCChem,30 and MolCAS.25 While these tools
have been invaluable in the community, they do not have the
full flexibility that is required for exascale computing.
The situation on the node is not nearly so straightforward

and no single standard has emerged. Threading on the CPUs
(and to the GPUs) is becoming more commonrunning only
a few MPI processes on the node to handle communication
and data transfer issues. C++ threads, Pthreads, Intel TBB, and
OpenMP are common models for threading on CPUs
although none have emerged as a standard that is portable
across all platforms and computing environments. For
accelerators, the situation is even more complex since each
GPU has a standard language associated with it. The compute
unified device architecture (CUDA)36 software for NVIDIA
GPUs has attracted a large following in the chemistry
community due to the ubiquity of NVIDIA GPUs. However,
in the exascale computers, AMD (Frontier and El Capitan)
and Intel (Aurora) GPUs will be used. AMD uses HIP37 as its
primary programming language. Since there is a mostly one-to-
one-mapping between CUDA and HIP, conversion software
seems to do a reasonable first pass at converting CUDA to
HIP. Intel uses SYCL38 (a version of OpenCL) and Data
Parallel C++ (DPC++)12 within the oneAPI software.39 While
the conversion from CUDA to SYCL is not a straightforward
one-to-one mapping, there are several tools available and they
are continuously improving. The other possible advantage of
SYCL is that it uses the OpenCL convention as its base.
Therefore, if an algorithm is written in OpenCL, then, in
theory, the code will run across multiple platforms. Other
models such as OpenMP and OpenACC are also meant to be
portable across multiple platforms. However, all of these codes

Chemical Reviews pubs.acs.org/CR Editorial

https://dx.doi.org/10.1021/acs.chemrev.0c00700
Chem. Rev. 2020, 120, 9015−9020

9016

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00700?ref=pdf


work better on some platforms than others and no standard
has emerged. In fact, one model may perform the best on one
platform and perform quite poorly on another (or not at all).
At this point, it is unclear which GPU architecture(s) will
survive in the long run. As noted above, the use of NVIDIA
GPUs is now widespread, but they will not play a significant
role in the exascale computers that are planned by the
Department of Energy. Time will tell!
In addition to the challenges listed above, it is also clear that

keeping all of the computational resources busy with work (i.e.,
balancing the computational load across multiple heteroge-
neous computer architectures to avoid idle components) has
become a much greater challenge than it was on homogeneous
systems. Multiple chemistry codes have been turning to task-
based management systems such as CHARM++40 (NAMD41

and OpenAtom42), MADWorld43 (MADNESS,43 MPQC,44

and NWChemEx), and PaRSEC45 (NWChem and GAMESS).
In each of these codes, there is a runtime environment that can
adapt to the machine parameters and execution to provide
dynamic load balancing and fault tolerancemaximizing
communication and execution overlap to decrease overall
execution time. For example, MADWorld uses futures (i.e.,
anticipated possibilities for asynchronous execution later in the
code) to enable asynchronous execution of tasks. The feature
of directed task graphs is also common to task-based
management tools and allows the programmer to break
down work into appropriately sized tasks for the computational
resource. The tasks can then be scheduled to run on available
nodes and to migrate to nodes where the data is located
having the effect of optimizing the job to the architecture. For
example, PARSEC45 has been used to reduce load imbalances
in the coupled cluster component of NWChem46 and is
currently being used for similar purposes in the GAMESS
code.
As computer capabilities have expanded to the petascale and

pre-exascale, power costs and power consumption have
become important issues. Consequently, considerable effort
has been invested in exploring potential solutions such as
reducing clock speeds in ways that have minimal impact on
time to solution.47,48 Sosonkina has shown that if one lowers
the clock speed when cores are idle, power consumption can
be reduced at virtually no loss in computational speed.49 In
addition, time to solution and power consumption can both be
decreased in certain cases by oversubscription methods where
more processes than processors are requested for a given
computation.50

Novel architectures, such as GPUs and other accelerators,
and associated languages (e.g., CUDA) and middleware (MPI,
OpenMP) are an important and necessary step toward
advanced high-performance computing in quantum chemistry.
An equally important necessity is the development of novel
quantum chemistry software that can take advantage of the
architectural advances. One broad category of methods that
can take advantage of massively parallel computers is
fragmentation approaches.51 One type of fragmentation
approach physically divides a molecular system into pieces
(fragments) each of whose properties (e.g., energies) can
essentially be computed on separate nodes, thereby taking
advantage of coarse-grained parallelism. Since modern
compute nodes have many cores, if the underlying quantum
chemistry method (e.g., HF, MP2, CCSD(T)) is implemented
with a parallel (fine-grained) algorithm, then the developer can
take advantage of multilevel parallelism. One such method is

the fragment molecular orbital (FMO) method,52 a many-body
expansion approach that can be terminated at one-body
(monomers: FMO1), pairs of fragments (dimers: FMO2), etc.
The higher in the expansion one goes, the greater the accuracy
and computational cost of the calculation. In systems such as
water, in which three-body interactions are important, FMO3
becomes essential. Analytic FMO2 and FMO3 gradients and
Hessians have been implemented in GAMESS for both HF and
DFT, and the method has been shown to scale linearly up to
more than 250,000 cores.53 Recently, a version of the FMO
method has been merged with the semiclassical effective
fragment potential (EFP) method to form the effective
fragment molecular orbital (EFMO)54 method. An advantage
of EFMO is that it uses the EFP self-consistent induction term
to capture many-body interactions, thereby avoiding the need
to include explicit three-body interactions (i.e., FMO3). The
computational bottleneck in EFMO is the computation of the
dimer interactions. However, these dimer computations can be
minimized by choosing a cutoff Rcut so as to ensure that most
dimers are computed with the much less demanding EFP
method.55 This has little effect on the accuracy since EFP
interactions are generally equivalent to that of MP2.56,57

A different approach to fragmentation divides the wave
function, rather than groups of atoms into fragments. This is
often accomplished via the use of localized molecular orbitals51

(LMOs) that then facilitate the establishment of LMO
domains upon which electron correlation can be built. The
efficacy of LMO-based approaches was first demonstrated by
Pulay58 for MP2. Others, especially Werner and co-workers,59

have extended this approach to coupled cluster theory.
Likewise, Piecuch and co-workers developed the cluster-in-
molecule (CIM)60 approach based on localized orbitals and
then reduced the computational demand even further by
combining CIM with the FMO method so that one only needs
to localize the subsets of fragment orbitals rather than the
entire valence orbital space.61 Another approach in this vein is
reduced active space methods such as the ORMAS62

(occupation restricted multiple active space) and RAS63

(reduced active space) methods that divide MCSCF active
spaces into more tractable subspaces. Recent developments in
domain local paired natural orbitals have allowed CC
computations for large systems at approximately the same
order of cost as HF and DFT methods.64 While reduced active
space methods do not explicitly rely on the computation of
LMOs, they do rely, as do most fragmentation methods, on the
inherent locality of the systems to be studied.
One of the great revolutions that has occurred in chemistry

over the past decade is the widespread use of better computer
engineering techniques. Version control with git,65 GitHub,66

and/or GitLab67 is common in almost all quantum chemistry
codes. With appropriate control of merges to the master code,
these tools have allowed for much faster development cycles
and a facile ability to revert back to previous working versions
as needed. In addition, the web-based tools provide many
other features in computer engineering such as the ability to
have automated building and unit testing, such as those
provided by Jenkins68 and Travis-CI,69 software review, issue
tracking, community input, and documentation harnesses. Of
course, managing a large community-based code is still
difficult, requiring active software management and engage-
ment with the community. Training students to use all of these
tools is both challenging and important. Fortunately, there are
many great online resources. For the molecular sciences

Chemical Reviews pubs.acs.org/CR Editorial

https://dx.doi.org/10.1021/acs.chemrev.0c00700
Chem. Rev. 2020, 120, 9015−9020

9017

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00700?ref=pdf


community, the NSF Molecular Sciences Software Institute
(MolSSI)70,71 has taken on an extensive training mission to
continue to engage the community in learning excellent
computer engineering and programming skills in the context of
common programming methods and paradigms used in the
community. The community as a whole, especially the
academic community, needs to recognize more broadly the
importance of software engineering and include such
endeavors in the academic reward system when it comes to
promotion and tenure.

Mark S. Gordon orcid.org/0000-0001-6893-553X
Theresa L. Windus orcid.org/0000-0001-6065-3167

AUTHOR INFORMATION

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.chemrev.0c00700

Notes

Views expressed in this editorial are those of the authors and
not necessarily the views of the ACS.

Biographies

Mark S. Gordon, Frances M. Craig Distinguished Professor of
Chemistry at Iowa State University, was born and raised in New York
City. After completing his B.S. in Chemistry in 1963, Professor
Gordon entered the graduate program at Carnegie Institute of
Technology, where he received his Ph.D. in 1967 under the guidance
of Professor John Pople. Following a postdoctoral research appoint-
ment with Professor Klaus Ruedenberg at Iowa State University,
Professor Gordon accepted a faculty appointment at North Dakota
State University in 1970, where he rose through the ranks, eventually
becoming distinguished professor and department chair. He moved to
Iowa State University and Ames Laboratory in 1992. He is the
Frances M. Craig Distinguished Professor of Chemistry. Professor
Gordon’s research interests are broadly based in electronic structure
theory, computational science, and related fields. He has authored
more than 640 research papers and is an elected member of the
International Academy of Quantum Molecular Science. He received
the 2009 ACS Award for Computers in Chemical and Pharmaceutical
Research and the 2015 ACS Award for Theoretical Chemistry. He is a
Fellow of the APS, the ACS, and the American Association for the
Advancement of Science.

Theresa L. Windus is a Distinguished Professor of Chemistry at Iowa
State University (ISU), an Associate with Ames Laboratory, an ISU
Liberal Arts and Sciences Dean’s Professor, and a Fellow of the
American Chemical Society. Theresa received her B.A. degrees in
chemistry, mathematics, and computer science from Minot State
University. She then completed her Ph.D. in physical chemistry at
Iowa State University, where she focused on developing high
performance algorithms. Theresa has contributed to multiple
chemistry packages and currently develops new methods and
algorithms for high performance computational chemistry as the
director of the NWChemEx project as well as applying those
techniques to both basic and applied research.

ACKNOWLEDGMENTS
The authors have been supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration, the Department of Energy
Basic Energy Sciences Computational Chemical Sciences

program, both of which are administered by Ames Laboratory,
as well as by a National Science Foundation Software
Infrastructure (SI2) grant (OCI-1047772).

REFERENCES
(1) Fifth Solvay International Conference (October 1927), quoted
in Physics and Beyond: Encounters and Conversations; W. Heisenberg,
1971; pp 85−86.
(2) Atanasoff-Berry computer https://en.wikipedia.org/wiki/
Atanasoff-Berry_computer (Accessed 2020-08-01).
(3) Top 500. The List. https://www.top500.org/ (accessed 2020-
06-18).
(4) Alexander, F.; Almgren, A.; Bell, J.; Bhattacharjee, A.; Chen, J.;
Colella, P.; Daniel, D.; DeSlippe, J.; Diachin, L.; Draeger, E.; et al.
Exascale applications: skin in the game. Philos. Trans. R. Soc., A 2020,
378, 20190056.
(5) Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Windus, T. L.;
Gordon, M. S. Uncontracted Rys Quadrature Implementation of up
to g Functions on Graphical Processing Units. J. Chem. Theory
Comput. 2010, 6, 696−704 and references therein.
(6) Asadchev, A.; Gordon, M. S. New Multithreaded Hybrid CPU/
GPU Approach to Hartree-Fock. J. Chem. Theory Comput. 2012, 8,
4166−4176 and references therein.
(7) Tomlinson, D. G.; Asadchev, A.; Gordon, M. S. A New
Approach to Second Order Perturbation Theory. J. Comput. Chem.
2016, 37, 1274−1282.
(8) Katouda, M.; Naruse, A.; Hirano, Y.; Nakajima, T. Massively
Parallel Algorithm and Implementation of RI-MP2 Energy Calcu-
lation for Peta-Scale Many-Core Supercomputers. J. Comput. Chem.
2016, 37, 2623−2633.
(9) Snyder, J. W.; Hohenstein, E. G.; Luehr, N.; Martinez, T. J. An
atomic orbital-based formulation of analytical gradients and non-
adiabatic coupling vector elements for the state-averaged complete
active space self-consistent field method on graphical processing units.
J. Chem. Phys. 2015, 143, 154107.
(10) Asadchev, A.; Gordon, M. S. A Fast and Flexible Coupled
Cluster Approach. J. Chem. Theory Comput. 2013, 9, 3385−3392.
(11) Advanced Micro Devices, Inc. HIP Porting Guide. https://
rocmdocs.amd.com/en/latest/Programming_Guides/HIP-porting-
guide.html (accessed 2020-06-18).
(12) https://software.intel.com/content/www/us/en/develop/
tools/oneapi/components/dpc-compiler.html (accessed 2020-06-18).
(13) Valeev, E. F. Libint: high-performance library for computing
Gaussian integrals in quantum mechanics, https://github.com/
evaleev/libint (accessed 2020-06-18).
(14) Hirata, S. Tensor contraction engine: abstraction and
automated parallel implementation of configuration-interaction,
coupled-cluster, and many-body perturbation theories. J. Phys.
Chem. A 2003, 107, 9887−9897.
(15) Mutlu, E.; Kowalski, K.; Krishnamoorthy, S. Toward
generalized tensor algebra for ab initio quantum chemistry methods.
ARRAY 2019: Proceedings of the 6th ACM SIGPLAN International
Workshop on Libraries, Languages and Compilers for Array Program-
ming 2019, 46−56.
(16) Sanders, B. A.; Bartlett, R. J.; Deumens, E.; Lotrich, V.; Ponton,
M. A Block-Oriented Language and Runtime System for Tensor
Algebra with Very Large Arrays. SC ‘10: Proceedings of the 2010 ACM/
IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis 2010, 1−11.
(17) Leang, S. S.; Rendell, A. P.; Gordon, M. S. Quantum Chemical
Calculations using Accelerators: Migrating Matrix Operations to the
NVIDIA Kepler GPU and the Intel Xeon Phi. J. Chem. Theory
Comput. 2014, 10, 908−912.
(18) Keipert, K.; Mitra, G.; Sunriyal, V.; Leang, S. S.; Sosonkina, M.;
Rendell, A.; Gordon, M. S. Energy Efficient Computational
Chemistry: Comparison of X86 and ARM Systems. J. Chem. Theory
Comput. 2015, 11, 5055−5061.

Chemical Reviews pubs.acs.org/CR Editorial

https://dx.doi.org/10.1021/acs.chemrev.0c00700
Chem. Rev. 2020, 120, 9015−9020

9018

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+S.+Gordon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+S.+Gordon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-6893-553X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Theresa+L.+Windus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Theresa+L.+Windus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-6065-3167
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+S.+Gordon"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Theresa+L.+Windus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00700?ref=pdf
https://en.wikipedia.org/wiki/Atanasoff-Berry_computer
https://en.wikipedia.org/wiki/Atanasoff-Berry_computer
https://www.top500.org/
https://dx.doi.org/10.1098/rsta.2019.0056
https://dx.doi.org/10.1021/ct9005079
https://dx.doi.org/10.1021/ct9005079
https://dx.doi.org/10.1021/ct300526w
https://dx.doi.org/10.1021/ct300526w
https://dx.doi.org/10.1002/jcc.24319
https://dx.doi.org/10.1002/jcc.24319
https://dx.doi.org/10.1002/jcc.24491
https://dx.doi.org/10.1002/jcc.24491
https://dx.doi.org/10.1002/jcc.24491
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1063/1.4932613
https://dx.doi.org/10.1021/ct400054m
https://dx.doi.org/10.1021/ct400054m
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-porting-guide.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-porting-guide.html
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-porting-guide.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-compiler.html
https://github.com/evaleev/libint
https://github.com/evaleev/libint
https://dx.doi.org/10.1021/jp034596z
https://dx.doi.org/10.1021/jp034596z
https://dx.doi.org/10.1021/jp034596z
https://dx.doi.org/10.1145/3315454.3329958
https://dx.doi.org/10.1145/3315454.3329958
https://dx.doi.org/10.1109/SC.2010.3
https://dx.doi.org/10.1109/SC.2010.3
https://dx.doi.org/10.1021/ct4010596
https://dx.doi.org/10.1021/ct4010596
https://dx.doi.org/10.1021/ct4010596
https://dx.doi.org/10.1021/acs.jctc.5b00713
https://dx.doi.org/10.1021/acs.jctc.5b00713
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00700?ref=pdf


(19) IBM, Quantum Starts Here. https://www.ibm.com/quantum-
computing/ (accessed 2020-06-23).
(20) Google, Quantum, https://research.google/teams/applied-
science/quantum/ (accessed 2020-06-23).
(21) NVLINK AND NVSWITCH https://www.nvidia.com/en-us/
data-center/nvlink/ (accessed 2020-08-01).
(22) Smith, D. G. A.; Burns, L. A.; Sirianni, D. A.; Nascimento, D.
R.; Kumar, A.; James, A. M.; Schriber, J. B.; Zhang, T.; Zhang, B.;
Abbott, A. S. Psi4NumPy: An Interactive Quantum Chemistry
Programming Environment for Reference Implementations and Rapid
Development. J. Chem. Theory Comput. 2018, 14, 3504−3511.
(23) Barca, G. M. J.; Bertoni, C.; Fedorov, D. G.; Ivanic, J.; Leang, S.
S.; Pham, B. Q.; Piecuch, P.; Slipchenko, L. V.; Xu, P.; Gordon, M. S.;
et al. Recent Developments in the General Atomic and Molecular
Electronic Structure System. J. Chem. Phys. 2020, 152, 154102.
(24) Molpro Quantum Chemistry Software https://www.molpro.net
(accessed 2020-08-01).
(25) Molcas 8.4 http://www.molcas.org (accessed 2020-08-01).
(26) Apra, E.; Bylaska, E. J.; deJong, W. A.; Govind, N.; Kowalski,
K.; Straatsma, T. P.; Valiev, M.; van Dam, H. J. J.; Alexeev, Y.;
Anchell, J.; et al. NWChem: Past, Present, and Future. J. Chem. Phys.
2020, 152, 184102.
(27) Q-CHEM 5.3 https://www.q-chem.com (accessed 2020-08-
01).
(28) Richard, R. M.; Bertoni, C.; Boschen, J. S.; Keipert, K.;
Pritchard, B.; Valeev, E. F.; Harrison, R. J.; de Jong, W. A.; Windus, T.
L. Developing a Computational Chemistry Framework for the
Exascale Era. Comput. Sci. Eng. 2019, 21, 48−58.
(29) Kim, J.; Baczewski, A. D.; Beaudet, T. D.; Benali, A.; Bennett,
M. C.; Berrill, M. A.; Blunt, N. S.; Borda, E. J. L.; Casula, M.;
Ceperley, M. D.; et al. QMCPACK: an open source ab initio quantum
Monte Carlo package for the electronic structure of atoms, molecules
and solids. J. Phys.: Condens. Matter 2018, 30, 19.
(30) https://www.msg.chem.iastate.edu/gamess/index.html.
(31) Poole, D.; Galvez Vallejo, J. L.; Gordon, M. S. A New Kid on
the Block: Application of Julia to Hartree-Fock Calculations. J. Chem.
Theory Comput. 2020, 16, 5006.
(32) PetaChem. http://www.petachem.com/products.html (ac-
cessed 2020-08-01).
(33) The MPI Forum, CORPORATE. MPI: A Message Passing
Interface. Proceedings of the 1993 ACM/IEEE conference on Super-
computing. Supercomputing ‘93; ACM: Portland, Oregon, USA, pp
878−883.
(34) Guest, M. F.; Bush, I. J.; van Dam, H. J. J.; Sherwood, P.;
Thomas, J. M. H.; van Lenthe, J. H.; Havenith, R. W. A.; Kendrick, J.
The GAMESS-UK electronic structure package: algorithms, develop-
ments and applications. Mol. Phys. 2005, 103, 719−747.
(35) Lischka, H.; Shepard, R.; Pitzer, R. M.; Shavitt, I.; Dallos, M.;
Müller, Th; Szalay, P. G.; Seth, M.; Kedziora, G. S.; Yabushita, S.;
Zhang, Z. Phys. Chem. Chem. Phys. 2001, 3, 664.
(36) NVIDIA, NVIDIA Toolkit; https://developer.nvidia.com/
cuda-toolkit (accessed 2020-06-18).
(37) HIP: C++ Heterogeneous-Compute Interface for Portability,
https://github.com/ROCm-Developer-Tools/HIP (accessed 2020-
06-18).
(38) The Kronos Group, Inc. SYCL overview. https://www.
khronos.org/sycl/ (accessed 2020-06-18).
(39) Intel, Intel OneAPI Toolkits. https://software.intel.com/
content/www/us/en/develop/tools/oneapi.html (accessed 2020-06-
18).
(40) Kale, L. V.; Krishnan, S. CHARM++: A Portable Concurrent
Object Oriented System Based on C++. In Proceedings of
OOPSLA’93; Paepcke, A., Ed.; ACM Press, 1993; pp 91−108.
(41) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid,
E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable
molecular dynamics with NAMD. J. Comput. Chem. 2005, 26, 1781−
1802.
(42) OpenAtom. http://charm.cs.illinois.edu/OpenAtom/ (ac-
cessed 2020-06-18).

(43) Harrison, R. J.; Fann, G. I.; Yanai, T.; Gan, Z.; Beylkin, G.
Multiresolution quantum chemistry: Basic theory and initial
applications. J. Chem. Phys. 2004, 121, 11587−11598.
(44) Valeev, E. F. MPQC, http://github.com/ValeevGroup/mpqc
(accessed 2020-06-18).
(45) Bosilca, G.; Bouteiller, A.; Danalis, A.; Herault, T.; Lemariner,
P.; Dongarra, J. DAGuE: A Generic Distributed DAG Engine for High
Performance Computing. Proceedings of the Workshops of the 25th
IEEE International Symposium on Parallel and Distributed Processing
(IPDPS 2011 Workshops) 2011, 1151−1158.
(46) McCraw, H.; Danalis, A.; Herault, T.; Bosilca, G.; Dongarra, J.;
Kowalski, K.; Windus, T. L. Utilizing Dataflow-based Execution for
Coupled Cluster Methods. IEEE Cluster 2014, Madrid, Spain,
September 22−26, 2014, IEEE Cluster 2014 proceedings, pp 296−
297.
(47) Sundriyal, V.; Sosonkina, M. Runtime power-aware energy-
saving scheme for parallel applications. Int. J. of High Performance
Systems Architecture 2017, 7, 129.
(48) Sundriyal, V.; Fought, E.; Sosonkina, M.; Windus, T. L.
Evaluating Effects of Application Based and Automatic Energy Saving
Strategies on NWChem. Proc. 25th HPC Symposium, HPC ‘17 2017,
16, 1−12.
(49) Sundriyal, V.; Sosonkina, M.; Poole, D.; Gordon, M. S.
Runtime Power Allocation Approach for GAMESS Hybrid CPU/
GPU Implementation. Concurrency and Computation DOI: 10.1002/
cpe.5917.
(50) Fought, E. L.; Sundriyal, V.; Sosonkina, M.; Windus, T. L.
Improving Efficiency of Semi-Direct Møller-Plesset Second Order
Perturbation Methods Through Oversubscription on Multiple Nodes.
J. Comput. Chem. 2019, 40, 2146−2157.
(51) Gordon, M. S.; Fedorov, D. G.; Pruitt, S. R.; Slipchenko, L. V.
Fragmentation Methods: A Route to Accurate Calculations on Large
Systems. Chem. Rev. 2012, 112, 632−672.
(52) Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayasi, M.
Fragment molecular orbital method: an approximate computational
method for large molecules. Chem. Phys. Lett. 1999, 313, 701−706.
(53) Pruitt, S. R.; Nakata, H.; Nagata, T.; Mayes, M.; Alexeev, Y.;
Fletcher, G. D.; Fedorov, D. G.; Kitaura, K.; Gordon, M. S. The
Importance of Three-Body Interactions in Molecular Dynamics
Simulations of Water. J. Chem. Theory Comput. 2016, 12, 1423−1435.
(54) Pruitt, S. R.; Steinmann, C.; Jensen, J. H.; Gordon, M. S. A
Fully Integrated Fragment Molecular Orbital/Effective Fragment
Potential Method. J. Chem. Theory Comput. 2013, 9, 2235−2249.
(55) Xu, P.; Guidez, E. B.; Bertoni, C.; Gordon, M. S. Perspective:
Ab Initio Force Field Methods Derived From Quantum Mechanics. J.
Chem. Phys., 2018, 148, 090901. .
(56) Slipchenko, L. V.; Sherrill, C. D. Accurate prediction of
noncovalent interaction energies with the effective fragment potential
method“. J. Chem. Theory Comput. 2012, 8, 2835−2843.
(57) Edmiston, C.; Ruedenberg, K. Localized Atomic and Molecular
Orbitals. Rev. Mod. Phys. 1963, 35, 457.
(58) Pulay, P.; Saebo, S. Orbital-invariant formulation and second-
order gradient evaluation in M?ller-Plesset perturbation theory. Theor.
Chim. Acta 1986, 69, 357−368.
(59) Ma, Q.; Werner, H.-J. Explicitly Correlated Coupled-Cluster
Methods Using Pair Natural Orbitals. WIREs 2018, 8, No. e1371.
(60) Li, W.; Piecuch, P. Improved Design of Orbital Domains within
the Cluster-in-Molecule Local Correlation Framework: Single-
environment Cluster-in-Molecule Ansatz and its Application to
Local Coupled-Cluster Approach with Singles and Doubles. J. Phys.
Chem. A 2010, 114, 8644−8657.
(61) Findlater, A.; Zahariev, F.; Gordon, M. S. A Combined
Fragment Molecular Orbital-Cluster in Molecule Approach to
Massively Parallel Electron Correlation Calculations for Large
Systems. J. Phys. Chem. A 2015, 119, 3587−3593.
(62) Ivanic, J. Direct configuration interaction and multiconfigura-
tional self-consistent-field method for multiple active spaces with
variable occupations. I. Method. J. Chem. Phys. 2003, 119, 9364.

Chemical Reviews pubs.acs.org/CR Editorial

https://dx.doi.org/10.1021/acs.chemrev.0c00700
Chem. Rev. 2020, 120, 9015−9020

9019

https://www.ibm.com/quantum-computing/
https://www.ibm.com/quantum-computing/
https://research.google/teams/applied-science/quantum/
https://research.google/teams/applied-science/quantum/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://dx.doi.org/10.1021/acs.jctc.8b00286
https://dx.doi.org/10.1021/acs.jctc.8b00286
https://dx.doi.org/10.1021/acs.jctc.8b00286
https://dx.doi.org/10.1063/5.0005188
https://dx.doi.org/10.1063/5.0005188
https://www.molpro.net
http://www.molcas.org
https://dx.doi.org/10.1063/5.0004997
https://www.q-chem.com
https://dx.doi.org/10.1109/MCSE.2018.2884921
https://dx.doi.org/10.1109/MCSE.2018.2884921
https://dx.doi.org/10.1088/1361-648X/aab9c3
https://dx.doi.org/10.1088/1361-648X/aab9c3
https://dx.doi.org/10.1088/1361-648X/aab9c3
https://www.msg.chem.iastate.edu/gamess/index.html
https://dx.doi.org/10.1021/acs.jctc.0c00337
https://dx.doi.org/10.1021/acs.jctc.0c00337
http://www.petachem.com/products.html
https://dx.doi.org/10.1080/00268970512331340592
https://dx.doi.org/10.1080/00268970512331340592
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/ROCm-Developer-Tools/HIP
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://dx.doi.org/10.1002/jcc.20289
https://dx.doi.org/10.1002/jcc.20289
http://charm.cs.illinois.edu/OpenAtom/
https://dx.doi.org/10.1063/1.1791051
https://dx.doi.org/10.1063/1.1791051
http://github.com/ValeevGroup/mpqc
https://dx.doi.org/10.1109/IPDPS.2011.281
https://dx.doi.org/10.1109/IPDPS.2011.281
https://dx.doi.org/10.1504/IJHPSA.2017.10012609
https://dx.doi.org/10.1504/IJHPSA.2017.10012609
https://dx.doi.org/10.1002/cpe.5917
https://dx.doi.org/10.1002/cpe.5917
https://dx.doi.org/10.1002/cpe.5917?ref=pdf
https://dx.doi.org/10.1002/cpe.5917?ref=pdf
https://dx.doi.org/10.1002/jcc.25866
https://dx.doi.org/10.1002/jcc.25866
https://dx.doi.org/10.1021/cr200093j
https://dx.doi.org/10.1021/cr200093j
https://dx.doi.org/10.1016/S0009-2614(99)00874-X
https://dx.doi.org/10.1016/S0009-2614(99)00874-X
https://dx.doi.org/10.1021/acs.jctc.5b01208
https://dx.doi.org/10.1021/acs.jctc.5b01208
https://dx.doi.org/10.1021/acs.jctc.5b01208
https://dx.doi.org/10.1021/ct4001119
https://dx.doi.org/10.1021/ct4001119
https://dx.doi.org/10.1021/ct4001119
https://dx.doi.org/10.1063/1.5009551
https://dx.doi.org/10.1063/1.5009551
https://dx.doi.org/10.1021/ct200673a
https://dx.doi.org/10.1021/ct200673a
https://dx.doi.org/10.1021/ct200673a
https://dx.doi.org/10.1103/RevModPhys.35.457
https://dx.doi.org/10.1103/RevModPhys.35.457
https://dx.doi.org/10.1007/BF00526697
https://dx.doi.org/10.1007/BF00526697
https://dx.doi.org/10.1002/wcms.1371
https://dx.doi.org/10.1002/wcms.1371
https://dx.doi.org/10.1021/jp100782u
https://dx.doi.org/10.1021/jp100782u
https://dx.doi.org/10.1021/jp100782u
https://dx.doi.org/10.1021/jp100782u
https://dx.doi.org/10.1021/jp509266g
https://dx.doi.org/10.1021/jp509266g
https://dx.doi.org/10.1021/jp509266g
https://dx.doi.org/10.1021/jp509266g
https://dx.doi.org/10.1063/1.1615954
https://dx.doi.org/10.1063/1.1615954
https://dx.doi.org/10.1063/1.1615954
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00700?ref=pdf


(63) Malmqvist, P. A.; Rendell, A.; Roos, B. O. The complete active
space self-consistent field method implemented with a split graph
unitary group approach. J. Phys. Chem. 1990, 94, 5477−5482.
(64) Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E. F.; Neese, F. A
new near-linear scaling, efficient and accurate, open-shell domain-
based local pair natural orbital coupled cluster singles and doubles
theory. J. Chem. Phys. 2017, 146, 164105.
(65) git. https://git-scm.com/ (accessed 2020-06-18).
(66) GitHub. https://github.com/ (accessed 2020-06-18).
(67) GitLab. https://about.gitlab.com/ (accessed 2020-06-18).
(68) Jenkins. https://www.jenkins.io/ (accessed 2020-06-18).
(69) Travis CI. https://travis-ci.com/ (accessed 2020-06-18).
(70) Krylov, A.; Windus, T. L.; Barnes, T.; Marin-Rimoldi, E.; Nash,
J. A.; Pritchard, B.; Smith, D. G. A.; Altarawy, D.; Saxe, P.; Clementi,
C.; et al. Computational Chemistry Software and Its Advancement:
Three Grand Challenge Cases for Computational Molecular Science.
J. Chem. Phys. 2018, 149, 180901.
(71) Ringer McDonald, A.; Nash, J. A.; Nerenberg, P. S.; Ball, K. A.;
Sode, O.; Foley, J. J., IV; Windus, T. L.; Crawford, T. D. Building
Capacity for Undergraduate Education and Training in Computa-
tional Molecular Science: A Collaboration Between the MERCURY
Consortium and the Molecular Sciences Software Institute. Int. J.
Quantum Chem. 2020, DOI: 10.1002/qua.26359.

Chemical Reviews pubs.acs.org/CR Editorial

https://dx.doi.org/10.1021/acs.chemrev.0c00700
Chem. Rev. 2020, 120, 9015−9020

9020

https://dx.doi.org/10.1021/j100377a011
https://dx.doi.org/10.1021/j100377a011
https://dx.doi.org/10.1021/j100377a011
https://dx.doi.org/10.1063/1.4981521
https://dx.doi.org/10.1063/1.4981521
https://dx.doi.org/10.1063/1.4981521
https://dx.doi.org/10.1063/1.4981521
https://git-scm.com/
https://github.com/
https://about.gitlab.com/
https://www.jenkins.io/
https://travis-ci.com/
https://dx.doi.org/10.1063/1.5052551
https://dx.doi.org/10.1063/1.5052551
https://dx.doi.org/10.1002/qua.26359
https://dx.doi.org/10.1002/qua.26359
https://dx.doi.org/10.1002/qua.26359
https://dx.doi.org/10.1002/qua.26359
https://dx.doi.org/10.1002/qua.26359?ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00700?ref=pdf

