
RESEARCH ARTICLE
◥

PROTEIN FOLDING

Accurate prediction of protein structures and
interactions using a three-track neural network
Minkyung Baek1,2, Frank DiMaio1,2, Ivan Anishchenko1,2, Justas Dauparas1,2, Sergey Ovchinnikov3,4,
Gyu Rie Lee1,2, Jue Wang1,2, Qian Cong5,6, Lisa N. Kinch7, R. Dustin Schaeffer6, Claudia Millán8,
Hahnbeom Park1,2, Carson Adams1,2, Caleb R. Glassman9,10,11, Andy DeGiovanni12, Jose H. Pereira12,
Andria V. Rodrigues12, Alberdina A. van Dijk13, Ana C. Ebrecht13, Diederik J. Opperman14,
Theo Sagmeister15, Christoph Buhlheller15,16, Tea Pavkov-Keller15,17, Manoj K. Rathinaswamy18,
Udit Dalwadi19, Calvin K. Yip19, John E. Burke18, K. Christopher Garcia9,10,11,20, Nick V. Grishin6,7,21,
Paul D. Adams12,22, Randy J. Read8, David Baker1,2,23*

DeepMind presented notably accurate predictions at the recent 14th Critical Assessment of
Structure Prediction (CASP14) conference. We explored network architectures that incorporate related
ideas and obtained the best performance with a three-track network in which information at the
one-dimensional (1D) sequence level, the 2D distance map level, and the 3D coordinate level is
successively transformed and integrated. The three-track network produces structure predictions
with accuracies approaching those of DeepMind in CASP14, enables the rapid solution of challenging
x-ray crystallography and cryo–electron microscopy structure modeling problems, and provides insights
into the functions of proteins of currently unknown structure. The network also enables rapid generation
of accurate protein-protein complex models from sequence information alone, short-circuiting traditional
approaches that require modeling of individual subunits followed by docking. We make the method
available to the scientific community to speed biological research.

T
he prediction of protein structure from
amino acid sequence information alone
has been a long-standing challenge. The
biannual Critical Assessment of Struc-
ture Prediction (CASP) meetings have

demonstrated that deep-learning methods
such as AlphaFold (1, 2) and trRosetta (3),
which extract information from the large data-
base of knownprotein structures in the Protein
Data Bank (PDB), outperformmore traditional
approaches that explicitlymodel the folding pro-
cess. TheoutstandingperformanceofDeepMind’s
AlphaFold2 in the recent 14th CASP (CASP14)
meeting (https://predictioncenter.org/casp14/
zscores_final.cgi) left the scientific community
eager to learn details beyond the overall frame-
work that was presented and raised the ques-
tion of whether such accuracy could be achieved
outside of a world-leading deep-learning com-
pany. As described at the CASP14 conference,
the AlphaFold2 methodological advances in-
cluded (i) starting frommultiple sequence align-
ments (MSAs) rather than frommore-processed

features such as inverse covariance matrices
derived from MSAs, (ii) replacement of two-
dimensional (2D) convolution with an attention
mechanism that better represents interactions
between residues distant along the sequence,
(iii) use of a two-track network architecture in
which information at the 1D sequence level
and the 2D distance map level is iteratively
transformed and passed back and forth, (iv)
use of an SE(3)-equivariant Transformer net-
work to directly refine atomic coordinates
(rather than 2D distance maps as in previous
approaches) generated from the two-track net-
work, and (v) end-to-end learning in which
all network parameters are optimized by back-
propagation from the final generated 3D co-
ordinates through all network layers back
to the input sequence.

Network architecture development

Intrigued by the DeepMind results, and with
the goal of increasing protein structure predic-
tion accuracy for structural biology research

and advancing protein design (4), we explored
network architectures that incorporate differ-
ent combinations of these five properties. In
the absence of a published method, we experi-
mented with a wide variety of approaches for
passing information between different parts of
the networks, as summarized in themethods
and table S1. We succeeded in producing a
“two-track” network with information flow-
ing in parallel along a 1D sequence alignment
track and a 2D distance matrix track with con-
siderably better performance than trRosetta
(BAKER-ROSETTASERVER and BAKER in
Fig. 1B), the next-best method after AlphaFold2
inCASP14 (https://predictioncenter.org/casp14/
zscores_final.cgi).
We reasoned that better performance could

be achieved by extending to a third track oper-
ating in 3Dcoordinate space to provide a tighter
connection between sequence, residue-residue
distances and orientations, and atomic coor-
dinates.We constructed architectureswith the
two levels of the two-track model augmented
with a third parallel structure track operating
on 3D backbone coordinates, as depicted in
Fig. 1A (seemethods and fig. S1 for details). In
this architecture, information flows back and
forth between the 1D amino acid sequence in-
formation, the 2D distance map, and the 3D
coordinates, allowing the network to collect-
ively reason about relationships within and
between sequences, distances, and coordinates.
By contrast, reasoning about 3D atomic coor-
dinates in the two-track AlphaFold2 architec-
ture happens after processing of the 1D and 2D
information is complete (although end-to-end
training does link parameters to some extent).
Because of computer hardware memory lim-
itations, we could not train models on large
proteins directly because the three-trackmodels
havemanymillions of parameters; instead, we
presented to the network many discontinu-
ous crops of the input sequence consisting of
two discontinuous sequence segments span-
ning a total of 260 residues. To generate final
models, we combined and averaged the 1D fea-
tures and 2D distance and orientation predic-
tions produced for each of the crops and then
used two approaches to generate final 3D
structures. In the first, the predicted residue-
residue distance and orientation distributions
are fed into pyRosetta (5) to generate all-atom
models. In the second, the averaged 1D and 2D
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features are fed into a final SE(3)-equivariant
layer (6), and, after end-to-end training from
amino acid sequence to 3D coordinates, back-
bone coordinates are generated directly by
the network (see methods). We refer to these
networks, which also generate per-residue ac-
curacy predictions, as RoseTTAFold. The first
has the advantages of requiring lower-memory
graphics processing units (GPUs) at inference
time [for proteins with more than 400 resi-
dues, 8 gigabytes (GB) rather than 24 GB] and
of producing full side-chain models but re-
quires central processing unit (CPU) time for
the pyRosetta structure modeling step.
The three-track models with attention oper-

ating at the 1D, 2D, and 3D levels and infor-
mation flowing between the three levels were
the best models we tested (Fig. 1B), clearly out-
performing the top two server groups (Zhang-
server andBAKER-ROSETTASERVER), BAKER
humangroup (ranked secondamongall groups),
and our two-track attention models on CASP14
targets. As in the case of AlphaFold2, the cor-
relation betweenMSA depth andmodel accu-
racy is lower forRoseTTAFold than for trRosetta
and other methods tested at CASP14 (fig. S2).
The performance of the three-track model
on the CASP14 targets was still not as good
as AlphaFold2 (Fig. 1B). This could reflect
hardware limitations that limited the size
of the models we could explore, alternative
architectures or loss formulations, or more

intensive use of the network for inference.
DeepMind reported using several GPUs for
days to make individual predictions, whereas
our predictions are made in a single pass
through the network in the samemanner that
would be used for a server; after sequence and
template search (~1.5 hours), the end-to-end
version of RoseTTAFold requires ~10min on an
RTX2080 GPU to generate backbone coordi-
nates for proteins with fewer than 400 resi-
dues, and the pyRosetta version requires 5 min
for network calculations on a single RTX2080
GPU and an hour for all-atom structure gen-
eration with 15 CPU cores. Incomplete opti-
mization due to computermemory limitations
and neglect of side-chain information likely
explain the poorer performance of the end-
to-end version compared with the pyRosetta
version (Fig. 1B; the latter incorporates side-
chain information at the all-atom relaxation
stage); because SE(3)-equivariant layers are
used in themain body of the three-trackmodel,
the added gain from the final SE(3) layer is
likely less than that in the AlphaFold2 case.
We expect the end-to-end approach to ulti-
mately be at least as accurate once the com-
puter hardware limitations are overcome and
side chains are incorporated.
The improvedperformance of the three-track

models over the two-trackmodel with identical
training sets, similar attention-based architec-
tures for the 1D and 2D tracks, and similar

operations in inference (prediction) mode
suggests that simultaneously reasoning at
the MSA, distance map, and 3D coordinate
representations can more effectively extract
sequence-structure relationships than reason-
ing over only MSA and distance map informa-
tion. The relatively low computational cost
makes it straightforward to incorporate the
methods in a public server and predict struc-
tures for large sets of proteins, for example,
all humanGprotein–coupled receptors (GPCRs),
as described below.
Blind structure prediction tests are needed

to assess any new protein structure predic-
tion method, but CASP is held only once every
2 years. Fortunately, theContinuousAutomated
Model Evaluation (CAMEO) experiment (7)
tests structure prediction servers blindly on
protein structures as they are submitted to the
PDB. RoseTTAFold has been evaluated since
15 May 2021 on CAMEO; over the 69 me-
dium and hard targets released during this
time (15 May 2021 to 19 June 2021), it out-
performed all other servers evaluated in the
experiment, including Robetta (3), IntFold6-
TS (8), BestSingleTemplate (9), and SWISS-
MODEL (10) (Fig. 1C).
We experimented with approaches for fur-

ther improving accuracy by more intensive
use of the network during sampling. Because
the network can take templates of known
structures as input, we experimented with a
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Fig. 1. Network architecture and
performance. (A) RoseTTAFold
architecture with 1D, 2D, and
3D attention tracks. Multiple
connections between tracks allow
the network to simultaneously
learn relationships within and
between sequences, distances,
and coordinates (see methods and
fig. S1 for details). (B) Average
TM-score of prediction methods on
the CASP14 targets. Zhang-server
and BAKER-ROSETTASERVER
were the top two server groups,
whereas AlphaFold2 and BAKER
were the top two human groups in
CASP14; BAKER-ROSETTASERVER
and BAKER predictions were based
on trRosetta. Predictions with the
two-track model and RoseTTAFold
(both end-to-end and pyRosetta
version) were completely automated.
(C) Blind benchmark results on
CAMEO medium and hard targets;
model accuracies are TM-score
values from the CAMEO website
(https://cameo3d.org/). In (B) and
(C), the error bars represent a 95%
confidence interval.
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further coupling of 3D structural information
and 1D sequence information by iteratively
feeding the predicted structures back into
the network as templates and random sub-
sampling from the MSAs to sample a broader
range of models. These approaches generated
ensembles that contained higher-accuracy
models, but the accuracy predictor was not
able to consistently identify models better
than those generated by the rapid single-pass
method (fig. S3). Nevertheless, we suspect that
these approaches can improvemodel perform-
ance, and we are carrying out further investi-
gations along these lines.
In developing RoseTTAFold, we found that

combining predictions frommultiple discontin-
uous crops generated more-accurate structures
than predicting the entire structure at once (fig.
S4A). We hypothesized that this arises from
selecting the most relevant sequences for each
region from the very large number of aligned
sequences that are often available (fig. S4B).
To enable the network to focus on the most
relevant sequence information for each re-
gion while keeping access to the full MSA in a
more memory-efficient way, we experimented
with the Perceiver architecture (11), updating
smaller-seedMSAs (up to 100 sequences) with
extra sequences (thousands of sequences)
through cross-attention (fig. S4C). As of now,
RoseTTAFold only uses the top 1000 sequences
because ofmemory limitations; with this addi-
tion, all available sequence information can
be used (often more than 10,000 sequences).
Initial results are promising (fig. S4D), but
more training will be required for rigorous
comparison.

Enabling experimental protein
structure determination

With the recent considerable progress in pro-
tein structure prediction, a key question is
what accurate protein structure models can
be used for. We investigated the utility of the
RoseTTAFold to facilitate experimental struc-
ture determination by x-ray crystallography
and cryo–electron microscopy (cryo-EM) and
to build models that provide biological in-
sights for key proteins of currently unknown
structures.
Solution of x-ray structures by molecular

replacement (MR) often requires quite accu-
rate models. Themuch higher accuracy of the
RoseTTAFoldmethod comparedwith currently
available methods prompted us to test whether
it could help solve previously unsolved chal-
lengingMRproblems and improve the solution
of borderline cases. Four recent crystallographic
datasets (summarized, including resolution
limits, in table S2), which had eluded solution
byMR usingmodels available in the PDB, were
reanalyzed usingRoseTTAFoldmodels: glycine
N-acyltransferase (GLYAT) from Bos taurus
(fig. S5A), a bacterial oxidoreductase (fig. S5B),

a bacterial surface layer protein (SLP) (Fig. 2A),
and the secreted protein Lrbp from the fungus
Phanerochaete chrysosporium (Fig. 2B and fig.
S5C). In all four cases, the predicted models
had sufficient structural similarity to the true
structures that enabled solution of the struc-
tures by MR [see methods for details; the per-
residue error estimates by DeepAccNet (12)
allowed the more accurate parts to be weighted
more heavily]. The increased prediction accu-
racy was critical for success in all cases; models
madewith trRosetta did not yieldMR solutions.
To determine why the RoseTTAFoldmodels

were successful where PDB structures had pre-
viously failed, we compared the models to the
crystal structures we obtained. The images in
Fig. 2A and fig. S5 show that in each case, the
closest homolog of the known structure was a
much poorer model than the RoseTTAFold
model; in the case of SLP, only a distantmodel
covering part of the N-terminal domain (38%
of the sequence) was available in the PDB,
whereas no homologs of the C-terminal domain
of SLP or any portion of Lrbp could be detected
using HHsearch (13).
Building atomic models of protein assem-

blies from cryo-EMmaps can be challenging in
the absence of homologswith known structures.
We used RoseTTAFold to predict the p101 Gbg

binding domain (GBD) structure in a hetero-

dimeric PI3Kg complex. The top HHsearch hit
has a statistically insignificant E-value of 40
and only covers 14 out of 167 residues. The
predicted structure could readily fit into the
electron density map despite the low local res-
olution [Fig. 2C, top; trRosetta failed to predict
the correct fold with the same MSA input (fig.
S6)]. The Ca-RMSD (root mean square de-
viation) between the predicted and the final
refined structure is 3.0 Å for the core b sheets
(Fig. 2C, bottom).

Providing insights into biological function

Experimental structure determination can pro-
vide considerable insight into biological func-
tion and mechanism. We investigated whether
structures generated by RoseTTAFold could
similarly provide new insights into function.
We focused on two sets of proteins: first, GPCRs
of currently unknown structure; and second,
a set of human proteins implicated in disease.
Benchmark tests onGPCRsequenceswithdeter-
mined structures showed that RoseTTAFold
models for both active and inactive states can
be quite accurate even in the absence of close
homologs with known structures [and better
than those in current GPCR model databases
(14, 15); fig. S7] and that the DeepAccNetmodel
quality predictor (12) provides a good measure
of actual model accuracy (fig. S7D). We provide
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Fig. 2. Enabling experimental structure determination with RoseTTAFold. (A and B) Successful
molecular replacement with RoseTTAFold models. SLP is shown in (A). The C-terminal domain is shown
at the top, with a comparison of final refined structure (gray) to RoseTTAFold model (blue); there are no
homologs with known structure. The N-terminal domain is shown at the bottom; the refined structure is in
gray, and the RoseTTAFold model is colored by the estimated root mean square (RMS) error (ranging
from blue for 0.67 Å to red for 2 Å or greater). Ninety-five Ca atoms of the RoseTTAFold model can be
superimposed within 3 Å of Ca atoms in the final structure, yielding a Ca-RMSD of 0.98 Å. By contrast, only
54 Ca atoms of the closest template (4l3a, brown) can be superimposed (with a Ca-RMSD of 1.69 Å). In (B),
the refined structure of Lrbp (gray) with the closest RoseTTAFold model (blue) superimposed is shown;
residues having an estimated RMS error greater than 1.3 Å are omitted (full model is in fig. S5C). (C) Cryo-EM
structure determination of the p101 GBD in a heterodimeric PI3Kg complex using RoseTTAFold. At the
top, RoseTTAFold models colored in a rainbow from the N terminus (blue) to the C terminus (red) have
a consistent all-b topology with a clear correspondence to the density map. Shown at the bottom is a
comparison of the final refined structure to the RoseTTAFold model colored by predicted RMS error ranging
from blue for 1.5 Å or less to red for 3 Å or greater. The actual Ca-RMSD between the predicted structure
and final refined structure is 3.0 Å over the b sheets. The figure was prepared with ChimeraX (35).
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RoseTTAFold models and accompanying ac-
curacy predictions for closed and open states
of all human GPCRs of currently unknown
structure.
Protein structures can provide insight into

howmutations lead to human disease.We iden-
tifiedhumanproteinswithout closehomologs of
known structure that contain multiple disease-
causing mutations or have been the subject of
intensive experimental investigation (seemeth-
ods). We used RoseTTAFold to generate mod-
els for 693 domains from such proteins. More
than one-third of thesemodels have a predicted
local distance difference test (lDDT) >0.8,
which corresponded to an average Ca-RMSD
of 2.6 Å on CASP14 targets (fig. S8). Here, we
focus on three examples that illustrate the
different ways in which structure models can
provide insight into the function or mecha-
nisms of diseases.
Deficiencies in TANGO2 (transport andGolgi

organization protein 2) lead to metabolic dis-
orders, and the protein plays an unknown role
in Golgi membrane redistribution into the en-
doplasmic reticulum (16, 17). The RoseTTAFold
model of TANGO2 adopts an N-terminal nu-
cleophile aminohydrolase (Ntn) fold (Fig. 3A)
with well-aligned active-site residues that are
conserved in TANGO2 orthologs (Fig. 3B). Ntn
superfamily members with structures sim-
ilar to the RoseTTAFold model suggest that
TANGO2 may function as an enzyme that
hydrolyzes a carbon-nitrogen bond in a mem-
brane component (18). Based on the model,
knownmutations that cause disease (magenta
spheres in Fig. 3A) could act by hindering cat-
alysis [Arg26→Lys (R26K), Arg32→Gln (R32Q),
and Leu50→Pro (L50P), near the active site] or
produce steric clashes [Gly154→Arg (G154R)]
(19) in the hydrophobic core. By comparison, a
homology model based on very distant (<15%
sequence identity) homologs had multiple
alignment shifts that misplace key conserved
residues (fig. S9 and table S3)
The ADAM (a disintegrin and metallopro-

tease) and ADAMTS (a disintegrin andmetal-
loproteinase with thrombospondin motifs)
families of metalloproteases are encoded by
more than 40 human genes, mediate cell-cell
and cell-matrix interactions (20, 21), and are
involved in a range of human diseases, includ-
ing cancer metastasis, inflammatory disorders,
neurological diseases, and asthma (21, 22). The
ADAMs contain prodomain and metallopro-
tease domains; the fold of the metalloprotease
is known (23, 24), but the fold of the prodomain,
which has no homologs of known structure, is
not. The RoseTTAFold-predicted structure of
the ADAM33 prodomain has a lipocalin-like
b-barrel fold (Fig. 3C) that belongs to an ex-
tended superfamily that includes metallopro-
tease inhibitors (25). There is a cysteine in an
extension following the predicted prodomain
barrel; taken together, these data are consist-

ent with experimental data that suggest that
theADAMprodomain inhibitsmetalloprotease
activity using a cysteine switch (26). Conserved
residues within ADAM33 orthologs line one
side of the barrel and likely interact with the
metalloprotease (Fig. 3D).
Transmembrane spanning ceramide synthase

(CERS1) is a key enzyme in sphingolipidmetab-
olism that uses acyl–coenzyme A (acyl-CoA) to
generate ceramides with various acyl chain
lengths that regulate differentiation, prolifer-
ation, and apoptosis (27). Structure information
is not available for any of the ceramide synthase
enzymes or their homologs, and the number
and orientation of transmembrane helices
(TMH) are not known (28). The RoseTTAFold
CERS1 model for residues 98 to 304 (Pfam TLC
domain) (29) includes six TMH that traverse
the membrane in an up and down arrange-
ment (Fig. 3E). A central crevice extends into
the membrane and is lined with residues re-
quired for activity (His182 and Asp213) (30) or
conserved (Trp298), as well as a pathogenic mu-
tation [His183→Gln (H183Q)] found in progres-
sive myoclonus epilepsy and dementia that
decreases ceramide levels (31). This active-site
composition (His182, Asp 213, and potentially a

neighboring Ser212) suggests testable reaction
mechanisms for the enzyme (Fig. 3F).

Direct generation of protein-protein
complex models

The final layer of the end-to-end version of our
three-track network generates 3D structure
models by combining features from discontin-
uous crops of the protein sequence (two seg-
ments of the proteinwith a chain breakbetween
them). We reasoned that because the network
can seamlessly handle chain breaks, it might be
able to predict the structure of protein-protein
complexes directly from sequence information.
Rather than providing the network with the
sequence of a single protein, with or without
possible template structures, two or more se-
quences (and possible templates for these) can
be input, with the output being the backbone
coordinates of two or more protein chains.
Thus, the network enables the direct building
of structure models for protein-protein com-
plexes from sequence information, short-
circuiting the standard procedure of building
models for individual subunits and then carry-
ing out rigid-body docking. In addition to the
great reduction in compute time required
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Fig. 3. RoseTTAFold models provide insights into function. (A) TANGO2 model, colored in a rainbow from
the N terminus (blue) to the C terminus (red), adopts an Ntn hydrolase fold. Pathogenic mutation sites
are represented by magenta spheres. (B) Predicted TANGO2 active site colored by ortholog conservation
from variable (blue) to conserved (red), with conserved residues shown in stick format and labeled.
Pathogenic mutations (spheres with wild-type side chains in sticks) are labeled in magenta; select
neighboring residues are depicted in sticks. (C) ADAM33 prodomain adopts a lipocalin-like barrel (blue,
N terminus; red, C terminus). (D) ADAM33 model surface rendering colored by ortholog conservation from
blue (variable) to red (conserved), highlighting a conserved surface patch. (E) CERS1 transmembrane
structure prediction colored fromN terminus (blue) to C terminus (red), with a pathogenic mutation in TMH2 near
a central cavity represented by a magenta sphere. (F) Zoom-in of the CERS1 active site, with residues colored
by ortholog conservation from variable (blue) to conserved (red). Residues that contribute to catalysis (His182 and
Asp213) or are conserved (Trp298 and Asp213) line the cavity. The conserved pathogenic mutation H183Q is
adjacent to the active site. D, Asp; H, His; Q, Gln; R, Arg; W, Trp.
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(complexmodels are generated from sequence
information in ~30min on a 24-GB TITANRTX
GPU), this approach implements “flexible back-
bone” docking almost by construction because
the structures of the chains are predicted in
the context of each other. We tested the end-to-
end three-track network on paired sequence
alignments for complexes of known structures
(32) (see methods and table S4 for details)
containing two (Fig. 4A) or three (Fig. 4B)
chains, and inmany cases, the resultingmodels
were very close to the actual structures [tem-
plate modeling score (TM-score) (33) >0.8].
Information on residue-residue coevolution
between the paired sequences likely contrib-
utes to the accuracy of the rigid-bodyplacement
because more-accurate complex structures were
generated when more sequences were avail-
able (fig. S10). The network was trained on
monomeric proteins, not complexes, so there
may be some training-set bias in themonomer
structures, but there is none for the complexes.
To illustrate the application of RoseTTAFold

to complexes of unknown structure withmore
than three chains, we used it to generate
models of the complete four-chain human
interleukin-12 receptor–interleukin-12 (IL-12R–
IL-12) complex (Fig. 4C and fig. S11). A pre-
viously published cryo-EM map of the IL-12
receptor complex indicated a similar topol-
ogy to that of the IL-23 receptor; however, the
resolution was not sufficient to observe the

detailed interaction between IL-12Rb2 and
IL-12p35 (34). Such an understanding is im-
portant for dissecting the specific actions of
IL-12 and IL-23 and generating inhibitors that
block IL-12 without affecting IL-23 signaling.
The RoseTTAFold model fits the experimental
cryo-EM density well and identified a shared
interaction between Tyr189 in IL-12p35 and
Gly115 in IL-12Rb2 analogous to the packing be-
tween Trp156 in IL-23p19 with Gly116 in IL-23R.
In addition, the model suggests a role for the
IL-12Rb2N-terminal peptide (residues 24 to 31)
in IL-12 binding (IL-12Rb2 Asp26may interact
with nearby Lys190 and Lys194 in IL-12p35),
which may provide an avenue to specifically
target the IL-12Rb2–IL-12 interaction.

Conclusions

RoseTTAFold enables solutions of challenging
x-ray crystallography and cryo-EMmodeling
problems, provides insight into protein function
in the absence of experimentally determined
structures, and rapidly generates accuratemod-
els of protein-protein complexes. Further train-
ing on protein-protein complex datasets will
likely further improve the modeling of the
structures of multiprotein assemblies. The
approach can be readily coupledwith existing
small-molecule andproteinbinder designmeth-
odology to improve computational discovery
of new protein and small-molecule ligands for
targets of interest. The simultaneousprocessing

of sequence, distance, and coordinate informa-
tion by the three-track architecture opens the
door to new approaches that incorporate con-
straints and experimental information at all
three levels for problems ranging from cryo-EM
structure determination to protein design.

REFERENCES AND NOTES

1. A. W. Senior et al., Nature 577, 706–710 (2020).
2. J. Jumper et al., in Fourteenth Critical Assessment of

Techniques for Protein Structure Prediction: CASP14 Abstract
Book (Protein Structure Prediction Center, 2020), pp. 22–24.

3. J. Yang et al., Proc. Natl. Acad. Sci. U.S.A. 117, 1496–1503
(2020).

4. I. Anishchenko, T. M. Chidyausiku, S. Ovchinnikov, S. J. Pellock,
D. Baker, bioRxiv 2020.07.22.211482 [Preprint] (2020);
https://doi.org/10.1101/2020.07.22.211482.

5. S. Chaudhury, S. Lyskov, J. J. Gray, Bioinformatics 26, 689–691
(2010).

6. F. B. Fuchs, D. E. Worrall, V. Fischer, M. Welling,
arXiv:2006.10503 [cs.LG] (2020).

7. J. Haas et al., Proteins 86, 387–398 (2018).
8. L. J. McGuffin et al., Nucleic Acids Res. 47, W408–W413

(2019).
9. J. Haas et al., Proteins 87, 1378–1387 (2019).
10. A. Waterhouse et al., Nucleic Acids Res. 46, W296–W303 (2018).
11. A. Jaegle et al., arXiv:2103.03206 [cs.CV] (2021).
12. N. Hiranuma et al., Nat. Commun. 12, 1340 (2021).
13. M. Steinegger et al., BMC Bioinformatics 20, 473 (2019).
14. A. J. Kooistra et al., Nucleic Acids Res. 49, D335–D343 (2021).
15. B. J. Bender, B. Marlow, J. Meiler, PLOS Comput. Biol. 16,

e1007597 (2020).
16. L. S. Kremer et al., Am. J. Hum. Genet. 98, 358–362 (2016).
17. C. Rabouille, V. Kondylis, Genome Biol. 7, 213 (2006).
18. M. P. Milev et al., J. Inherit. Metab. Dis. 44, 426–437 (2021).
19. S. R. Lalani et al., Am. J. Hum. Genet. 98, 347–357 (2016).
20. T. G. Wolfsberg, P. Primakoff, D. G. Myles, J. M. White,

J. Cell Biol. 131, 275–278 (1995).
21. T. Klein, R. Bischoff, J. Proteome Res. 10, 17–33 (2011).

Baek et al., Science 373, 871–876 (2021) 20 August 2021 5 of 6

Fig. 4. Complex structure
prediction using RoseTTAFold.
(A and B) Prediction of
structures of Escherichia coli
protein complexes from
sequence information.
Experimentally determined
structures are on the left,
and RoseTTAFold models are on
the right; the TM-scores
below indicate the extent of
structural similarity. Two
chain complexes are shown in
(A). The first subunit is colored
in gray, and the second
subunit is colored in a rainbow
from blue (N terminus) to red
(C terminus). Three chain
complexes are shown in (B).
Subunits are colored in gray,
cyan, and magenta. (C) IL-12R–
IL-12 complex structure
generated by RoseTTAFold
fits the previously published
cryo-EM density (EMD-21645).

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversidade de Sao Paulo on M
ay 05, 2023

https://doi.org/10.1101/2020.07.22.211482
https://arxiv.org/abs/2006.10503
https://arxiv.org/abs/2103.03206


22. S. Zhong, R. A. Khalil, Biochem. Pharmacol. 164, 188–204
(2019).

23. P. Orth et al., J. Mol. Biol. 335, 129–137 (2004).
24. S. Takeda, T. Igarashi, H. Mori, S. Araki, EMBO J. 25,

2388–2396 (2006).
25. D. R. Flower, A. C. North, C. E. Sansom, Biochim. Biophys. Acta

1482, 9–24 (2000).
26. H. E. Van Wart, H. Birkedal-Hansen, Proc. Natl. Acad. Sci. U.S.A.

87, 5578–5582 (1990).
27. M. Levy, A. H. Futerman, IUBMB Life 62, 347–356 (2010).
28. J. L. Kim, B. Mestre, S.-H. Shin, A. H. Futerman, Cell. Signal.

82, 109958 (2021).
29. E. Winter, C. P. Ponting, Trends Biochem. Sci. 27, 381–383

(2002).
30. S. Spassieva et al., J. Biol. Chem. 281, 33931–33938 (2006).
31. N. Vanni et al., Ann. Neurol. 76, 206–212 (2014).
32. Q. Cong, I. Anishchenko, S. Ovchinnikov, D. Baker, Science 365,

185–189 (2019).
33. Y. Zhang, J. Skolnick, Proteins 57, 702–710 (2004).
34. C. R. Glassman et al., Cell 184, 983–999.e24 (2021).
35. E. F. Pettersen et al., Protein Sci. 30, 70–82 (2021).
36. M. Baek et al., RoseTTAFold: The first release of RoseTTAFold.

Zenodo (2021); https://zenodo.org/record/5068265.

ACKNOWLEDGMENTS

We thank E. Horvitz, N. Hiranuma, D. Juergens, S. Mansoor,
and D. Tischer for helpful discussions; D. E. Kim for web-server
construction; and L. Goldschmidt for computing resource
management. T.P.-K. thanks B. Nidetzky and M. Monschein from
Graz University of Technology for providing protein samples for
crystallization. D.J.O. acknowledges assistance with data collection
from scientists of Diamond Light Source beamline I04 under
proposal mx20303. T.S., C.B., and T.P.-K. acknowledge the ESRF
(ID30-3, Grenoble, France) and DESY (P11, PETRAIII, Hamburg,
Germany) for provision of synchrotron-radiation facilities and

support during data collection. P.D.A., J.H.P., A.D., and A.V.R.
acknowledge support from the Joint BioEnergy Institute, which is
supported by the US Department of Energy, Office of Science,
Office of Biological and Environmental Research under contract
no. DE-AC02-05CH11231 between LBNL and the US Department of
Energy. Funding: This work was supported by Microsoft (M.B.,
D.B., and generous gifts of Azure compute time and expertise);
Open Philanthropy (D.B. and G.R.L.); E. and W. Schmidt by
recommendation of the Schmidt Futures program (F.D. and H.P.);
The Washington Research Foundation (M.B., G.R.L., and J.W.);
the National Science Foundation Cyberinfrastructure for Biological
Research, award no. DBI 1937533 (I.A.); Wellcome Trust grant
number 209407/Z/17/Z (R.J.R.); the National Institutes of Health,
grant numbers P01GM063210 (P.D.A. and R.J.R.), DP5OD026389
(S.O.), RO1-AI51321 (K.C.G.), and GM127390 (N.V.G.); the Mathers
Foundation (K.C.G.); the Canadian Institute of Health Research (CIHR)
Project Grant, grant numbers 168998 (J.E.B.) and 168907 (C.K.Y.);
the Welch Foundation I-1505 (N.V.G.); the Global Challenges Research
Fund (GCRF) through Science & Technology Facilities Council (STFC),
grant number ST/R002754/1: Synchrotron Techniques for African
Research and Technology (START) (D.J.O., A.A.v.D., and A.C.E.); and
the Austrian Science Fund (FWF), projects P29432 and DOC50
(doc.fund Molecular Metabolism) (T.S., C.B., and T.P.-K.). Author
contributions: M.B., F.D., and D.B. designed the research; M.B., F.D.,
I.A., J.D., S.O., and J.W. developed the deep-learning network; G.R.L.
and H.P. analyzed GPCR modeling results; Q.C., L.N.K., R.D.S., and
N.V.G. analyzed modeling results for proteins related to the human
diseases; C.R.G. and K.C.G. analyzed modeling results for the
IL-12R–IL-12 complex; P.D.A., R.J.R., C.A., F.D., and C.M. worked
on structure determination; A.A.v.D., A.C.E., D.J.O., T.S., C.B., T.P.-K.,
M.K.R., U.D., C.K.Y., J.E.B., A.D., J.H.P., and A.V.R. provided
experimental data; M.B., F.D., G.R.L., Q.C., L.N.K., H.P., C.R.G.,
P.D.A., R.J.R., and D.B. wrote the manuscript; and all authors
discussed the results and commented on the manuscript. Competing
interests: The authors declare that they have no competing

interests. Data and materials availability: The GPCR models of
unknown structures have been deposited to http://files.ipd.uw.
edu/pub/RoseTTAFold/all_human_GPCR_unknown_models.tar.gz
and http://files.ipd.uw.edu/pub/RoseTTAFold/GPCR_benchmark_
one_state_unknown_models.tar.gz. The model structures for
structurally uncharacterized human proteins have been deposited
to http://files.ipd.uw.edu/pub/RoseTTAFold/human_prot.tar.gz.
Coordinates for the full PI3K complex structure determined by
cryo-EM are available at the PDB with accession code PDB: 7MEZ.
Model structures used for molecular replacement are available
at http://files.ipd.uw.edu/pub/RoseTTAFold/MR_models.tar.gz.
The refined structures for GLYAT, oxidoreductase, SLP, and Lrbp
proteins will be deposited in the PDB when final processing is
completed. The method is available as a server at https://robetta.
bakerlab.org (RoseTTAFold option), and the source code
and model parameters are available at https://github.com/
RosettaCommons/RoseTTAFold or Zenodo (36). This research
was funded in whole or in part by Wellcome Trust, grant #209407/
Z/17/Z, a cOAlition S organization. The author will make the
Author Accepted Manuscript (AAM) version available under
a CC BY public copyright license.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/373/6557/871/suppl/DC1
Materials and Methods
Figs. S1 to S17
Tables S1 to S4
References (37–82)
MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

7 June 2021; accepted 7 July 2021
Published online 15 July 2021
10.1126/science.abj8754

Baek et al., Science 373, 871–876 (2021) 20 August 2021 6 of 6

RESEARCH | RESEARCH ARTICLE
D

ow
nloaded from

 https://w
w

w
.science.org at U

niversidade de Sao Paulo on M
ay 05, 2023

https://zenodo.org/record/5068265
http://files.ipd.uw.edu/pub/RoseTTAFold/all_human_GPCR_unknown_models.tar.gz
http://files.ipd.uw.edu/pub/RoseTTAFold/all_human_GPCR_unknown_models.tar.gz
http://files.ipd.uw.edu/pub/RoseTTAFold/GPCR_benchmark_one_state_unknown_models.tar.gz
http://files.ipd.uw.edu/pub/RoseTTAFold/GPCR_benchmark_one_state_unknown_models.tar.gz
http://files.ipd.uw.edu/pub/RoseTTAFold/human_prot.tar.gz
http://files.ipd.uw.edu/pub/RoseTTAFold/MR_models.tar.gz
https://robetta.bakerlab.org
https://robetta.bakerlab.org
https://github.com/RosettaCommons/RoseTTAFold
https://github.com/RosettaCommons/RoseTTAFold
https://science.sciencemag.org/content/373/6557/871/suppl/DC1
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/science.abj8754


Use of this article is subject to the Terms of service

Science (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW, Washington, DC
20005. The title Science is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

Accurate prediction of protein structures and interactions using a three-track
neural network
Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie Lee, Jue Wang, Qian
Cong, Lisa N. Kinch, R. Dustin Schaeffer, Claudia Milln, Hahnbeom Park, Carson Adams, Caleb R. Glassman, Andy
DeGiovanni, Jose H. Pereira, Andria V. Rodrigues, Alberdina A. van Dijk, Ana C. Ebrecht, Diederik J. Opperman, Theo
Sagmeister, Christoph Buhlheller, Tea Pavkov-Keller, Manoj K. Rathinaswamy, Udit Dalwadi, Calvin K. Yip, John E. Burke,
K. Christopher Garcia, Nick V. Grishin, Paul D. Adams, Randy J. Read, and David Baker

Science, 373 (6557), . 
DOI: 10.1126/science.abj8754

Deep learning takes on protein folding
In 1972, Anfinsen won a Nobel prize for demonstrating a connection between a protein’s amino acid sequence and its
three-dimensional structure. Since 1994, scientists have competed in the biannual Critical Assessment of Structure
Prediction (CASP) protein-folding challenge. Deep learning methods took center stage at CASP14, with DeepMind’s
Alphafold2 achieving remarkable accuracy. Baek et al. explored network architectures based on the DeepMind
framework. They used a three-track network to process sequence, distance, and coordinate information simultaneously
and achieved accuracies approaching those of DeepMind. The method, RoseTTA fold, can solve challenging x-ray
crystallography and cryo–electron microscopy modeling problems and generate accurate models of protein-protein
complexes. —VV
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