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ABSTRACT: Accurate calculations of free energies involved in
small-molecule binding to a receptor are challenging. Interactions
between ligand, receptor, and solvent molecules have to be
described precisely, and a large number of conformational
microstates has to be sampled, particularly for ligand binding to a
flexible protein. Linear interaction energy models are computation-
ally efficient methods that have found considerable success in the
prediction of binding free energies. Here, we parametrize a linear
interaction model for implicit solvation with coefficients adapted by
ligand and binding site relative polarities in order to predict ligand binding free energies. Results obtained for a diverse series of
ligands suggest that the model has good predictive power and transferability. We also apply implicit ligand theory and propose
approximations to average contributions of multiple ligand−receptor poses built from a protein conformational ensemble and
find that exponential averages require proper energy discrimination between plausible binding poses and false-positives (i.e.,
decoys). The linear interaction model and the averaging procedures presented can be applied independently of each other and of
the method used to obtain the receptor structural representation.

1. INTRODUCTION
Prediction of binding affinities between small-molecule ligands
and protein receptors has both fundamental and applied
importance.1 In practice, this is a very challenging task2 because
the ligand functional or bound configurations have a small
energy difference from the huge amount of alternative ligand
unbound configurations.3 The number and strength of
contributions in the ligand bound and unbound states are
similar. Consequently, intermolecular interactions have to be
evaluated with accuracies much better than 1 kcal mol−1 to
discriminate the small energy gap between the two states.3,4 In
addition, a huge number of configurations has to be generated
and their energy calculated to sample the important conforma-
tional microstates of the molecular system.3,5,6 The number of
configurations to be sampled will increase if the protein or the
ligand has a more flexible structure and if their binding pose is
unknown or not unique.2,7

Despite the challenges, there has been enormous progress in
the prediction of binding free energies, and several methods
have been proposed to tackle the problem.1,8,9 In one hand, the
application of detailed all-atom force fields, molecular dynamics
(MD) simulations (or related approaches), and rigorous free
energy estimators10−13 have found impressive agreement with
experimental affinities;14−17 but, given the high computational
costs associated, these methods have been successfully applied
mainly to less flexible proteins and ligands for which binding
sites are known or easy to determine.18 The high computational
costs still prohibit these rigorous methods from being applied

in screenings of large ligand sets. On the other hand, molecular
docking19−21 employs approximate descriptions of intermolec-
ular interactions usually parametrized against empirical data and
efficient conformational search methods to generate binding
poses,22,23 rank or enrich ligand sets,24,25 and determine ligand
affinities.2,26 However, docking has many documented fail-
ures27,23,28 which may be due to severe approximations in the
calculation of interactions and lack of transferability for ligands
or receptors not included in the method parametrization as well
as to insufficient conformational sampling.
Another family of methods shows accuracy and computa-

tional ease in between the two approaches just mentioned.
They are called linear interaction energy (LIE) models29−32

because a linear response of the intermolecular interactions33 is
assumed in the estimation of binding free energies by the
equation

α β γΔ = Δ⟨ ⟩ + Δ⟨ ⟩ +− −G V VLIE vdW
l e

elet
l e

(1)

where a force field description of intermolecular van der Waals
(vdW) and electrostatic (elet) interactions between ligand and
its environment (Vl−e) is employed. The difference (Δ) of
ensemble averaged (⟨···⟩) interactions between the ligand free
state (when environment is the solvent only) and bound state
(when environment is the solvated protein complex) is
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multiplied by coefficients derived from the linear response
assumption (β) or fit to empirical data (α and γ).32,34

LIE models have been applied successfully to predict
affinities for a range of ligand−receptor complexes.32,35−38

However, in many of these applications, the LIE models were
specifically parametrized to the system studied. In order to
increase the model transferability, Hansson et al. proposed the
adaptation of coefficients to ligand properties (e.g., the number
of possible hydrogen bonds).39 Recently, Linder et al. suggested
an adaptative LIE model where coefficients in eq 1 are adjusted
by the relative polarities of the ligand and of the binding cavity
achieving accuracy and model transferability.40

To increase computational efficiency and to avoid the
sometimes slow convergence of explicit solvent contribu-
tions41,42 in eq 1, continuum electrostatics descriptions of
solvation43−46 have been used in LIE models.36,41,47−49 Here,
we propose and describe the necessary parametrization of LIE
models that combine an implicit solvent description with
adaptative coefficients40 to predict binding affinities. Local
configurational sampling of ligand−receptor complexes usually
done by molecular dynamics simulations is substituted by more
economic molecular docking and geometry optimiza-
tions.21,36,47

The methods mentioned so far rely their predictions on one
initial receptor structure, typically obtained from X-ray
crystallography. During conformational search in molecular
docking, the receptor structure is maintained rigid, maybe
allowing for side-chain rotations or smoothened interac-
tions.50−52 In methods applying ensemble averages, protein
configurations near the initial structure are visited in relatively
short MD simulations; but, for flexible receptors, sufficient
sampling of protein motions will be difficult to achieve in both
approaches. A possible solution in those cases is to start the
search or averaging from a conformational ensemble, i.e., from
multiple representations of the receptor structure.6,7,53,54

Several approaches, mostly related to docking, are now used
to predict binding poses and affinities from receptor conforma-
tional ensembles.22,55−59 Usually a dominant pose and
dominant state approximation is applied.57−59 This means
that the binding free energy or the related docking score for a
given ligand−receptor pair is estimated from the most favorable
pose (only one) found after evaluating several complexes
obtained from the different receptor structures in the ensemble.
This approximation should be appropriate for the level of
accuracy expected in docking, but it dismisses important
contributions such as multiple binding poses, receptor
reorganization energy and thermal fluctuations, and the related
entropic effects. Thus, it may be useful to average contributions
obtained from an ensemble of ligand−receptor poses.60,61
Based on the implicit ligand theory recently developed,61 two

ensemble averages can be defined for the calculation of binding
free energy between a ligand and a receptor represented by a
conformational ensemble embedded in an implicit solvent. The
first average concerns with the ligand configurational
distribution that may be obtained for interaction with one
given rigid receptor structure. It has been called the binding
potential of mean-force, B, and may be estimated by an
exponential mean
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where kB is the Boltzmann constant, T is the temperature, P is
the number of ligand configurations sampled, and Ψi is the
implicit solvent-mediated interaction energy for the ith ligand
pose.61

The second ensemble average accounts for the receptor
configurational distribution. Similarly, it may be estimated by an
exponential mean, leading to an expression for the binding free
energy
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where Bn is the binding potential of mean-force (eq 2) for the
nth receptor configuration out of a total of N configurations
sampled.61 ΔGξ represents a correction to standard concen-
tration due to restriction of the volume sampled by the ligand.
Here, we propose approximations to these two exponential

averages in order to account for multiple binding poses and for
protein conformation flexibility. In the next section, we provide
details of the training and test sets and the methodology used
to calibrate adapted LIE models for continuum solvation.
System setup, generation of receptor−ligand poses, and
definition of the force fields employed are also described.
Both Results and Discussion are divided in two parts. First, we
report the construction and performance of the adapted LIE
models and the procedures for averaging contributions from an
ensemble of ligand−receptor poses. Then, we analyze the
accuracy and shortcomings of the proposed LIE model as well
as the applicability of the ligand−receptor conformational
averaging.

2. COMPUTATIONAL METHODS
Calibration and tests of the proposed approximations were
conducted using bacteriophage T4 lysozyme mutants L99A62

and L99A/M102Q,17,63 HIV-1 reverse transcriptase (HIVRT),
and human FK506 binding protein 12 (FKBP) as model
systems (Table 1). These proteins were chosen based on the

availability of experimental structures and binding affinities.
The ligand set varies in size from fragment-like small molecules
which bind T4 lysozyme to lead-like molecules which bind
FKBP. Only neutral ligands were considered (Table S3 and
Figure S1 in the Supporting Information, SI).

2.1. Parametrization of the Model. Following Linder et
al.,40 system-derived descriptors are used here to scale
coefficients in the linear interaction models. Ligand (π) and
cavity or binding site (η) relative polarities were given by the
ratio PSA/SA, where SA represents the ligand or cavity total
surface area and PSA represents the area of its subset of polar
atoms (Table S3 and Table S4). Ligand surface area was
obtained from the “3V” server,64 and ligand polar surface area

Table 1. Proteins Included in the Training and Test Sets and
Ranges of Binding Affinities of Associated Ligands (in kcal
mol−1)

proteina PDB code ligands −ΔGexp

L99A 3DMV benzene derivatives 4.5−6.7
M102Q 1LI3 benzene derivatives 4.3−5.8
HIVRT 1RT1 HIV1−HIV6 4.9−11.8
FKBP 1FKG FKB1−FKB5 7.8−11.2

aT4 lysozyme mutants L99A and M102Q, HIV-1 reverse transcriptase
(HIVRT), and human FK506 binding protein 12 (FKBP).
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was calculated using the approach of Ertl et al.65 Cavity area
was obtained from the SA of residues in contact with (or less
than 4 Å from) the ligand. Thus, each binding pose has a
characteristic η. Protein carbonyl C, O, N, and H bound to O
and N were assigned as polar atoms.66

Coefficients in the LIE equations were obtained by an
optimization procedure that minimized deviations between
calculated and experimental affinities for a training set of 10 T4
lysozyme ligands, 3 HIVRT ligands, and 10 T4 lysozyme false-
positive poses, as indicated in Table S5. The test set used to
check the performance of the parametrized equations was
composed of a different set of 15 T4 lysozyme binders, 10 T4
lysozyme false-positive poses, 9 T4 lysozyme nonbinders, 3
HIVRT ligands, and 5 FKBP ligands, as indicated in Table 2.
Optimization was carried out with a combination of genetic
(GA)67 and simplex68 algorithms as previously described.69 A
population of 10 individuals with each coefficient represented
by 12 bits was used in the GA. Coefficients in eq 6 could vary
between [0,10] for k5, [−20,20] for k6, and [−10,10] for the
others ki (eqs 6 and S1−S3). Populations evolved for 106

generations. Simplex optimization was carried from the best GA
individuals until the difference in deviations between successive
generations was smaller than 10−6 kcal mol−1.
2.2. Construction of Receptor−Ligand Structures.

Protein structures retrieved from the Protein Databank
(PDB) were used after removal of water and other
crystallization molecules. Incomplete side chains were built
with the WHATIF server.70 Hydrogens were constructed using
the GROMACS PDB parser71 for proteins and Babel 2.272 for
ligands. Ligand geometry was optimized using Gaussian73 with
the AM174 potential if holo crystal structures were unavailable.
To train and test the LIE models, holo structures were taken

from the PDB when available. Otherwise, the most favorable
binding pose obtained from docking the ligand to an apo
structure was used (Table S3). These poses were compared to
known crystal structures of congeneric ligands bound to the
same protein to confirm the docked ligand was complexed in a
plausible binding mode.
Unstable or artificial poses of known binders may be

generated in docking due to inaccuracies in the scoring
functions.27,28,75 Such artificial poses, here called false-positives,
were used as a decoy set to assist in the parametrization of the
LIE equations. Assuming the ligand will occupy a site different
from the known crystallographic site, false-positive poses were
obtained by docking ligands to apo crystal structures using a
grid excluding the known binding site. Selected poses were
submitted to energy minimization, careful heating up ramps,
and 10−20 ns explicit solvent molecular dynamics simulations
as described below. False-positive poses were retained only if
the ligand spent more than 20% of the trajectory dissociated
from the protein. Ligand-protein dissociation was monitored by
the ligand solvent accessible surface area (SASA).
Tentative configurational ensembles were generated for apo

T4 lysozyme L99A and M102Q mutants, HIVRT bound to
ligand HIV1 and FKBP bound to ligand FKB1 (Table 1).
Ensembles generated from apo HIVRT and FKBP could not be
used for docking due to large conformational changes which
occluded the binding sites (see Discussion for further details).
Receptor structures were submitted to energy minimization,
and implicit solvent molecular dynamics simulations were run
for 160−235 ns. For each protein, an ensemble was constructed
by 50 configurations (excluding the ligand in the case of
HIVRT and FKBP) collected along trajectories at regular time

intervals (3−4 ns) after stabilization of Cα root mean-squared
deviation (RMSD). For each configuration in an ensemble, 20
docking poses were generated resulting in a total of 1000
ligand-bound structures for each protein−ligand pair.
Dockings to crystal structures were performed with

AutoDock 4.050 with its genetic algorithm search run with
150 individuals for 27,000 generations maximum. Dockings to

Table 2. Binding Free Energies (in kcal mol−1)
Experimentally Measured and Estimated by Eq 6 for the
Ligand Test Set

ligand ΔGexp
a ΔGALICE

L99A
n-butylbenzeneb −6.7 −6.3
propylbenzene −6.5 −5.7
ethylbenzeneb −5.7 −5.1
toluene −5.5 −3.7
benzeneb −5.2 −3.0
3-ethyltoluene −5.1 −5.5
meta-xylene −4.7 −4.5
2-ethyltoluene −4.5 −4.8
propylbenzene >−2.0 −1.4
ortho-xylene (A) >−2.0 0.7
toluene >−2.0 −1.7
4-ethyltoluene >−2.0 −2.1
benzene >−2.0 −0.8
3-methylpyrrole >−2.0 −2.6
phenol >−2.0 −3.1
1,3,5-trimethylbenzene >−2.0 −4.4
cyclohexane >−2.0 −2.6
2-fluoroaniline >−2.0 −2.8

M102Q
(phenylamino)acetonitrileb −5.8 −4.8
toluene −5.2 −4.1
3-methylpyrrole −5.2 −2.9
thieno[3,2-b]thiopheneb −4.9 −3.5
2-ethylphenolb −4.8 −5.0
catecholb −4.4 −2.5
2-ethoxyphenolb −4.3 −4.9
thieno[3,2-b]thiophene >−2.0 −0.3
(phenylamino)acetonitrile >−2.0 −0.4
catechol >−2.0 −2.4
2-propylphenol (A) >−2.0 −1.7
2-ethoxyphenol >−2.0 −0.7
phenylhydrazine >−2.0 −3.0
2-methoxyphenolb >−2.0 −4.5
4-vinylpyridine >−2.0 −4.2
N-(o-tolyl)cyanoformamide >−2.0 −5.0

HIVRT
HIV3 −8.1 −10.5
HIV4 −10.6 −9.5
HIV5 −6.4 −7.4

FKBP
FKB1b −11.0 −10.9
FKB2b −11.2 −11.4
FKB3 −7.8 −7.2
FKB4 −8.5 −7.8
FKB5 −9.6 −9.9

aRepeated from Table S3. bHolo structure taken from the PDB. False-
positive poses of binder molecules are underlined. These poses and
nonbinders were assumed to have ΔGexp > −2.0 kcal mol−1. The label
(A) represents different false-positive poses of the same ligand.
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the configurational ensemble were done with AutoDock Vina21

setting the exhaustiveness level to 8. Conformational search
options were chosen in order to thoroughly search for the
possible docking poses in a given protein structure. Grids with
0.375 Å spacing and 60 to 80 points were centered in the
known binding sites. Protein structures were kept frozen, but
bond torsions were allowed in ligands. Typically, T4 lysozyme
ligands had 0−4 torsions activated, HIVRT ligands had 3−12
torsions, and FKBP ligands had 6−13 torsions (Table S2). The
correction of the restricted volume sampled by the ligand to the
standard concentration (1 M)60 in eq 3 was calculated from the
average volume of the grid used for docking, 2.7 × 104 Å3.
2.3. Protein Force Field and Simulation Details. Energy

contributions for the linear interaction models (eqs 6 and S1−
S3) were obtained after geometry optimizations of protein−
ligand complexes in implicit solvent using the conjugate
gradient approach (T4 lysozyme) or the BFGS algorithm
(HIVRT and FKBP).68 Free protein and ligand contributions
were obtained without the ligand or protein, respectively, but
using the same geometry of the complex. The GBr6 method43

was used to calculate the solvent polarization free energies, GGB
in eq 6.
GROMACS 4.571 was used for all protein geometry

optimizations and MDs. Dynamics were carried out at 300 K
with a 2 fs time-step, and covalent bonds were constrained with
LINCS.76 Proteins were represented by the OPLS-AA force
field.77

In explicit solvent simulations, structures were solvated in a
dodecahedral box with edges at least 8 Å far from the protein.
The SPC/E potential78 was employed for water, and chloride
ions were added to neutralize the charge of the systems.
Periodic boundary conditions were activated. The velocity
rescale method79 was used to control the temperature at 300 K,
and pressure control at 1 bar was applied with the Parrinello−
Rahman method.80 PME81 was used to treat long-range
electrostatics, and a switched potential (cutoffs 0.8, 1.2 nm)
was used to treat van der Waals interactions. Before production
MD, systems were heated in cycles of short 20 ps simulations
with gradual temperature increase (10 K, 50 K, 100 K, 200 K,
and 300 K) and reduction of position restraints over heavy
atoms (240 kcal nm−2, 120 kcal nm−2, 24 kcal nm−2, 2 kcal
nm−2, and 0).
In implicit solvent simulations, the generalized Born (GB)

approximation was used.44 The OBC model was used to
estimate Born radii,45 and the nonpolar contribution was
calculated as in Schaefer et al.46 with a surface tension of 5.4 cal
mol−1 Å−2 for all atoms. MDs were run with a leapfrog
stochastic dynamics integrator, with a friction coefficient τ = 10
ps−1.
2.4. Ligand Force Field. Topologies for ligands were built

manually based on the OPLS-AA force field. Bonding, Lennard-
Jones, and implicit solvation parameters unavailable for certain
atom types in OPLS-AA were approximated from similar
chemical functions. Parameters for dihedral angles of the
thymine ring in HIVRT ligands were taken from the AMBER99
force field82,83 OPLS-AA partial charges were used for nonpolar
ligands or for ligands with one polar group. For ligands with
more than one polar group, partial charges were recalculated
with AM1-CM2.74,84 For small ligands, partial charges for the
whole molecule were recalculated. For the bulky FKBP and
HIVRT ligands, the molecule was divided in fragments, and
those with more than one polar group had their partial charges

recalculated. For HIVRT ligands containing sulfur, the partial
charges were recalculated with HF/6-31G*.
For all ligands, the partial charges used here resulted in total

and component dipole moments in good agreement with a
quantum mechanical (QM) reference (HF/6-31G*, Table S1).
For instance, OPLS-AA partial charges were used for 4-
vinylpyridine resulting in a total dipole moment μ = 2.7 D
which is in good agreement with the QM reference μ = 2.6 D.
Another example is 2-fluoroaniline which has two polar groups.
Its partial charges were recalculated as described above and
resulted in μ = 2.0 D which is in good agreement with the QM
reference, μ = 1.9 D.
All ligand topologies are available online85 or from the

authors upon request.
2.5. Approximations to Implicit Ligand Theory. Given

that only configurations with favorable interaction energies will
contribute significantly to the exponential average in eq 2, here
we use ligand docking to quickly generate ligand−receptor
poses with favorable interactions for a rigid receptor
conformation and approximate Ψ ≈ ΔGint. Thus, eq 2 leads to
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where ΔGint is an intrinsic binding free energy used to estimate
the stability of a given ligand binding pose (see Results, section
3.1). As docking does not generate an equilibrium distribution
of ligand−receptor configurations, application of eq 4 is
approximate. Substitution of interaction energies (Ψ in eq 2)
for an intrinsic binding free energy parametrized against
experimental data may partially correct inaccuracies in the
docking energy function and introduce entropic contributions.
In the limit that one individual sample dominates the

exponential average in eq 4, the dominant pose approximation
may be used

= ΔB Gmin( )D
i

iint, (5)

where only a single intrinsic free energy of binding contribution
is used for each rigid receptor structure.
For the receptor ensemble average, eq 3 is used with Bn

calculated by either eqs 4 or 5. A dominant state approximation
may also be invoked where only a single receptor configuration
[minn (Bn)] is used.

61

Values of N = 50 and ΔGξ = 0.9 kcal mol−1 were employed
here (see section 2.2). A maximum of P = 20 complex
configurations were drawn from docking a ligand to each rigid
receptor configuration. Thus, a maximum of 1000 binding
poses were used in eq 3. For the calculation of BE in eq 4, poses
with intrinsic free energies less favorable by 2.0 kcal mol−1 than
the most stable pose were discarded, effectively leading to 1 ≤ P
≤ 20 (see Table S7).

3. RESULTS
3.1. Parametrization and Performance of LIE Models.

The first goal here was to obtain an accurate yet computation-
ally efficient free energy function to estimate the stability of a
given binding pose obtained for a small-molecule and a given
receptor configuration. This function was called an intrinsic
binding free energy (ΔGint).
Several equations based on LIE models previously proposed

for implicit41,47,49 and explicit29,32,40,86 solvents were tested. A
combination of implicit solvent and geometry optimization of
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ligand−receptor complexes proved reasonably accurate and
computationally fast. As indicated below by comparisons of
errors observed between LIE models parametrized here and
previously available, the following adapted linear interaction
model for continuum electrostatics (ALICE) gave the best
results

η π η π

η π

Δ ≈ Δ = − − + +

+ − + + Δ +

G G k V k V

k G G k G k SASA k

(2 ) ( )

( )
int ALICE vdW

c
elet
c

GB
c

GB
p

GB
l l

1 2

3 4 5 6
(6)

where solvent polarization free energy (GGB), van der Waals
(VvdW), and electrostatic (Velet) potentials were calculated for
optimized geometries of the complex (c), protein (p), and
ligand (l) species. ΔSASAl is the difference in SASA between
bound and free ligand. The processes of ligand insertion in
solution and in the receptor cavity were assumed to be fully
decoupled so that the 6 LIE coefficients were independent.
Energy contributions and relative polarity descriptors for

ligand (π) and receptor cavity (η) are given in the Supporting
Information for all ligands (Table S3 and Table S4). Parameters
obtained after optimization of eq 6 against the training set
described above were k1 = 0.09, k2 = 0.31, k3 = 1.16, k4 = −2.85,
k5 = 0.017 kcal mol−1 Å−2, and k6 = 3.36 kcal mol−1 (Table S6).
Binding free energies estimated with eq 6 are shown in

Figure 1, Table 2, and Table S5. For the 42 small-molecule

complexes in the test set, the RMSD between calculated
(ΔGALICE) and experimental affinities is 1.2 kcal mol−1, the
coefficient of determination (R2)87 is 0.8, and the maximum
error (Emax) is 3.0 kcal mol−1 (Table S6), which drops to 2.4
kcal mol−1 if only binder molecules are considered. All false-
positive poses were properly recognized, but many nonbinders
were not.
In order to compare the results of eq 6 with the Vina docking

energy function,21 ligands in our test set were docked with Vina
to their respective protein crystal structure (native docking) or
to a congeneric holo structure if a native one was not available.
The binding pose given by the most favorable score in Vina was
chosen for comparisons. Error analysis shows that binding free
energies calculated with eq 6 resulted in smaller deviations from

experiment than those estimated with Vina (RMSD = 1.1 or 1.7
kcal mol−1, Emax = 2.2 or 4.3 kcal mol−1, and R2 = 0.7 or 0.4,
respectively). In particular, the performance of our ALICE
model is significantly better than Vina if only FKBP ligands are
considered (RMSD = 0.6 or 2.6 kcal mol−1, Emax = 1.0 or 4.3
kcal mol−1, and R2 = 0.8 or −2.8, respectively).
It is instructive to describe some of the other LIE models

parametrized and tested here. An implicit solvent LIE equation
equivalent to the formulation given by Su et al.49 but with the
cavity and van der Waals free energies of solvation condensed
to one nonpolar contribution46 (eq S1 in the SI) resulted in a
RMSD of 2.2 kcal mol for the test set (Emax = 5.6 kcal mol−1).
Affinities estimated with an adaptative version of the same
model (eq S2) resulted in a RMSD of 1.6 kcal mol−1 (Emax =
4.6 kcal mol−1). An adapted LIE eq (eq S3) in which k6 was
scaled by (1−η) presented a RMSD of 1.4 kcal mol−1 (Emax =
2.8 kcal mol−1). The number of outliers found for predictions
with this last model was, however, 50% larger than found with
eq 6 (Table S6).
Adapted LIE models with the same energetic contributions

but with different combinations of the polarity descriptors were
also tested, but eq 6 is the most accurate model. A similar result
was observed by Linder et al.40 for adapted LIE models in
explicit solvent.

3.2. Averaging Multiple Ligand and Receptor Config-
urations. The second goal of this study was to test procedures
and approximations based on the implicit ligand theory61 to
average the intrinsic free energies calculated for an ensemble of
ligand−receptor complexes. Three combinations of ligand pose
and receptor configuration averages were tested: In ΔGEE, eq 4
is used to average the ligand poses and to calculate the binding
potential of mean-force for each receptor structure, and eq 3 is
used to average the receptor configurational distribution. In
ΔGDE, eq 5 is used to calculate the binding potential of mean-
force, and eq 3 is used to average the receptor distribution.
Finally in ΔGDD, eq 5 is again used to calculate the binding
potential of mean-force, and a dominant state approximation is
used for the receptor distribution (see section 2.5).
Table 3 shows results obtained by the averaging procedures

for the full ligand set (previously divided in training and test
sets). Error analysis in comparison to experimental affinities is
shown in Table 4.
The highest deviations observed in Table 3 are due to the

L99A ligands benzene, toluene, and 1,3,5-trimethylbenzene and
to the M102Q ligands 2-fluoroaniline, toluene, 3-methylpyrrole,
thieno[3.2-b]thiophene, and N-(o-tolyl)cyanoformamide. All of
these also show high ΔGALICE deviations. In order to isolate
contributions of the averaging procedures from inaccuracies in
the intrinsic free energy function, all ALICE outliers, i.e., the
ligands cited above and catechol, 2-methoxyphenol, 4-vinyl-
pyridine, and HIV3, were removed from the error analysis.
Deviations calculated for this ligand set show slightly smaller

RMSDs and determination coefficients closer to one when
going from the exponential averages (ΔGEE) to the dominant
pose (ΔGDE) and state (ΔGDD) approximations. However, the
maximum errors (Emax) are higher for ΔGDD due to
overstabilization of HIVRT and FKBP ligands.
It is useful to analyze errors for each receptor separately. For

T4 lysozyme mutants, the dominant pose and state
approximation results in smaller deviations than the exponential
averaging procedures. In fact, ΔGDD shows a RMSD smaller
than that observed for ΔGALICE for L99A ligands (Table 2 and
Table S6) suggesting that receptor conformational selection

Figure 1. Binding free energies estimated by eq 6. T4 lysozyme L99A
ligands are shown as triangles (▲), M102Q ligands are lozenges (◆),
HIVRT ligands are circles (•), and FKBP ligands are squares (■).
Ligands in the training set are shown as empty symbols, and ligands in
the test set are shown as filled symbols. Dashed and dotted lines
indicate y = x ± 1.2 kcal mol−1.
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contributes to the calculation of binding free energies even for
the small and hydrophobic L99A ligands and for the relatively
rigid T4 lysozyme engineered cavity. Results for the M102Q
mutant show higher deviations which in part may be due to the
higher inaccuracies in the ALICE model for this receptor
(Table 2).

For HIVRT and specially for FKBP ligands, the opposite
trend is observed. The best predictions were obtained for
exponential averaging of both pose and receptor configurations
(ΔGEE). The dominant approximations overstabilize the
binding free energies because some binding poses are as
much as 3.5 kcal mol−1 more stable than the experimental free
energy.
The relative rankings of binding affinities among the HIVRT

and the FKBP ligands are recovered with all averaging
procedures, except for the two ligands with the most favorable
affinities in each receptor. However, experimental and
calculated differences between these two ligands are smaller
than 0.3 kcal mol−1.
If the Vina docking energy function is used to approximate Ψ

in eq 2, the free energies predicted show significative
disagreement with experiment for all ligand sets. For example,
ΔGEE

Vina calculated for the FKBP ligands give RMSD = 3.8 kcal
mol−1, Emax = 4.6 kcal mol−1, and R2 = −7.0 suggesting that the
docking energy function will give meaningless results if used to
approximate the solvent-mediated interaction energy in eq 2.
This result can be traced to the Vina inability to discriminate
false-positive poses. Almost all poses generated from docking
were on average used to calculate BE

Vina. On the other hand, less
than half of the generated poses were on average used to
calculate BE

ALICE for the same set of ligand−receptor poses
(Figure S2 and Table S7).

4. DISCUSSION
4.1. ALICE Model Contributions, Performance, and

Limitations. Several LIE equations with different definitions of
the nonpolar solvation contribution and with different
combinations of polarity descriptors were described and tested
here. The best predictions for a test set composed of 42 small-

Table 3. Binding Free Energies (in kcal mol−1)
Experimentally Measured and Estimated by the Averaging
Procedures Described in the Text for the Full Ligand Set

ligand ΔGexp
a ΔGEE ΔGDE ΔGDD

L99A
isobutylbenzene −6.4 −4.1 −4.4 −5.6
4-ethyltoluene −5.4 −3.7 −4.1 −4.7
para-xylene −4.6 −3.1 −3.5 −4.1
indole −4.9 −2.7 −3.2 −3.8
ortho-xylene −4.6 −3.1 −3.6 −4.2
n-butylbenzene −6.7 −4.4 −4.7 −5.7
propylbenzene −6.5 −3.8 −4.2 −5.1
ethylbenzene −5.7 −3.1 −3.7 −4.1
toluene −5.5 −2.5 −3.1 −3.5
benzene −5.2 −1.7 −2.3 −3.0
3-ethyltoluene −5.1 −3.7 −4.1 −4.8
meta-xylene −4.7 −3.1 −3.6 −4.0
2-ethyltoluene −4.5 −3.7 −4.1 −4.8
3-methylpyrrole >−2.0 −1.3 −2.0 −2.3
phenol >−2.0 −1.5 −2.1 −2.6
1,3,5-trimethylbenzene >−2.0 −3.6 −3.9 −4.9
cyclohexane >−2.0 −1.9 −2.4 −2.7
2-fluoroaniline >−2.0 −1.7 −2.3 −2.8

M102Q
2-fluoroaniline −5.5 −1.5 −2.1 −2.8
5-chloro-2-methylphenol −5.3 −2.6 −3.2 −4.0
benzyl acetate −4.7 −4.4 −4.5 −5.6
ortho-cresol −4.7 −2.1 −2.6 −3.2
2-propylphenol −5.6 −3.5 −3.8 −4.7
(phenylamino)acetonitrile −5.8 −3.2 −3.4 −4.4
toluene −5.2 −2.3 −2.6 −3.1
3-methylpyrrole −5.2 −0.9 −1.6 −2.0
thieno[3.2-b]thiophene −4.9 −1.7 −1.9 −2.7
2-ethylphenol −4.8 −2.7 −3.2 −3.9
catechol −4.4 −2.8 −3.0 −4.5
2-ethoxyphenol −4.3 −2.6 −3.1 −3.9
phenylhydrazine >−2.0 −1.6 −2.3 −3.2
2-methoxyphenol >−2.0 −2.1 −2.7 −3.3
4-vinylpyridine >−2.0 −2.3 −2.7 −3.2
N-(o-tolyl)cyanoformamide >−2.0 −1.8 −2.4 −3.6

HIVRT
HIV1 −11.5 −10.4 −11.1 −12.2
HIV2 −4.9 −4.6 −5.2 −6.3
HIV3 −8.1 −8.6 −9.2 −10.0
HIV4 −10.6 −8.7 −9.2 −10.6
HIV5 −6.4 −7.5 −8.2 −9.8
HIV6 −11.8 −10.3 −10.5 −12.0

FKBP
FKB1 −11.0 −11.9 −12.6 −13.8
FKB2 −11.2 −11.7 −12.2 −13.3
FKB3 −7.8 −7.4 −8.2 −9.3
FKB4 −8.5 −7.6 −8.2 −9.4
FKB5 −9.6 −10.7 −11.2 −12.8

aRepeated from Table S3. Nonbinders were assumed to have ΔGexp >
−2.0 kcal mol−1.

Table 4. Error Analysis of the Binding Free Energies
Calculated by the Averaging Procedures Proposed for
Different Ligand Sets

ΔGEE ΔGDE ΔGDD

Full Ligand Set (Table 3)a

RMSD 1.7 1.5 1.3
Emax 2.9 2.6 3.4
R2 0.6 0.7 0.8

L99A Ligandsa

RMSD 1.7 1.4 0.7
Emax 2.7 2.3 1.5
R2 0.0 0.3 0.8

M102Q Ligandsa

RMSD 2.2 1.8 1.3
Emax 2.9 2.6 2.1
R2 −3.0 −1.8 −0.4

HIVRT Ligands
RMSD 1.2 1.2 1.7
Emax 1.9 1.8 3.4
R2 0.8 0.8 0.6

FKBP Ligands
RMSD 0.8 1.1 2.3
Emax 1.1 1.7 3.2
R2 0.6 0.3 −1.9

aLigands with a ΔGALICE deviation from the experimental affinity
higher than one RMSD (1.2 kcal mol−1, Table 2) were removed from
the error analysis. Deviations (in kcal mol−1, except for R2) were
calculated for each set in comparison to experimental affinities.
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molecule complexes of 4 different receptors were obtained with
eq 6 with 6 adjustable parameters. None of the ligands in the
test set were used in the parametrization training set.
Deviations observed with this ALICE model and with
previously proposed LIE models are similar. For instance, the
implicit solvent LIE model proposed by Su et al. has 4
adjustable parameters and resulted in a RMSD of 1.3 kcal mol−1

with R2 = 0.62 for a set of 57 HIVRT ligands (including the 6
HIVRT ligands used here).49 The implicit solvent LIE model
with 2 adjustable parameters proposed by Kolb et al. showed a
RMSD of 1.6 kcal mol−1 with a correlation coefficient of 0.52
for a set of 128 EGFR kinase ligands.36 The LIE model
proposed by Wall et al. has 3 adjustable parameters and showed
a RMSD of 1.6 kcal mol−1 and a correlation coefficient of 0.62
for a set of 15 neuraminidase inhibitiors.35 Finally, the adapted
LIE model for explicit solvent proposed by Linder et al. has 3
adjustable parameters and resulted in a mean absolute deviation
(similar to a RMSD) of 1.6 kcal mol−1, Emax = 3.4 kcal mol−1,
and R2 = 0.72 for a diverse set of 38 ligands and their respective
16 receptors.40 Deviations reported for these four LIE models
were obtained with the same ligands (or with a congeneric set
of ligands) used for training the models. Still, the ALICE model
proposed has the smallest RMSD and the determination
coefficient closest to 1.
In order to analyze the energy contributions included in the

ALICE model, it should be noted that implicit solvation is not
pairwise decomposable in general. Consequently, the splitting
of solute−solvent interactions necessary for LIE calculations is
not unique. The solvent polarization energy in the bound
ligand state is given by (GGB

c − GGB
c′ ) where the initial state, c′,

indicates a complex with ligand charges turned off. As discussed
by Su et al.,49 the initial state is approximated here to the free
protein (p). With the GBr6 method,43 the electrostatic
polarization energy calculated for the training set changes by
0.2−0.7 kcal mol−1 between these two initial state definitions.
This polarization response is scaled by the cavity polarity
descriptor in eq 6. A combination with the ligand polarity did
not result in better predictions.
Nonpolar solvent contributions from the free ligand and the

receptor complex were replaced by a simple ΔSASA term
without loss of accuracy. Previous work suggested that the
constant term in a LIE equation, γ in eq 1 or k6 in eq 6, may be
related to binding site hydrophobicity32,34 or nonpolar surface
area.88 An ALICE model (eq S3 in the SI) in which the
constant term is scaled by the nonpolar cavity surface (1−η)
was tested, but this modification also did not result in better
performance.
The comparable accuracy obtained here for different LIE

models (eq 6 and eqs S1−S3) suggests the exact form of a LIE
equation is less important given a proper parametrization is
conducted. Significant departure from theoretical values is
observed for the parameters obtained here. For instance,
k2(η+π), equivalent to the parameter β in previous LIE models
(eq 1), ranged from 0.03 to 0.27. This is below the theoretical
value of β = 0.5.29,49 It is expected that parameter values will
mutually compensate model assumptions and inaccuracies in
the solvent model, molecular mechanical potentials, etc. Thus,
the parametrized LIE equations presented here may be cast as
linear free energy relationships which coefficients are only
bounded by the linear response theory.30

Applications of these LIE models depend, however, on their
transferability for receptors and ligands not included in the
training set used to parametrize the equations. Here coefficients

were scaled by ligand and cavity polarities in order to increase
model transferability.40 Eq 6 correctly predicts affinities for
ligands which receptors were either included (T4 lysozyme and
HIVRT) or not (FKBP) in the training set. The sensitivity of
ΔGALICE on the η and π descriptor values is small. Variations of
∼0.2 kcal mol−1 were observed when descriptor values were
scaled by ±20%. Predictions for other receptors and ligands
should have similar accuracy, but an extensive test of
transferability is left for future studies.
The computational efficiency observed for eq 6 suggests it

can be used to predict affinities for large ligand sets. For
instance, our ALICE model could be used instead of the scoring
or energy functions currently employed in molecular docking.
To this end, ligand−receptor poses would have to be generated
by the conformational search procedures found in docking21,50

or by another method such as mining-minima.89 Ligand and
protein topologies containing connectivity, force field param-
eters, and polarity descriptors would have to be available or
built. Although cumbersome when manually done, this process
can be made fairly automatic.64,66,90

In order to improve the ALICE model proposed, it may be
useful to analyze the highest deviations found. The following
ligands are described as eq 6 outliers since they show deviations
larger than one RMSD: benzene, toluene, 1,3,5-trimethylben-
zene (L99A), 2-fluoroaniline, catechol, 3-methylpyrrole, thieno-
[3,2-b]thiophene, 4-vinylpiridine, 2-methoxyphenol, N-(o-
tolyl)cyanoformamide (M102Q), and HIV3. All but 2-
fluoroaniline belong to the test set, and all T4 lysozyme
outliers have underestimated free energies. Most of these
ligands are also outliers for eqs S1−S3 (see Table S6).
The binding affinity increases for L99A ligands upon addition

of linear methylene units, as seen for benzene to toluene and up
to n-butylbenzene. The experimental free energy difference
upon methylene addition in this series is 0.2−0.3 kcal mol−1 but
between ethylbenzene and propylbenzene, which is 0.8 kcal
mol−1. Although eq 6 incorrectly predicts a small stability to
benzene and toluene, appropriate affinities are predicted upon
increasing the number of methylene units. This observation
suggests a slightly unbalanced description of the nonpolar
contributions involving aliphatic and aromatic carbons. An
atom-type dependent surface tension, k5 in eq 6, could amend
this problem.
The hydrophobic ligand 1,3,5-trimethylbenzene should

interact more favorably with the L99A nonpolar engineered
binding site than with water, as suggested by the free energy
calculated with the ALICE model. Docking suggests that there
is enough room to accommodate this relatively bulky ligand in
the L99A cavity (Table S7). However, the experimental free
energy shows that 1,3,5-trimethylbenzene is a L99A nonbinder.
As T4 lysozyme must show some breathing or opening
movement to allow the entrance or exit of ligands from the
engineered cavity,91 we speculate that 1,3,5-trimethylbenzene is
a kinetic nonbinder and that there may not be a low energy
pathway allowing its entrance into the L99A cavity.
The highest number of outliers were found for M102Q

ligands. Possibly electrostatic interactions were not described or
sampled correctly in the LIE models tested. Yet no correlation
was found between outliers and significant flaws in the
description of their dipole moments (Table S1) or the
availability of experimental ligand−receptor structures. The
lack of holo crystal structures for some ligands and the
possibility that receptor structures used for the calculation of
ΔGALICE are not representative of complexes observed in
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aqueous solution may contribute for inaccuracies in the
prediction of intrinsic binding free energies. This appears to
be the case for catechol as discussed in the next section.
4.2. Analysis of the Proposed Conformational

Averaging Schemes. Ensembles for all target receptors
were initially built with apo protein representations. For the T4
lysozyme mutants, 3 structures out of 50 in the L99A ensemble
and 11 structures out of 50 for the M102Q ensemble had their
binding cavity fully blocked by side-chains rotations. Docking
to these receptor structures did not yield complexes with ligand
inside the engineered binding site even for small ligands such as
toluene. This problem was more pronounced for the HIVRT
and FKBP bulky ligands as none of the receptor structures
obtained from apo molecular dynamics after equilibration were
able to accommodate ligands in its crystallographic binding site.
Thus, molecular dynamics obtained from holo structures were
used to generate the HIVRT and FKBP ensembles.
Affinities were consistently underestimated for T4 lysozyme

mutants by all three combinations of ensemble averages tested.
Although ΔGDD shows a small RMSD and a favorable error
analysis for L99A ligands, the dominant approximation that
counts only the most favorable pose underestimates affinities
for almost all T4 lysozyme ligands but catechol (see below).
This tendency suggests that the tentative apo M102Q ensemble
used here systematically degrades the structural representation
in comparison to the crystal structures. As noted, side-chains
rotations block the binding cavity even for the relatively rigid
engineered site in T4 lysozyme. Apo protein ensembles have to
be used carefully and possibly enlarged or modified92 to
accommodate ligand binding.
The only notable exception is catechol binding to M102Q.

Although the ALICE free energy function predicts unstable
binding for catechol to the crystal (holo) configuration,
favorable binding is predicted by ΔGDD. Thus, receptor
configurational sampling is important for the prediction of
catechol binding, and the M102Q crystal configuration may
have a low contribution to the binding affinity. In fact, it has
been shown that catechol has at least two binding modes93 and
that enhanced sampling is required to compute its binding free
energy correctly.18

Increasing the number of poses that contribute to
exponential averaging results in less favorable binding free
energies for all ligands tested. This “dilution” effect has two
possible causes. One is artificially related to the discrimination
of poses that should contribute to the ensemble averages. It
depends on the discriminatory quality of the intrinsic free
energy function. The second cause has a physical origin as the
macroscopically measured affinity may be an average of several
binding poses, some of which will have higher intrinsic free
energies of binding.
Free energies calculated for the T4 lysozyme mutants

decrease up to 50% on going from ΔGDD to ΔGEE. The
dilution effect is more pronounced for T4 lysozyme because the
intrinsic free energy differences between ligand poses inside or
outside the engineered binding site is small (<2.0 kcal mol−1).
Consequently, it is harder to discriminate poses that should
contribute to the ensemble averages from decoy poses. In fact,
for all T4 lysozyme ligands, the average number of poses
included in the calculation of the binding potential of mean-
force (eq 4) is higher than the average number of poses inside
the receptor binding site (Table S7).
The importance of pose discrimination on ensemble averages

is also illustrated when the Vina energy function is used as an

approximation instead of ΔGALICE (eq 6). The exponentially
averaged free energies obtained in this case are significantly less
favorable than the corresponding dominant approximation
(ΔGDD

Vina) for the same set of ligand−receptor poses.
For HIVRT and FKBP ligands, pose discrimination with the

ALICE model is rather accurate. Although the absolute values
of binding free energies are higher, the predictions with the
ALICE intrinsic free energy function show smaller deviations
for both receptors (Table 2). The better discrimination is
reflected by the average number of poses used to calculate BE
which is closer to the average number of poses found inside the
receptor binding site (Table S7).
Thus, for HIVRT and FKBP ligands, the decrease of

calculated free energies on going from ΔGDD to ΔGEE does
not appear artifactual but a physical effect due to averaging a
distribution of ligand−receptor conformations. Induced fit is
expected to change the receptor conformational distribution
upon ligand complexation. Indeed, some of the configurations
found for the complexes with the receptor ensemble show more
favorable intrinsic free energies of binding. This also explains
the overstabilization observed for ΔGDD predictions.
Receptor reorganization free energy will be accounted for if

the ensemble is canonically distributed and wide enough to
represent the relevant receptor motions. If ligand binding has a
large reorganization free energy, the associated receptor
motions will have high free energy costs, and the number or
fraction of binding-competent configurations in the ensemble
will be small. Consequently, a ligand complex formed with such
rare receptor configurations will only contribute significatively
to the final exponential average if it has a highly favorable
intrinsic binding free energy. On the other hand, if the
reorganization free energy for ligand binding is small, the
fraction of binding-competent configurations in the ensemble
will be large, and a reasonable number of ligand complexes with
these popular receptor configurations will contribute to the
average even if their intrinsic binding free energies are not
highly favorable.
We do not investigate here what is the appropriate size of the

ensemble to account for the reorganization energy correctly,
but 50 configurations appear to be insufficient, specially if an
apo structure is used to generate the ensemble.92 When a holo
structure is used to generate a tentative ensemble, the full
receptor reorganization energy may not be accounted for, but
the relative contribution upon a series of congeneric ligands can
be retrieved.
Finally, which of the three averaging procedures should be

applied? The answer depends on the receptor ensemble and the
intrinsic free energy function. For receptor ensembles with
unknown or biased distributions, with insufficient sampling and
for free energy functions that cannot discriminate correct
binding poses from decoys, the dominant pose and state
approximation (ΔGDD) should be applied. For more flexible
receptors and upon increasing the quality of the conformational
ensemble, the state exponential average (ΔGDE) might be
included. The exponential average for multiple ligand
configurations (ΔGEE) should be employed only when a
calibrated and discriminatory intrinsic free energy function is
available. This is probably the case for the ALICE model
proposed (eq 6) with lead-like ligands.

5. CONCLUSIONS
We have parametrized an adapted linear interaction energy
model that employs a simple combination of energy
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minimization of ligand-protein geometries with implicit
solvation. This model is able to retrospectively predict binding
affinities for different receptors with accuracy similar to other
LIE models which employ more expensive molecular dynamics
simulations to sample configurations and more detailed solvent
models.29−31,40,49 LIE models using geometry optimization and
implicit solvation have already been successfully applied by
other authors.36,47

Conformational sampling is divided and approximated in
several steps here. Solvent degrees of freedom, in particular the
important dielectric response, are treated implicitly with a
continuum electrostatic model. Ligand internal torsion and
relative orientation in receptor complexes are evaluated within
the docking algorithm when poses are generated. Finally,
receptor conformations are sampled from a configurational
ensemble, which is generated once and repeatedly used for
preparing ligand-protein complexes for a series of congeneric
ligands. It should be noted that the proposed ALICE model can
be used to predict binding affinities given either a single
receptor structure or a conformational distribution.
For the prediction of binding to flexible protein targets, it is

useful to represent the receptor structure by conformational
ensembles.6,7,53,56,57 Based on the implicit ligand theory,61

averaging procedures were proposed and tested to estimate
affinities for ligand binding to four different receptors with
structures represented by tentative conformational ensembles.
The scheme proposed is computationally efficient and could be
applied to average contributions of ∼106 ligand−receptor poses
for each ligand tested.
In principle, to be useful in the prediction of ligand binding, a

receptor conformational ensemble should follow the Boltz-
mann distribution and describe all motions or structural
rearrangements relevant for small-molecule complexation.
Here, tentative ensembles were built without much attention
to statistical distribution or to sampling of relevant motions by
running simple molecular dynamics in implicit solvent.
Consequently, results obtained by averaging contributions
from these receptor ensembles do not aim to reproduce
experimental affinities and should be analyzed only qualita-
tively. It should be noted that there is no consensus on how to
obtain conformational ensembles that are suitable to predict
ligand binding.7,53,54,92

Nevertheless, we find that good discrimination between
binding poses and decoys is essential to calculate accurate
binding affinities, particularly when contributions from several
putative binding poses and different receptor configurations are
(exponentially) averaged. Approximations used here such as
sampling by docking instead of a statistical distribution or
innacuracies in the intrinsic free energy function may contribute
to the difficulty in distinguishing binding poses from decoys.
For lead-like ligands, we found that the ALICE model proposed
is able to discriminate poses resulting in binding free energy
predictions in good agreement with experiment.
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